

BREAKTHROUGH JAVASCRIPT
Copyright © 2022 by W.S. Toh

Find us on the web at https://code-boxx.com

Notice of Rights

All rights reserved. No part of this book may be reproduced in any form

or by any electronic or mechanical means, including information storage

and retrieval systems, without written permission from the author,

except in the case of a reviewer, who may quote brief passages

embodied in critical articles or in a review.

Trademarks

Trademarked names may appear throughout this book. Rather than use

a trademark symbol with every occurrence of a trademarked name,

names are used in an editorial fashion, with no intention of infringement

of the respective owner’s trademark.

Notice of Liability

The information in this book is distributed on an “as is” basis, without

warranty. Although every precaution has been taken in the preparation

of this work, neither the author nor the publisher shall have any liability

to any person or entity with respect to any loss or damage caused or

alleged to be caused directly or indirectly by the information contained

in this book.

https://code-boxx.com/

FOREWORD
Thank you for buying this book! Once upon a time in the Cyber World,

Javascript is but a humble programming language that works silently

behind web pages. Simple, robust, and easy to learn. That was

Javascript in the early days.

But as the Internet grew with the rise of mobile devices, things became

increasingly complicated. The demand for complex operations and

functional capabilities changed. People started to brand Javascript as

“slow”, “useless”, and “too simplistic”.

Little did these people know, Javascript developers did not just sit down

and watch things burn down to the ground. Even wonder why Javascript

is one of the world’s most popular programming languages? It is still an

easy language for beginners to learn, but it is also disgustingly capable.

If you dig deep enough, Javascript can actually do a plethora of

“unthinkable” things – Accessing the GPS coordinates, reading the

gyroscope, creating a local database, asynchronous processing,

threading, voice recognition, taking photos, real-time systems, etc...

So congratulations on getting this book, let us explore some of the

“unthinkable side” of Javascript where many did not even thread on.

Take a long good laugh at the ignorant folks who still think Javascript is

going obsolete.

W.S. Toh

Founder, Code Boxx

SOFTWARE LICENSE
Copyright © by Code Boxx

Permission is hereby granted, free of charge, to any person obtaining a

copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including without

limitation the rights to use, copy, modify, merge, publish, distribute,

sublicense, and/or sell copies of the Software, and to permit persons to

whom the Software is furnished to do so, subject to the following

conditions:

The above copyright notice and this permission notice shall be included

in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY

KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,

DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN

CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

TABLE OF CONTENTS

INTRODUCTION

Chapter Topic Page

A Prelude & Overview 1

ASYNCHRONOUS & BACKGROUND PROCESSING

Chapter Topic Page

B Asynchronous Functions & Promises 5

C Workers 11

D Service Workers 22

DATA STORAGE & RETRIEVAL

Chapter Topic Page

E Cache Storage 44

F Local Storage & Session S ession 49

G Indexed DB 55

H Read Files 72

I Write Files 79

PUSH & PULL

Chapter Topic Page

J Fetch 85

K Web Sockets 94

L WebRTC (Peer To Peer) 104

M Push Notifications 114

N Streaming 124

MEDIA

Chapter Topic Page

O Full Screen 136

P Audio Player 139

Q Video Player 153

R Canvas 164

S Speech Recognition 179

T Webcam 188

U Screen Capture 198

MOBILE & SENSORS

Chapter Topic Page

V Sensors – GPS, Light, Gyro, Accelerometer 202

W Vibration 211

X Webshare 214

OTHERS

Chapter Topic Page

Y Web Assembly 217

Z Javascript Mobile App & PWA 222

α The End 233

1 | P a g e

INTENDED AUDIENCE
Here we go, starting with the obligatory “boring expectation

management”. But this is quite important, this book is to be considered

“rather advanced” and written for the more experienced developers.

If you have never heard of things like OOP, AJAX, asynchronous, parallel

processing, JSON, SSL, and API – It will be a difficult struggle trying to

understand this book.

WARNING – EXPERIMENTAL TECHNOLOGY
Some chapters in this book use experimental technologies. Yes,

technologies that are still in their “working draft” status at the time of

writing. Don’t expect 100% support across all browsers and systems.

Also, be prepared that the standards and procedures may change as the

technology matures.

SERVER-SIDE REQUIREMENTS
• NodeJS – For the uninitiated, this is server-side Javascript.

Download, install, and get started with Node if you have not

already done so.

• HTTP Server – Apache, Nginx, IIS, simple HTTP server with

NodeJS, or even the Chrome Web Server extension. Not going to

restrict what you use, just set up your own.

2 | P a g e

https://chrome.google.com/webstore/detail/web-server-for-chrome/ofhbbkphhbklhfoeikjpcbhemlocgigb?hl=en
https://github.com/http-party/http-server
https://github.com/http-party/http-server
https://github.com/http-party/http-server
https://www.iis.net/
https://www.nginx.com/
https://httpd.apache.org/
https://nodejs.org/en/

CLIENT-SIDE REQUIREMENTS
• Grade A Modern Browser – Chrome, Firefox, Opera, or Edge

(the later Webkit versions). Sorry to the Apple fans, but Safari is

considered “grade B”, some things may not work correctly.

• Mobile Device – It is best to use a smartphone or tablet for

some of the mobile-related chapters. At least use an emulator.

NO BACKWARD COMPATIBILITY CHECKS & FALLBACK
To keep things simple, all examples in this book will not do any

backward compatibility checks. For example, if ("serviceWorker"

in navigator) { … }. If you have to support legacy browsers,

please do your own checks, implement fallback, and even use a polyfill if

necessary – A library I will recommend is Modernizr.

SECURE ORIGINS – HTTPS://
The good but irritating part regarding security. Some features such as

the microphone and webcam require the page to be accessed with

https:// to work properly. We call this a “secure origin check”. If you

have already setup your own SSL certificate, well done, there is no need

to sweat. If you have not, the options are:

• Stick with using http://localhost for development. This is the

only exception that browsers will skip secure origins checks and

allow all features for testing.

• Setup your own self-signed SSL cert. It’s out of topic for this book

3 | P a g e

https://modernizr.com/

though, you will need to do your own research.

• Override the browser’s security policy, skip https:// checks for

certain domains. See below.

OVERRIDING THE SECURITY POLICY

This is the lazy way to not deal with an SSL cert, but only works on

Chromium-based browsers.

• Open chrome://flags OR opera://flags OR

edge://flags.

• Search for “Insecure origins”.

• Under “Insecure origins treated as secure”, enter your server’s

address, then enable it.

Done. The browser will skip secure origin checks, and allow access to

the microphone, webcam, GPS, or whatever else features.

4 | P a g e

5 | P a g e

SIMPLE START
For this first “serious chapter”, let us touch on asynchronous functions.

This is an easy one to help get some of you guys a little more up to

speed with modern Javascript. Feel free to skip this chapter if you

already know.

“TRADITIONAL” FUNCTIONS ARE SYNCHRONOUS

CHAPTER-B/1-SYNC-FN.HTML

// (A) SYNC FUNCTIONS
function first (a, b) { return a + b; }
function second (a, b) { return a * b; }

// (B) RUN!
var foo = first(2, 3),
 bar = second(2, 3);
console.log(foo); // 5
console.log(bar); // 6

This is a piece of cake that everyone should already know – Javascript

functions and processes are synchronous by default. That is, one

process must end before the next one can start, the next function

cannot start until the current one has ended.

This works fine by all means, but it causes a problem known as

“blocking”. That is, consider this example itself – first() must be

6 | P a g e

completed before second() can run. If first() is a massive function,

users will be staring at a “frozen screen” for a long time. This is why

asynchronous functions and parallel processing are introduced in

modern Javascript.

ASYNCHRONOUS FUNCTIONS & PROMISES

CHAPTER-B/2-ASYNC-FN.HTML

// (A) ASYNC FUNCTIONS
async function first (a, b) { return a + b; }
async function second (a, b) { return a * b; }

// (B) RUN!
var foo = first(2, 3),
 bar = second(2, 3);
console.log(foo); // PROMISE
console.log(bar); // PROMISE

// (C) GET RESULT
foo.then((result) => { console.log(result); }); // 5
bar.then((result) => { console.log(result); }); // 6

Defining an asynchronous function in Javascript is as simple as adding

async in front of function – These functions will now run

7 | P a g e

independently instead of waiting for one another to complete. While this

may sound easy enough, quite a number of people will definitely trip on

the mechanism called promise.

• Notice how foo = first(2, 3) and bar = second(2, 3)

returns a promise?

• That is because we don’t wait for asynchronous functions to finish

processing. Javascript will not return the processed results

immediately, but gives a promise instead – “I promise to get

back to you with the results when it is ready”.

• To resolve the results, we use promise.then((results) => {

DO SOMETHING }). That is, then() will only be triggered when

the function is done processing.

ARROW FUNCTIONS
So far so good? Let us go off topic a little bit. Notice the (results) =>

{ DO SOMETHING }? This is called an “arrow function”, a “shorthand”

way to define functions. All right, let us go back to defining a

“traditional” function first:

CHAPTER-B/3-ARROW-FN.HTML

// (A) "TRADITIONAL WAY"
function demo (a, b) { return a + b; }

In modern Javascript, we can simplify that to:

CHAPTER-B/3-ARROW-FN.HTML

// (B) ARROW FUNCTION

8 | P a g e

demo = (a, b) => { return a + b; };
console.log(demo(1, 2)); // 3

If it is a “one line return function” as above, we can further simplify:

CHAPTER-B/3-ARROW-FN.HTML

// (C) FURTHER SIMPLIFICATION
demo = (a, b) => a + b;
console.log(demo(3, 4)); // 7

Very handy. But take note of legacy support, older browsers don’t

understand the arrow operator =>.

AWAIT

CHAPTER-B/4-AWAIT.HTML

// (A) ASYNC FUNCTIONS
async function first (a, b) { return a + b; }
async function second (a, b) { return a * b; }

// (B) RUN!
async function third () {
 var result = await first(1, 2);
 result += await second(3, 4);
 console.log(result); // 15
}
third();

Lastly, there just times where we have to use multiple async

function. It will be super annoying to chain then(), so await is

introduced.

What it does should be self-explanatory, wait for an async function

to return the results. But take note though, await can only be used

9 | P a g e

inside another async function.

LINKS & REFERENCES
• Async Function – MDN

• Promise – MDN

• Await – MDN

• Arrow Function – MDN

COMPATIBILITY CHECKS (WITH CANIUSE)
• Async Functions

• Arrow Function

10 | P a g e

https://caniuse.com/arrow-functions
https://caniuse.com/async-functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

11 | P a g e

THREADING MAGIC
For you guys who are slightly newer to computer science:

• Asynchronous is still single threaded.

• To achieve multi-threading, we have to assign tasks to what we

call “workers”.

We shall not go out-of-point in this book, do your own homework if you

are interested in learning more about threading and processes. But to

keep things simple – Use “workers” if you want “true background

processing”.

SIMPLE WEB WORKER
So how does this “worker” thing work? How do we run Javascript in the

background? The general steps:

1. Create a worker script – worker.js

2. In the “main page”, we create a worker object and point to the

worker script – var work = new Worker("worker.js");

3. Send data from the “main page” to the worker.

4. The worker does processing in the background, returns the results

back to the “main page” when it is done.

5. The “main page” receives the results and proceeds with whatever

is required next.

Yes, this is something like an AJAX call to a Javascript. An example is

worth a thousand words:

12 | P a g e

WORKER SCRIPT

CHAPTER-C/1-WORKER.JS

// (A) ON RECEIVING DATA FROM "MAIN PAGE"
onmessage = (evt) => {
 // (A1) DO PROCESSING
 console.log("Worker has received data");
 console.log(evt.data);
 var result = +evt.data.a + +evt.data.b;

 // (A2) RESPOND BACK TO "MAIN PAGE"
 postMessage(result);
};

// (B) OPTIONAL - HANDLE ERRORS
onmessageerror = (err) => { console.log(err); };
onerror = (err) => { console.log(err); };

A basic worker script is as simple as that.

• onmessage – On receiving data from the “main page”, we use it

as the cue to start (or manage) the processing. In this example,

we do the very unproductive thing of adding two numbers. Finally,

use postMessage() to send the results back to the “main page”.

• onmessageerror – When the worker fails to parse the message

from the “main page”. I.E. A corrupted data exchange.

• onerror – Handle errors if necessary.

13 | P a g e

THE “MAIN PAGE”

CHAPTER-C/1-MAIN.HTML

// (A) CREATE A NEW WORKER
var work = new Worker("1-worker.js");

// (B) DO THIS ON WORKER RESPONSE
work.onmessage = (evt) => {
 console.log("Worker has responded");
 console.log(evt.data);
};

// (C) OPTIONAL - MANAGE ERRORS
work.onerror = (err) => {
 console.log("Worker script error!");
 console.log(err);
};

// (D) SEND DATA TO WORKER
work.postMessage({a: 99, b: 101});

On the “main page” itself, we create a new Worker() and send data to

it for processing. The worker runs in the background, and returns the

result when it is done.

WORKER RESTRICTIONS

1. Workers do not have access to the DOM. Yes, document does not

exist in the worker. Think of it this way – The worker is simply a

script that runs independently.

2. Same origin policy applies. That is, if you are thinking of hosting a

worker script on other sites – new Worker("http://other-

14 | P a g e

site.com/worker.js") will not work.

3. Of course, we must access the page with http:// for workers to

run properly.

Other than that, workers pretty much work like “any other normal

Javascript”. We can even perform AJAX Fetch calls in workers. Use that

to do meaningful processing in your own projects. For example, a

background auto save feature.

SHARED WORKER
To explain what shared workers are, consider this first:

• We create new Worker("worker.js") on page A.

• Open a new window, and create new Worker("worker.js") on

page B.

While it is the same worker.js, this will create 2 different worker

objects and spawn 2 worker instances. The scope of the worker object is

also limited to the page itself – Worker A only exists in page A, Worker B

only exists in page B.

As a small sideline, since the worker only exists in a single page, we also

commonly call it a “dedicated worker”. This is definitely not the smartest

and most efficient way to use system resources, so shared workers are

later introduced – Where a single worker is shared among many pages,

or even among workers themselves (It is possible to create a worker in

a worker).

15 | P a g e

SHARED WORKER SCRIPT

CHAPTER-C/2-SHARED-WORKER.JS

// (A) ON "CLIENT CONNECT"
// WHEN A PAGE HAS CREATED THIS AS A SHARED WORKER
onconnect = (evt) => {
 const [port] = evt.ports;

 // (B) ON RECEIVING MESSAGE FROM PAGE
 port.onmessage = (e) => {
 console.log("Worker received " + e.data);
 var result = parseInt(e.data[0]) +
 parseInt(e.data[1]);
 port.postMessage(result);
 };
};

This is pretty much the same as a dedicated worker. The difference here

is onconnect = (evt) => { const [port] = evt.ports; }

• onconnect is fired when a page creates a new shared worker,

and “connects” with this script.

• evt.ports is an array, and there’s some crazy mambo jumbo

behind it. But let’s just simplify to less the confusion.

◦ Just use port = evt.ports[0] or [port] = evt.ports.

◦ port is something like a “pipeline” between the page and

shared worker.

◦ Use port.onmessage to listen for messages sent from the

page to the shared worker.

◦ Use port.postMessage() to send data from the worker to

the page.

16 | P a g e

FIRST PAGE

CHAPTER-C/2-PAGE-A.HTML

<!-- (A) ADD TWO NUMBERS -->
<form onsubmit="return workDemo()">
 <input type="number" id="numA" required value="99"/>
 <input type="number" id="numB" required value="101"/>
 <input type="submit" value="Go!"/>
</form>

<script>
// (B) CREATE WORKER
var work = new SharedWorker("2-shared-worker.js");

// (C) DO THIS ON WORKER RESPONSE
work.port.onmessage = (evt) => {
 console.log("Worker has responded");
 console.log(evt.data);
};

// (D) OPTIONAL - MANAGE ERRORS
work.onerror = (err) => {
 console.log("Worker script error!");
 console.log(err);
};

// (E) SEND DATA TO WORKER
function workDemo () {
 work.port.postMessage([
 document.getElementById("numA").value,
 document.getElementById("numB").value
]);
 return false;
}
</script>

17 | P a g e

This example simply sends 2 numbers to the shared worker to be added

together, and it should look very familiar.

• Instead of new Worker(), we use new SharedWorker() now.

• Same story, use port.postMessage() to send data to the

worker.

• Use port.onmessage to listen for responses from the worker.

Easy? Go ahead and open in the browser, see for yourself how it works.

SECOND PAGE

CHAPTER-C/2-PAGE-B.HTML

<!-- (A) DOUBLE THE NUMBER -->
<form onsubmit="return workDemo()">
 <input type="number" id="numA" required value="99"/>
 <input type="submit" value="Go!"/>
</form>

<script>
// (B) CREATE WORKER
var work = new SharedWorker("2-shared-worker.js");

// (C) DO THIS ON WORKER RESPONSE
work.port.onmessage = (evt) => {
 console.log("Worker has responded");
 console.log(evt.data);
};

// (D) OPTIONAL - MANAGE ERRORS
work.onerror = (err) => {
 console.log("Worker script error!");
 console.log(err);

18 | P a g e

};

// (E) SEND DATA TO WORKER
function workDemo () {
 work.port.postMessage([
 document.getElementById("numA").value,
 document.getElementById("numA").value
]);
 return false;
}
</script>

This second page is a variant of the first – It sends a number to the

worker and doubles it. Take note, we are creating a new

SharedWorker() with the same 2-shared-worker.js. Opening this

page in the browser will not spawn a new worker instance, but “share

use” the one created on the first page.

INSPECTING SHARED WORKERS

To “prove” that only a single worker instance is shared between both

pages, we can check with the developer’s console. But the problem is,

shared workers will not show up in the console of the page itself. I.E.

19 | P a g e

Shared workers have a global scope. To debug and see the list of shared

workers, we have to open up the “hidden” debug page in browsers:

• Chromium-based Browsers – Open chrome://inspect/ OR

edge://inspect OR opera://inspect/, select “shared

workers” in the menu.

• Firefox – Open the URL about:debugging, “This Firefox”,

“Shared Workers”.

• Safari – Shared worker? What’s that? Not supported at the time

of writing. (Told you Safari is Grade B)

SHARED WORKER RESTRICTIONS

A shared worker is still a worker.

• Same origin policy applies. A shared worker can be used by many

pages, but all of them must be from the same domain or IP

address.

• Must use http:// to access the page.

• Of course, no access to the DOM, being an independent script.

LINKS & REFERENCES
• Threading – Wikipedia

• Web Worker – MDN

• Shared Worker – MDN

20 | P a g e

https://developer.mozilla.org/en-US/docs/Web/API/SharedWorker
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://en.wikipedia.org/wiki/Thread_(computing)

COMPATIBILITY CHECKS (WITH CANIUSE)
• Web Worker

• Shared Web Workers

21 | P a g e

https://caniuse.com/sharedworkers
https://caniuse.com/webworkers

22 | P a g e

SERVICE WORKER
Next, we have yet another kind of worker, the service worker. But this is

totally different, as it can run even when the user is offline. Yes, you

read that right. Service workers can run even after the user closes the

page, even when there is no Internet connection.

Service workers are insanely powerful, and there are already a ton of

possible uses – Cache site resources, speed up loading, synchronize

contents, push data, offline web app, etc...

REGISTERING SERVICE WORKERS

THE MAIN PAGE

CHAPTER-D/1-BASIC-SW.HTML

// (A) REGISTER SERVICE WORKER
navigator.serviceWorker.register("1-basic-sw.js")

// (B) REGISTER SERVICE WORKER OK
.then((reg) => {
 if (reg.installing) {
 console.log("Installing service worker");
 } else if (reg.waiting) {
 console.log("Waiting for old instance to end");
 } else if (reg.active) {
 console.log("Service worker active");
 }
})

// (C) ERROR
.catch((err) => { console.log(err); });

23 | P a g e

How do we get started with service workers?

A)First, we register the service worker –

navigator.serviceWorker.register("worker.js")

B)Then do something on successful registration. Take note that

there are 3 possible registration states here:

◦ installing The worker is currently installing, this will only

trigger for first time visitors.

◦ waiting Is an interesting one. When we update the worker,

the new version will wait for the old one to gracefully end

before taking over. This is the waiting state, to make sure that

only one instance of the worker is running.

◦ active The worker ready and active.

C) Something went wrong with the service worker registration,

handle the error.

SERVICE WORKER SCRIPT

CHAPTER-D/1-BASIC-SW.JS

// (A) WHEN WORKER IS REGISTERED FOR FIRST TIME
self.addEventListener("install", (evt) => {
 console.log("install", evt);
});

// (B) WORKER IS ACTIVE
self.addEventListener("activate", (evt) => {
 console.log("activate", evt);
});

24 | P a g e

// (C) WHENEVER THE WEB PAGE MAKES A REQUEST
self.addEventListener("fetch", (evt) => {
 console.log("fetch", evt);
});

// (D) ON RECEIVING A PUSH REQUEST
self.addEventListener("push", (evt) => {
 console.log("push", evt);
});

// (E) ON RECEIVING A MESSAGE OR DATA
self.addEventListener("message", (evt) => {
 console.log("message", evt);
});

// (F) BACKGROUND SYNC REQUEST
self.addEventListener("sync", (evt) => {
 console.log("sync", evt);
});

As you can see, a service worker is very much event driven. Let’s start

with a quick overview of the common events first:

• install When the worker is being registered in the user’s

browser. A common use in this event is to cache some site scripts

and resources, to speed up future loading. Yes, this is a separate

persistent “pre-cache”, not the “usual perishable” browser cache.

• activate Fired after install, the worker is ready and listening.

• fetch Whenever the page makes a request. A possible use is to

“hijack” the request and serve cached versions instead.

• push On receiving a push request. To show a push notification, or

update certain things.

25 | P a g e

• message Just like the “normal workers”, on receiving a message

or data.

• sync A background sync request. For example, sending chat

messages to the server after “recovering” from a bad connection.

INSPECTING & MANAGING SERVICE WORKERS

Now that you have registered your first service worker, there are a few

ways to manage and inspect the service worker.

1. Open the developer’s console on the page itself – Under the

application tab, service workers. A good idea for development is to

check “update on reload” here, this will force reload the service

worker script every time. You can also send test push messages,

unregister service workers here.

2. Open the inspect or debug page.

◦ On Chromium-Based browsers – chrome://inspect OR

edge://inspect OR opera://inspect

26 | P a g e

◦ Firefox – about:debugging

3. To see the full list of registered service workers in Chromium-

based browsers, open chrome://serviceworker-internals/

OR opera://serviceworker-internals/ OR

edge://serviceworker-internals/

P.S. Remember to unregister the example service worker after each run

in this book, so they don’t clash with each other.

SERVICE WORKER SCOPE
Before we proceed with more examples, here’s something very

important to touch on – The scope of the service worker.

• By default, the scope of the service worker is set to the folder

where it is placed in.

• For example, if the service worker is placed in products/sw.js,

this service worker will only apply to products/ and everything

below it – products/cameras, products/cameras/nikon/,

products/lenses/sony/, etc…

• If the service worker is at the base URL

http://site.com/sw.js, it will apply to the entire site.

Of course, we can also manually override and specify the scope of the

service worker during registration.

CHAPTER-D/2-SCOPE-SW.HTML

navigator.serviceWorker.register("1-basic-sw.js", {
 scope: "/"

27 | P a g e

 // scope: "/products/"
})
.then((reg) => { console.log(reg.scope); })
.catch((err) => { console.log(err); });

SERVICE WORKER RESTRICTIONS
• A valid https:// is required on live websites to register service

workers.

• Service workers cannot be registered in incognito or privacy mode.

Firefox users, service workers are not available if the user sets the

browser to “never remember history”.

SERVICE WORKER CACHING

THE TEST HTML PAGE

CHAPTER-D/3A-CACHE-SW.HTML

<script>
navigator.serviceWorker.register
("3-SOMETHING.JS", {scope: "/"})
.then((reg) => { console.log("OK"); })
.catch((err) => { console.log(err); });
</script>

<h1>Hello World!</h1>

So far so good? Let us now get into “major service worker feature

number 1” – Caching. On this test page, we will register the service

28 | P a g e

worker, and show 3 different images. Will get more into that later.

SAVING FILES INTO THE CACHE

CHAPTER-D/3B-CACHE-NETWORK.JS

// (A) FILES TO CACHE
const cName = "v1",
cList = ["img-science.png", "img-not-found.png"];

// (B) ADD FILES INTO CACHE ON WORKER INSTALL
self.addEventListener("install", (evt) => {
 evt.waitUntil(
 caches.open(cName)
 .then((cache) => { return cache.addAll(cList); })
 .catch((err) => { console.log(err); })
);
 console.log("Files cached");
});

To get started with this “caching thing”:

• We usually target the install event, save things into the cache

on the user’s first visit to the website.

• Take note of the use of evt.waitUntil() here. This basically

tells the browser “don’t terminate the worker until this part is fully

complete”. This will ensure all files are fetched from the server and

saved into the local cache.

• We open the cache with caches.open("v1"). Take note of

“v1”, yes, we can create different named caches and even update

it later.

• Finally, use cache.addAll(ARRAY-OF-FILES) to save a list of

29 | P a g e

files into the cache.

INSPECTING & MANAGING THE CACHE

Now that you have cached some files, open the developer’s console.

• In Chromium-based browsers, you can see and manage the

cached files under application, cache.

• In Firefox, it is under storage, cache storage.

Yes, as mentioned earlier, this is a persistent cache storage that is

different from the “usual browser cache”.

CACHE STRATEGY OPTION 1 – LOAD FROM CACHE ONLY

CHAPTER-D/3B-CACHE-NETWORK.JS

// (C) "HIJACK" FETCH REQUESTS - CACHE STRATEGIES
self.addEventListener("fetch", (evt) => {
 // (C1) SERVE FROM CACHE ONLY
 evt.respondWith(caches.match(evt.request));
}

The next part of the service worker deals with how the files are being

served. We simply “hijack” all the fetch requests and “override” them –

self.addEventListener("fetch", …).

30 | P a g e

In this first option, we will only serve files from the cache itself. Not

recommended unless you have a very robust cache, or want to create

something like a “version” thing – Do your own manual checks, prompt

the user to “update” when there is a new version.

CACHE STRATEGY OPTION 2 – LOAD FROM NETWORK ONLY

CHAPTER-D/3B-CACHE-NETWORK.JS

// (C) "HIJACK" FETCH REQUESTS - CACHE STRATEGIES
self.addEventListener("fetch", (evt) => {
 // (C2) SERVE FROM NETWORK ONLY
 // evt.respondWith(fetch(evt.request));
}

This one does not make any sense. Cache the files and don’t use it!?

CACHE STRATEGY OPTION 3 – NETWORK LOAD FIRST, THEN
FALLBACK TO CACHE

CHAPTER-D/3B-CACHE-NETWORK.JS

// (C) "HIJACK" FETCH REQUESTS - CACHE STRATEGIES
self.addEventListener("fetch", (evt) => {
 // (C3) NETWORK FIRST, FALLBACK TO CACHE
 evt.respondWith(
 fetch(evt.request)
 .catch(() => { return caches.match(evt.request); })
);
}

Recommended option, try to load from the network first, then fallback to

use the cache if the server cannot be reached.

31 | P a g e

CACHE STRATEGY OPTION 4 – CACHE LOAD FIRST, THEN FALLBACK
TO NETWORK

CHAPTER-D/3B-CACHE-NETWORK.JS

// (C) "HIJACK" FETCH REQUESTS - CACHE STRATEGIES
self.addEventListener("fetch", (evt) => {
 // (C4) LOAD FROM CACHE, FALLBACK TO NETWORK
 evt.respondWith(
 caches.match(evt.request)
 .then((res) => {
 if (res) { console.log("Serve cached"); }
 return res || fetch(evt.request);
 })
);
});

Another recommended option. Try to load from the cache first, then

load from the network if the file is not in the cache.

STORAGE CACHE TEST

The example script above is set to the above “cache first, network

fallback”. Go ahead – Load/reload this page and see the cache in action.

This will serve the cached copy of img-science.png, but since img-

raspberry.png is not cached, it will load from the server instead.

32 | P a g e

ADDING MORE FILES INTO CACHE

CHAPTER-D/3C-CACHE-NETWORK-MORE.JS

// (C) "HIJACK" FETCH REQUESTS
self.addEventListener("fetch", (evt) => {
 evt.respondWith(
 caches.match(evt.request).then((res) => {
 // (B1) FILE FOUND IN CACHE - SERVE CACHED COPY
 if (res !== undefined) { return res; }

 // (B2) ELSE PROCEED WITH NETWORK LOAD
 else {
 return fetch(evt.request).then((res) => {
 // REQUESTED FILE TYPE
 let type = res.url.split(/[#?]/)[0].split('.')
 .pop().trim().toLowerCase(),
 imgs = ["png","jpg","jpeg","webp","gif"];

 // CACHE IMAGES ONLY
 // RES CAN ONLY BE USED ONCE, THUS THE CLONE()
 if (res.status==200 && imgs.includes(type)) {
 let clone = res.clone();
 caches.open("v1").then((cache) => {
 cache.put(evt.request, clone);
 });
 }

 // NOT FOUND - SERVE STANDARD "NOT FOUND IMAGE"
 if (res.status==404 && imgs.includes(type)) {
 return caches.match("/img-not-found.png");
 }

 // RETURN WHATEVER SERVER RETURNS
 return res;
 });
 }

33 | P a g e

 })
);
});

This is a “slightly improved version” of the previous example, with 2

additions:

• As you can see, it is possible to add more files into the cache.

Simply open the cache caches.open("v1"), and push the file

into the cache cache.put(evt.request, clone).

• If an image file does not exist in the cache, and cannot be loaded

from the server – We can serve a generic “not found” image.

Feel free to tweak this example for your future projects – We can also

use the cache to store HTML, CSS, Javascript, and even JSON data to

speed up loading.

But take note that this approach may not always be the best – Once

cached, it will skip loading from the server, potentially missing out

updated files and resources. Some form of meticulous file versioning or

“expiry” need to be in place if you wish to cache things extensively.

DELETING & UPDATING THE CACHE

CHAPTER-D/3D-UPDATE-CACHE.JS

// (A) NEW V2 CACHE
const cName = "v2",
cList = ["img-science.png", "img-raspberry.png", "img-not-
found.png"];

// (B) ADD FILES INTO CACHE ON WORKER INSTALL
self.addEventListener("install", (evt) => {

34 | P a g e

 evt.waitUntil(
 caches.open(cName)
 .then((cache) => { return cache.addAll(cList); })
 .catch((err) => { console.log(err); })
);
 console.log("Files cached");
});

// (C) REMOVE ALL OLD CACHES
self.addEventListener("activate", (evt) => {
 var keep = ["v2"];
 evt.waitUntil(
 caches.keys().then((allCache) => {
 return Promise.all(allCache.map((key) => {
 if (keep.indexOf(key) === -1)
 { return caches.delete(key); }
 }));
 })
);
});

If you need to overhaul the entire cache – Simply create a new cache on

install, and delete all the old ones on activate.

SERVICE WORKER MESSAGE

SIMPLE RELAY – THE JAVASCRIPT

CHAPTER-D/4A-MESSAGE.HTML

<!-- (A) SERVICE WORKER & DEMO SCRIPT -->
<script>
// (A1) REGISTER SERVICE WORKER
navigator.serviceWorker.register("4b-message.js")
.then((reg) => { console.log("Ready"); });

35 | P a g e

// (A2) SEND MESSAGE TO SERVICE WORKER
function worksend () {
 var msg = document.getElementById("demoMsg").value;
 navigator.serviceWorker.controller.postMessage(msg)
 return false;
}

// (A3) ON RECEIVING MESSAGE FROM WORKER
navigator.serviceWorker.addEventListener
("message", (evt) => {
 console.log("Page received message", evt);
 document.getElementById("demoRecv")
 .innerHTML = evt.data;
});
</script>

Remember that we can send messages to “normal workers” and shared

workers from earlier?

• We can also send messages to service workers with

navigator.serviceWorker.controller.postMessage().

• Listen to messages received from service workers –

navigator.serviceWorker.addEventListener("message"

, (evt) => { evt.data }).

SIMPLE RELAY – THE HTML

CHAPTER-D/4A-MESSAGE.HTML

<!-- (B) SEND MESSAGE -->
<form id="demoSend" onsubmit="return worksend()">
 <input type="text" id="demoMsg" value="Foo Bar"
 required/>
 <input type="submit" value="Go!"/>

36 | P a g e

</form>

<!-- (C) RECEIVE MESSAGE -->
<div id="demoRecv"></div>

In this example, we simply send a text message to the service worker,

and it will relay that message to all registered clients. Open this page in

two different windows (or browsers) and test this for yourself – The

message should forward itself to both windows.

SIMPLE RELAY – SERVICE WORKER

CHAPTER-D/4B-MESSAGE.JS

// (B) HANDLE MESSAGES
self.addEventListener("message", (evt) => {
 // (B1) MESSAGE RECEIVED
 console.log("Worker received message", evt);

 // (B2) WE CAN ALSO DETERMINE WHO IS THE SENDER
 var sender = evt.source.id;

 // (B3) FORWARD MESSAGE TO ALL CLIENTS
 self.clients.matchAll().then((all) => {
 all.forEach((client) => {
 client.postMessage(evt.data);
 // IF YOU WANT TO EXCLUDE THE SENDER
 // if (client != sender) { ... }
 });
 });
});

Yes, it’s that easy. Just get the whole list of clients and forward the

message to everyone.

37 | P a g e

SMARTER USE OF MESSAGE

A smarter way to use the message event is to probably turn it into a

“custom background service API”.

self.addEventListener("message", (evt) => {
 switch (evt.data.req) {
 case "autosave":
 // SAVE DATA INTO CACHE OR INDEXED DB OR SERVER
 break;

 case "SERVICE":
 // MORE CUSTOM BACKGROUND PROCESSING SERVICES
 break;
 }
});

Then on the main page – postMessage({ req:"autosave",

data:"SOMETHING" }). But this is only one of the possibilities, feel

free to do whatever creative stuff with it.

SERVICE WORKER BACKGROUND SYNC

WHAT IS BACKGROUND SYNC?

To fully understand and appreciate background sync, consider this – You

are inside an elevator with no network reception. Tried to submit a form,

only to get a “no Internet connection” error. That is a real bummer, and

you have to go back to refill the entire form again.

But with background sync – It can hold off the network request, and

automatically resend when the user has a better connection. Sounds

cool? But background sync can be pretty hard to understand, so follow

along closely.

38 | P a g e

STEP 1) DUMMY SERVER SCRIPT

CHAPTER-D/5A-DUMMY.PHP

<?php
file_put_contents("POST.txt", date("Y-m-d H:i:s"));
echo "OK";

First, create a simple dummy server script to handle “form submissions”.

Here is one in PHP, and all it does is create a POST.txt with the

current timestamp. Feel free to create your own, using whatever

language you are familiar with.

STEP 2) REGISTER SYNC REQUEST

CHAPTER-D/5B-SYNC.HTML

<!-- (A) TEST BUTTON -->
<input type="button" value="Go!" id="demoGo" disabled/>

<!-- (B) SERVICE WORKER -->
<script>
navigator.serviceWorker.register("5c-sync.js")
.then((reg) => { return navigator.serviceWorker.ready; })
.then((reg) => {
 var btn = document.getElementById("demoGo");
 btn.addEventListener("click", () => {
 reg.sync.register("demosend").then(() => {
 console.log("Sync registered");
 });
 });
 btn.disabled = false;
})
.catch((err) => { console.log(err); });
</script>

39 | P a g e

Next, open this HTML page in your browser. Take extra note, clicking on

the button will not fire a fetch request to the dummy server-side script

immediately, but register a sync request with the service worker.

P.S. Don’t click on this button yet.

STEP 3) SERVER WORKER SYNC HANDLER

CHAPTER-D/5C-SYNC.HTML

self.addEventListener("sync", (evt) => {
 if (evt.tag == "demosend") {
 evt.waitUntil(
 fetch("5a-dummy.php")
 .then((res) => { return res; })
 .then((text) => { console.log("Fetch OK", text); })
 .catch((err) => { console.log(err); })
);
 }
});

The fetch request to the server-side script is done in the service worker

instead – This sync event will trigger when there is a good connection.

STEP 4) GO OFFLINE

40 | P a g e

Next, go offline under the developer’s console.

STEP 5) COMPLETE TEST

Click on the button and watch the sync request register – The fetch

request will not send out because you are currently offline.

Lastly, uncheck “offline” and watch the background sync fire the fetch

request immediately. The server-side script should also generate the

dummy POST.txt.

HOW ABOUT THE FORM DATA!?

Some of you sharp code ninjas should have already noticed – A fetch

call is made, but no form data is sent to the server. Yes, this is the

sticky situation.

• Remember that workers do not have access to the DOM? That is,

we cannot directly do a document.getElement(FORM-

FIELD).value in the worker itself.

• At the time of writing, we cannot pass data into

sync.register() either.

So in order to feed the form data:

• On the page itself, we have to first create an indexed database.

• Save the data into the indexed database on form submit.

41 | P a g e

• Register the background sync.

• Then in the worker sync process, retrieve the data from the

indexed database.

• Append the data into the fetch request.

• After a successful fetch call, clean up and remove the data in the

indexed database.

Yep, this is a major pain, and too much to walk through right now. So

we will cover both “how to create an indexed database” and “do a POST

fetch call” in later chapters instead.

MORE SERVICE WORKER USES
Congratulations, you have covered most of the basics of service

workers. But there’s a lot more, really.

• We will hold off push notifications to a later chapter.

• Service workers can be used to push, pull, and synchronize data.

• Cache can also be used to deploy an offline version, you can use it

to build a “save this to read later” feature.

• If you like, you can even build an entire offline web app with it.

• There is also a “periodic sync”, but it is not really well documented

and supported at the time of writing.

The list can go on, but I shall sign off this chapter for now... Or it will

never end. If you are interested for more, follow up with the links below,

check out the cookbook especially.

42 | P a g e

LINKS & REFERENCES
• Service Worker – MDN

• Service Worker Cookbook (A good collection of many service

worker examples)

COMPATIBILITY CHECKS (WITH CANIUSE)
• Service Worker

43 | P a g e

https://caniuse.com/serviceworkers
https://serviceworke.rs/
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API

44 | P a g e

PERSISTENT CACHE
If you have not skipped the previous chapter, this one should be very

familiar – Yes, it’s the same cache storage that we used in service

workers. Captain Obvious to the rescue, they are not just a “service

worker only” feature, we can also access it in “normal web pages” too.

Here is a quick chapter to “officially document” the functions, and some

creative uses.

CREATING CACHES

CHAPTER-E/1-CREATE.HTML

// (A) CHECK IF "V1" CACHE ALREADY CREATED
caches.has("v1").then((exist) => {
 // (B) "V1" ALREADY CREATED
 if (exist) { console.log("Has V1 cache"); }

 // (C) CREATE "V1" CACHE
 else {
 caches.open("v1").then((cache) => {
 cache.addAll(["img-raspberry.png"])
 .then(() => { console.log("V1 created"); });
 });
 }
});

• caches.has("NAME") – Check if the specified cache exists.

• caches.open("NAME") – Opens the specified cache.

• cache.addAll(ARRAY) – Adds the list of files into the cache.

45 | P a g e

ADDING FILES

CHAPTER-E/2-PUT.HTML

// (A) CREATE TEXT BLOB
var txtBlob = new Blob(
 ["Hello World!"], {type: "text/plain"}
);

// (B) BLOB OBJECT URL
var urlBlob = URL.createObjectURL(txtBlob);

// (C) FETCH BLOB & STORE
fetch(urlBlob)
.then((res) => {
 caches.open("v1").then((cache) => {
 cache.put("demo.txt", res);
 URL.revokeObjectURL(urlBlob);
 });
});

Right, you already know how to use cache.put() to add a file into the

cache. But how about… We twist it to create and save our custom files?

This is kind of “hackish”, but it works. The cache storage is persistent

too, so this file is not going to disappear.

RETRIEVE TEXT FILES

CHAPTER-E/3A-RETRIEVE-TXT.HTML

<!-- (A) EMPTY DIV -->
<div id="demo"></div>

<script>
// (B) MATCH FILE IN ALL CACHE STORAGE
caches.match("demo.txt")

46 | P a g e

// (C) RETURN AS TEXT
.then((res) => { return res.text(); })
.then((txt) => {
 document.getElementById("demo").innerHTML = txt;
});
</script>

This should be straightforward – We can “fetch” the previous text file

from the cache.

RETRIEVE IMAGE FILES

CHAPTER-E/3B-RETRIEVE-IMG.HTML

<!-- (A) EMPTY IMAGE TAG -->

<script>
// (B) MATCH FILE IN ALL CACHE STORAGE
caches.match("img-raspberry.png")

// (C) RETURN AS BLOB
.then((res) => { return res.blob(); })

// (D) BLOB > BASE64 > INTO IMG TAG
.then((imgBlob) => {
 let reader = new window.FileReader();
 reader.addEventListener("load", () => {
 document.getElementById("demo").src = reader.result;
 });
 reader.readAsDataURL(imgBlob);
});
</script>

Image files? No problem.

47 | P a g e

DELETING CACHES

CHAPTER-E/4-DELETE.HTML

// (A) GET ALL CACHE NAMES
caches.keys().then((all) => {
 // (B) LOOP & DELETE
 for (let cname of all) {
 caches.delete(cname).then(() => {
 console.log(`${cname} deleted`);
 });
 }
});

• caches.keys() – Returns the whole list of cache names.

• caches.delete(NAME) – Delete the specified cache.

LINKS & REFERENCES
• Cache Storage – MDN

COMPATIBILITY CHECKS (WITH CANIUSE)
• Cache Storag e

48 | P a g e

https://caniuse.com/mdn-api_cachestorage
https://caniuse.com/mdn-api_cachestorage
https://developer.mozilla.org/en-US/docs/Web/API/CacheStorage

49 | P a g e

LOCAL STORAGE & SESSION STORAGE
Yes, some of you guys may have already heard of it – It is possible to

store and retrieve data in Javascript, the local storage/session storage is

one of the most common options.

WHAT’S IN MY LOCAL & SESSION STORAGE?

If you want to check the contents of local or session storage, simply

open the developer’s console.

• In Chromium-Based browsers (Chrome, Opera, Edge) - Check

under Application > Storage > Local Storage.

• In Firefox, it is under Storage > Local Storage.

50 | P a g e

LOCAL STORAGE BASIC USAGE

CHAPTER-F/1-LOCAL-STORAGE.HTML

// (A) SET ITEM INTO LOCAL STORAGE
localStorage.setItem("Name", "John Doe");

// (B) GET ITEM FROM LOCAL STORAGE
var name = localStorage.getItem("Name");
console.log(name); // John Doe

// (C) REMOVE ITEM FROM LOCAL STORAGE
localStorage.removeItem("Name");

// (D) TO CLEAR EVERYTHING AT ONCE
localStorage.clear();

That is as straightforward as it gets, there are only 4 functions to handle

local storage like a pro:

• Just like defining var NAME= VALUE, we use

localStorage.setItem(“NAME”, "VALUE") to save a value

into the local storage.

• To retrieve a value from the local storage, we use

localStorage.getItem(“NAME”).

• To delete a stored value, we use

localStorage.removeItem(“NAME”).

• Lastly, to clear out everything in the local storage, we use

localStorage.clear().

51 | P a g e

SESSION STORAGE BASIC USAGE

CHAPTER-F/2-SESSION-STORAGE.HTML

// (A) SET ITEM INTO SESSION STORAGE
sessionStorage.setItem("Name", "Jane Doe");

// (B) GET ITEM FROM SESSION STORAGE
var name = sessionStorage.getItem("Name");
console.log(name); // Jane Doe

// (C) REMOVE ITEM FROM SESSION STORAGE
sessionStorage.removeItem("Name");

// (D) TO CLEAR EVERYTHING AT ONCE
sessionStorage.clear();

Look no further, session storage has the exact same 4 functions as local

storage.

LOCAL STORAGE VS SESSION STORAGE
So what is the difference between these two?

• Local storage is persistent. The user can close the entire browser,

and the local storage will still be there on the next visit/session.

• Session storage is temporary. The data is wiped out once the user

closes the browser or ends the session.

Go ahead and verify this yourself. Access this page in the browser first:

CHAPTER-F/3A-SET-DATA.HTML

// (A) SET ITEM INTO LOCAL STORAGE
localStorage.setItem("NameL", "John Doe");

52 | P a g e

// (B) SET ITEM INTO LOCAL STORAGE
sessionStorage.setItem("NameS", "Jane Doe");

console.log("ALL SET! CLOSE THE BROWSER.");

Then, close the browser and open this page:

CHAPTER-F/3B-GET-DATA.HTML

// (A) GET ITEM FROM LOCAL STORAGE
var nameL = localStorage.getItem("NameL");
console.log(nameL); // John Doe

// (B) GET ITEM FROM SESSION STORAGE
var nameS = sessionStorage.getItem("NameS");
console.log(nameS); // Null

BUT take extra note – Once the user do a “clear browser cache”,

everything will still be lost regardless.

THE BITS & PIECES

CHAPTER-F/4-MORE.HTML

// (A) DATA ARRAY
var data = ["John", "Jane"];

// (B) LOCAL/SESSION STORAGE ONLY ACCEPTS FLAT STRINGS &
// NUMBERS. JSON ENCODE ARRAYS & OBJECTS BEFORE STORING
localStorage.setItem("Names", JSON.stringify(data));

// (C) RETRIEVE ARRAY FROM LOCAL/SESSION STORAGE
// SIMPLE JSON DECODE TO GET IT BACK
var retrieved = localStorage.getItem("Names");
console.log(retrieved); // STRING
retrieved = JSON.parse(retrieved);
console.log(retrieved); // ARRAY

53 | P a g e

// (D) NAMES ARE CASE SENSITIVE
var retrieved = localStorage.getItem("names");
console.log(retrieved); // NULL

• Local/session storage cannot store arrays and objects. JSON

encode/decode if you want to store them.

• Just like “normal variables”, the names are also case-sensitive. I.E.

“name” is different from “Name”.

• Both local storage and session storage have very limited storage

space… Don’t even bother to store anything large with it.

LINKS & REFERENCES
• Local Storage – MDN

• Session Storage – MDN

COMPATIBILITY CHECKS (WITH CANIUSE)
• Local Storage

• Session Storage

54 | P a g e

https://caniuse.com/mdn-api_window_sessionstorage
https://caniuse.com/mdn-api_window_sessionstorage
https://caniuse.com/mdn-api_window_localstorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

55 | P a g e

JAVASCRIPT DATABASE
You read that right. We can create a database in client-side Javascript,

save a large amount of data in the user’s browser for the long term.

Indexed databases have actually been around for some time, but it was

never too popular due to its “unstable changing procedures”... Still,

things seem to be slowly finalizing, and this is a good alternative if you

need to store data on a substantial level.

INDEXED DB STRUCTURE IN A NUTSHELL

Before we go into the actual code, let us start with the structure of an

indexed database (IDB). Some of you who have used relational

databases (RDB) before are probably going to brain freeze for a while –

IDB shares a few similarities with RDB, but they are totally different.

56 | P a g e

• At the “top level”, we have the database. For example, we create

a test database called “MyProject”.

• A database can contain a number of object stores. For

example, Users and Products. You guys who have used a RDB

before, these are the so-called “tables”.

• How an object store work is very simple. We only need to define a

KEY for the object store, and save OBJECTS into the store.

• Easy example (see above illustration):

◦ We create a Users store. Define USERID as the KEY, set it as

an auto-increment running number.

◦ When we save an object into Users, a USERID will

automatically be assigned to the newly added object.

◦ To retrieve an object, we simply have to refer it by the KEY, the

USERID. For example, USERID 3 will refer to Joy.

◦ RDB users – An object store simply keeps objects and assigns a

KEY to it. Period. There are no restrictions on what properties

the object must have, there is no such thing as “table

structure”.

• Next example, we have a Products store.

◦ This time, the KEY is the item SKU (stock-keeping unit). Not a

running number.

◦ Very simply, we have to supply the SKU when adding objects to

the Products store. Retrieve products by referencing the SKU.

57 | P a g e

WHAT’S IN MY INDEXED DB?

To check the contents of your indexed DB, open the developer’s

console:

• In Chromium-Based browsers (Chrome, Opera, Edge) - Check

under Application > Storage > IndexedDB.

• In Firefox, it is under Storage > IndexedDB.

Don’t forget to hit the “refresh” button, the developer’s console does not

update the contents on-the-fly.

INITIALIZING & CREATING A DATABASE

CHAPTER-G/1-OPEN-INIT.JS

// (A) OPEN "MYPROJECT" DATABASE
var idb = window.indexedDB,
 req = idb.open("MyProject");

// (B) ON DATABASE ERROR
req.onerror = (evt) => { console.log(evt); };

// (C) ON UPGRADE NEEDED (CREATE OR UPDATE DATABASE)
req.onupgradeneeded = (evt) => {

58 | P a g e

 // (C1) GET DATABASE
 idb = evt.target.result;
 idb.onerror = (evt) => { console.log(evt); };

 // (C2) CREATE STORE
 var store = idb.createObjectStore("Users", {
 keyPath: "id",
 autoIncrement: true
 });
 console.log("Database Created");
};

// (D) OPEN DATABASE OK
req.onsuccess = (evt) => {
 idb = evt.target.result;
 console.log("READY!");
};

A)Captain Obvious, we open a database using

window.indexedDB.open("DATABASE").

B)Handle any database errors. This is optional.

C) Create the object stores and structure in the user’s browser.

D)What to do on a successful database connection. Here, we will just

reference var idb back to the MyProject database.

BASIC TRANSACTIONS

BASIC TRANSACTION (HELPER FUNCTION)

CHAPTER-G/2-TRANSACTIONS.JS

// (A) TRANSACTION HELPER FUNCTION
function tx () {

59 | P a g e

 return idb
 .transaction("Users", "readwrite")
 .objectStore("Users");
}

To process a database transaction – We need to start with the access

permission transaction("STORE", "PERMISSION"), then select

the store objectStore("STORE"). Annoying, but that is how it works.

ADD ENTRY (SAVE)

CHAPTER-G/2-TRANSACTIONS.JS

// (B) ADD NEW ENTRY
function add () {
 tx().add({
 name: "John Doe",
 email: "john@doe.com"
 });
 console.log("Added!");
}

Self-explanatory. Use add(OBJECT) to save an object into the object

store.

UPDATE ENTRY (PUT)

CHAPTER-G/2-TRANSACTIONS.JS

// (C) PUT (UPDATE) AN ENTRY
function put () {
 tx().put({
 id: 1,
 name: "John Doezzz",

60 | P a g e

 email: "john@doe.com",
 gender : "male"
 });
 console.log("Updated");
}

Use put(OBJECT) and define the KEY to update an object in the store.

Quick reminder –

• The KEY for the Users store is id.

• If the provided id already exists, the entry will be replaced. If not,

a new entry will be created.

• Special service for RDB users, take note of the extra gender. An

object store does not have “fixed columns”, it does not care what

properties the object has; It simply saves as long as it is an object.

GET ENTRY

CHAPTER-G/2-TRANSACTIONS.JS

// (D) GET (RETRIEVE) ENTRY
function get () {
 var req = tx().get(1);
 req.onsuccess = (evt) => {
 var john = req.result;
 console.log(john);
 };
}

Self-explanatory again – Use get(ID) to retrieve an entry from the

store.

61 | P a g e

DELETE ENTRY

CHAPTER-G/2-TRANSACTIONS.JS

// (E) DELETE ENTRY
function del () {
 var req = tx().delete(1);
 req.onsuccess = (evt) => {
 console.log("Deleted");
 };
}

Self-explanatory yet again – Use delete(ID) to remove an entry.

UPGRADING A DATABASE

CHAPTER-G/3-UPGRADE.JS

// (A) OPEN "MYPROJECT" DATABASE - NOTE : VERSION 2
var idb = window.indexedDB,
 req = idb.open("MyProject", 2);

// (B) ON DATABASE ERROR
req.onerror = (evt) => { console.log(evt); };

// (C) UPGRADE NEEDED (CREATE OR UPDATE DATABASE)
req.onupgradeneeded = (evt) => {
 // (C1) GET DATABASE
 idb = evt.target.result;
 idb.onerror = (evt) => { console.log(evt); };

 // (C2) VERSION 1 - CREATE "USER" STORE
 if (evt.oldVersion < 1) {
 var store = idb.createObjectStore("Users", {
 keyPath: "id",
 autoIncrement: true

62 | P a g e

 });
 console.log("Database Created");
 }

 // (C3) VERSION 2 - ADD INDEX "NAME", UNIQUE “EMAIL"
 if (evt.oldVersion < 2) {
 var store = req.transaction.objectStore("Users");
 store.createIndex("name", "name", { unique: false });
 store.createIndex("email", "email", { unique: true });
 // deleteIndex("NAME")
 // deleteObjectStore("NAME")
 console.log("Upgraded To V2");
 }
};

// (D) OPEN DATABASE OK
req.onsuccess = (evt) => {
 idb = evt.target.result;
 console.log("READY!");
};

Sometimes, it is just inevitable. We need to add or remove stores,

change the indexes. This example is a slightly modified 1-open-

init.js to deal with database upgrades:

• (A) The open() function actually takes in 2 parameters, the

database name and version number. The version number is an

integer, please do not enter decimals (such as 1.234), it will be

rounded off…

• (C) Take note of the changes in this section. We can use

evt.oldVersion to determine the current database version on

the user’s device, and update accordingly. Also, keep a note on

how we add an index to the store with createIndex().

63 | P a g e

INDEXES

HELPER FUNCTION & DUMMY DATA

CHAPTER-G/4-INDEX.JS

// (A) TRANSACTION HELPER FUNCTION
function tx () {
 return idb
 .transaction("Users", "readwrite")
 .objectStore("Users");
}

// (B) GENERATE DUMMY DATA
function dummy () {
 // (B1) DUMMY USERS
 var users = [
 {name: "Joa Doe", email: "joa@doe.com"},
 {name: "Job Doe", email: "job@doe.com"},
 {name: "Joc Doe", email: "joc@doe.com"},
 {name: "Joe Doe", email: "joe@doe.com"},
 {name: "Jon Doe", email: "jon@doe.com"}
];

 // (B2) ADD TO STORE
 var store = tx();
 for (let u of users) {
 store.add(u);
 console.log(u);
 }
}

What are indexes used for? Let us add some dummy users first.

64 | P a g e

GET BY INDEX

CHAPTER-G/4-INDEX.JS

// (C) GET BY NAME
function getName () {
 // (C1) GET "JON DOE"
 var req = tx().index("name").get("Jon Doe");

 // (C2) RESULT
 req.onsuccess = () => {
 console.log(req.result);
 };
}

// (D) GET BY EMAIL
function getEmail () {
 // (D1) GET "JOB@DOE.COM"
 var req = tx().index("email").get("job@doe.com");

 // (D2) RESULT
 req.onsuccess = () => {
 console.log(req.result);
 };
}

Now that the users store has some dummy data, indexes should be

pretty self-explanatory. In the first version, we can only get users by the

id. But when we add indexes to the store, it is also possible to get users

by their name and email address.

65 | P a g e

GET ALL & CURSORS

GET ALL ENTRIES

CHAPTER-G/5-ALL-CURSOR.JS

// (A) GET ALL
function getAll () {
 // (A1) GET ALL
 var req = idb
 .transaction("Users", "readwrite")
 .objectStore("Users")
 .getAll();

 // (A2) FETCH RESULTS
 req.onsuccess = (evt) => {
 var users = evt.target.result;
 console.log(users);
 };
}

So far so good? Let us move into the next stage, getting all entries in

one go. Don’t think this needs any explanation, just use getAll().

GET CURSOR

CHAPTER-G/5-ALL-CURSOR.JS

// (B) GET CURSOR
function getCursor () {
 // (B1) OPEN CURSOR
 var req = idb
 .transaction("Users", "readwrite")
 .objectStore("Users")
 .openCursor();

66 | P a g e

 // (B) "CURSOR RUN"
 req.onsuccess = (evt) => {
 let cursor = evt.target.result;
 if (cursor) {
 var user = cursor.value;
 console.log(user);
 cursor.continue();
 } else {
 console.log("DONE!");
 }
 };
}

Does this not do the same as getAll()? Fetch all users? What’s the

point of a cursor then? For the uninitiated:

• getAll() will get everything in one shot. If the store has

thousands of entries, the system will probably run into a

performance or “out-of-memory” problem.

• openCursor() will get one-by-one instead, this is the safer way

to deal with large datasets.

KEY RANGE (LIMIT)

CHAPTER-G/6-RANGE.JS

const irange = window.IDBKeyRange;
function getRange () {
 // (A) RANGE LIMIT
 // GET FROM ID 2 TO ID 4
 var limit = irange.bound(2, 4);

 // GET ALL IDS ABOVE 4 (INCLUSIVE OF 4)
 // var limit = irange.lowerBound(4);

67 | P a g e

 // GET ALL IDS BELOW 4 (INCLUSIVE OF 4)
 // var limit = irange.upperBound(4);

 // GET ONLY ID 3
 // var limit = irange.only(3);

 // (B) LIMITED GET
 var req = idb
 .transaction("Users", "readonly")
 .objectStore("Users")
 .getAll(limit);

 // (C) RESULTS
 req.onsuccess = (evt) => {
 var users = evt.target.result;
 console.log(users);
 };
}

By default, getAll() and openCursor() will get all entries from the

object store. To limit the results, we need to specify a range.

• bound(X, Y) will limit the results to >=X and <=Y.

• lowerBound(X) will limit the results to >=X.

• upperBound(X) will limit the results to <=X.

• only(X) is the funky one… It is as good as using get(ID).

SEARCH

CHAPTER-G/7-SEARCH.JS

function getSearch () {
 // (A) OPEN CURSOR

68 | P a g e

 var req = idb
 .transaction("Users", "readwrite")
 .objectStore("Users")
 .openCursor();

 // (B) SEARCH TERM & RESULTS HOLDER
 var search = "Job", results = [];

 // (C) COLLECT INTO RESULTS IF SEARCH TERM MATCHES
 req.onsuccess = (evt) => {
 let cursor = evt.target.result;
 if (cursor) {
 let user = cursor.value;
 if (user.name.indexOf(search) !== -1) {
 results.push(cursor.value);
 } else if (user.email.indexOf(search) !== -1) {
 results.push(cursor.value);
 }
 cursor.continue();
 } else {
 console.log("DONE!");
 console.log(results);
 }
 };
}

Sadly, there is no such thing as a search feature or SELECT * FROM

`TABLE` WHERE XYZ in IDB at the time of writing. The only way to do

a search is to manually run through all the entries and match your

desired search term. By the way, it’s a case sensitive search.

69 | P a g e

PERSISTENT STORAGE

CHAPTER-G/7-SEARCH.JS

if (navigator.storage && navigator.storage.persist) {
 navigator.storage.persist()
 .then((persisted) => {
 if (persisted) { console.log("Storage will only be
 cleared when the user manually does it."); }

 else { console.log("Storage can be automatically
 cleared by the browser."); }
 });
}

One final bit on the IDB, it works just like the browser cache by default.

Whenever there is a storage space crunch, or whenever the browser

deems it is appropriate to delete old data – The IDB will be cleared off

automatically.

To prevent that from happening, we can ask for persistent storage –

navigator.storage.persist(). Take note, this requires HTTPS.

LINKS & REFERENCES
• Using Indexed DB – MDN

• Working with IndexedDB – Google Developers

• Indexed DB API – MDN

• IDB Key Range – MDN

• Persistent Storage – MDN

70 | P a g e

https://developer.mozilla.org/en-US/docs/Web/API/StorageManager/persist
https://developer.mozilla.org/en-US/docs/Web/API/IDBKeyRange
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developers.google.com/web/ilt/pwa/working-with-indexeddb
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB

COMPATIBILITY CHECKS (WITH CANIUSE)
• Indexed DB

• Persistent Storage

71 | P a g e

https://caniuse.com/mdn-api_permissions_persistent-storage_permission
https://caniuse.com/mdn-api_indexeddb

72 | P a g e

READING FILES IN NODEJS

CHAPTER-H/1-NODE-READ-FILE.JS

// (A) REQUIRE MODULES
const fs = require("fs"), // FILE SYSTEM
 rl = require("readline"), // READ LINE
 https = require("https");

// (B) READ FILE (SYNC)
var data = fs.readFileSync("dummy.txt", "utf8");
console.log(data);

// (C) READ FILE (ASYNC)
fs.readFile("dummy.txt", "utf8", (err, data) => {
 console.log(data);
});

// (D) READ LINE-BY-LINE
const reader = rl.createInterface({
 input: fs.createReadStream("dummy.txt")
});
reader.on("line", (row) => {
 console.log(row);
});

// (E) GET FROM REMOTE SERVER
https.get("https://code-boxx.com", (res) => {
 res.on("data", (d) => {
 process.stdout.write(d);
 });
});

Reading files in NodeJS? Piece of cake. No sweat.

73 | P a g e

READ FILE AS TEXT

CHAPTER-H/2-READ-TEXT.HTML

<script>
function readFile () {
 // (A) GET SELECTED FILE
 let selected = document.getElementById("demoPick")
 .files[0];

 // (B) READ SELECTED FILE
 let reader = new FileReader();
 reader.addEventListener("loadend", () => {
 document.getElementById("demoShow").innerHTML =
 reader.result;
 });
 reader.readAsText(selected);
}
</script>

<div id="demoShow"></div>
<input type="file" value="Choose TXT File" id="demoPick"
 accept="text/plain" onchange="readFile()"/>

That’s right, your eyes did not deceive you. This is client-side Javascript

and HTML, it is possible to read files on the user’s device without

uploading anything to the server-side.

• Start by creating an <input type="file"/>.

• In the Javascript, we can get the selected file(s) with

document.getElementById(FIELD).files.

• Lastly, we only need to create a FileReader() object and use

readAsText() to read the selected file.

74 | P a g e

READ FILE AS DATA URL (BASE 64 ENCODED)

CHAPTER-H/3-READ-IMG.HTML

<script>
function readFile () {
 // (A) GET SELECTED FILE
 let selected = document.getElementById("demoPick")
 .files[0];

 // (B) READ SELECTED FILE
 let reader = new FileReader();
 reader.addEventListener("load", () => {
 document.getElementById("demoShow").src =
 reader.result;
 });
 reader.readAsDataURL(selected);
}
</script>

<input type="file" value="Choose JPG File" id="demoPick"
 accept="image/*" onchange="readFile()"/>

We can also directly read a file, represented in the base 64 encoding –

Just use readAsDataURL() instead of readAsText().

READ FILE AS BINARY DATA

CHAPTER-H/4-READ-BIN.HTML

<script>
function readFile (mode) {
 // (A) GET SELECTED FILE
 let selected = document.getElementById("demoPick")
 .files[0];

75 | P a g e

 // (B) READ SELECTED FILE
 let reader = new FileReader();
 reader.addEventListener("load", () => {
 console.log(reader.result);
 });
 if (mode == 1) { reader.readAsBinaryString(selected); }
 else { reader.readAsArrayBuffer(selected); }
}
</script>

<input type="file" value="Choose File" id="demoPick"/>
<input type="button" value="Read As BIN"
 onclick="readFile(1)"/>
<input type="button" value="Read As Array Buffer"
 onclick="readFile(2)"/>

Lastly, we have readAsBinaryString() and

readAsArrayBuffer() if you need to read a file in its “raw binary

form”.

CALLING THE FILE PICKER PROGRAMMATICALLY

CHAPTER-H/5-CALL-PICKER.HTML

<script>
async function readFile() {
 // (A) OPEN FILE PICKER
 [handler] = await window.showOpenFilePicker({
 excludeAcceptAllOption: true,
 types: [{
 description: "Text",
 accept: { "text/plain": [".txt", ".text"] }
 }]
 });

76 | P a g e

 // (B) GET SELECTED FILE
 let selected = await handler.getFile();

 // (C) READ SELECTED FILE
 let reader = new FileReader();
 reader.addEventListener("loadend", () => {
 document.getElementById("demoShow").innerHTML =
 reader.result;
 });
 reader.readAsText(selected);
}
</script>

<div id="demoShow"></div>
<input type="button" value="Choose TXT File"
 onclick="readFile()"/>

Traditionally, the only way to bring up the “choose a file” dialog box is

from the <input type="file"/> itself. But now, we can also use

window.showOpenFilePicker() to open up the file picker dialog

box. Take note though, this will only work on Chrome, Edge, and Opera

at the time of writing.

CLIENT-SIDE RESTRICTION – EXPLICIT PERMISSION
Noticed how the user must always choose and open a file before we can

read it? Yep, that’s the restriction in client-side Javascript. We don’t have

direct access to any of the user’s files.

77 | P a g e

LINKS & REFERENCES
• File System Access API – MDN

• File Reader – MDN

• Show Open File Picker – MDN

COMPATIBILITY CHECKS (WITH CANIUSE)
• File Reader

• Show Open File Picker

78 | P a g e

https://caniuse.com/mdn-api_window_showopenfilepicker
https://caniuse.com/filereader
https://developer.mozilla.org/en-US/docs/Web/API/Window/showOpenFilePicker
https://developer.mozilla.org/en-US/docs/Web/API/FileReader
https://developer.mozilla.org/en-US/docs/Web/API/File_System_Access_API

79 | P a g e

WRITING FILES IN NODEJS

CHAPTER-I/1-NODE-WRITE-FILE.JS

// (A) FILE SYSTEM MODULE
const fs = require("fs");

// (B) WRITE TO FILE (ASYNC)
fs.writeFile("demoA.txt", "Hello World", (err) => {});

// (C) APPEND TO FILE (ASYNC)
fs.appendFile("demoA.txt", "Goodbye World", (err) => {});

// (D) WRITE FILE (SYNC)
fs.writeFileSync("demoB.txt", "Hello World");

// (E) APPEND FILE (SYNC)
fs.appendFileSync("demoB.txt", "Goodbye World");

// (F) WRITE FILE STREAM
var data = ["Apple", "Banana", "Cherry", "Durian"];
 stream = fs.createWriteStream("demoC.txt");
// stream = fs.createWriteStream("demoC.txt",
// {"flags": "a"});
for (let i of data) { stream.write(i + "\r\n"); }
stream.end();

Writing files in NodeJS? Piece of cake. No sweat.

BLOB DOWNLOAD

CHAPTER-I/2-BLOB-DOWNLOAD.HTML

<script>
function writeFile () {
 // (A) CREATE BLOB OBJECT
 var myBlob = new Blob(["CONTENT"],

80 | P a g e

 {type: "text/plain"});

 // (B) CREATE DOWNLOAD LINK
 var url = window.URL.createObjectURL(myBlob);
 var anchor = document.createElement("a");
 anchor.href = url;
 anchor.download = "demo.txt";

 // (C) "FORCE DOWNLOAD"
 // NOTE: MAY NOT ALWAYS WORK DUE TO BROWSER SECURITY
 // BETTER TO LET USERS CLICK ON THEIR OWN
 anchor.click();
 window.URL.revokeObjectURL(url);
 document.removeChild(anchor);
}
</script>

<input type="button" value="Write File"
 onclick="writeFile()"/>

You guys who are looking to “directly save a file” into the system – That

cannot be done with client-side Javascript due to security restrictions.

This is one of the better cross-browser solutions, we create a blob

object, and offer it as a download via a hidden HTML anchor tag.

WRITABLE FILE STREAM

CHAPTER-I/3-WRITABLE-STREAM.HTML

<script>
async function writeFile () {
 // (A) CREATE BLOB OBJECT
 var myBlob = new Blob(["CONTENT"],
 {type: "text/plain"});

81 | P a g e

 // (B) FILE HANDLER & FILE STREAM
 const fileHandle = await window.showSaveFilePicker({
 types: [{
 description: "Text file",
 accept: {"text/plain": [".txt"]}
 }]
 });
 const fileStream = await fileHandle.createWritable();

 // (C) WRITE FILE
 await fileStream.write(myBlob);
 await fileStream.close();
}
</script>

<input type="button" value="Write File"
 onclick="writeFile()"/>

Alternatively, this is a more modern approach.

• Start by creating the blob object.

• Open a “save file as” dialog with fileHandle =

window.showSaveFilePicker(). Take note though, this will

only work on Chrome, Edge, and Opera at the time of writing.

• Create a writable file stream fileStream =

fileHandle.createWritable() to the file that the user chose.

• Write to the file and close it – fileStream.write(BLOB),

fileStream.close().

82 | P a g e

LOCAL STORAGE BASE 64 ENCODED STRING

CHAPTER-I/4-BLOB-LOCAL-STORAGE.HTML

// (A) CREATE BLOB OBJECT
var myBlob = new Blob(["CONTENT"], {type: "text/plain"});

// (B) BLOB TO BASE 64 ENCODED
var reader = new FileReader();
reader.readAsDataURL(myBlob);
reader.onloadend = function() {
 var encoded = reader.result;

 // (C) STORE INTO LOCAL STORAGE
 localStorage.setItem("myBlob", encoded);
 console.log("OK");
};

Remember localStorage? Yep, here is the last alternative where we

turn a blob object into a base 64 encoded string, and store it into the

localStorage... It may not offer a lot of storage space, but at least

this is the most “silent” method – We can just directly save without

having to nag “save as” at the user.

BASE 64 TO BLOB

CHAPTER-I/5-BASE64-BLOB.HTML

async function decode () {
 // (A) GET BASE 64 ENCODED STRING
 var encoded = localStorage.getItem("myBlob");

 // (B) PARSE BACK INTO BLOB
 const res = await fetch(encoded);
 var myBlob = await res.blob();

83 | P a g e

 console.log(myBlob);
}

Credits to Ionic Framework for this snippet, the base 64 encoded string

can pretty much be used “as it is”. But if you need to parse it back into a

blob object – Simply pass the encoded string into fetch() and call

blob().

LINKS & REFERENCES
• File System Access API – MDN

• Writable Streams – MDN

• Show Save File Picker – MDN

COMPATIBILITY CHECKS (WITH CANIUSE)
• Create Writable

• Show Save File Picker

84 | P a g e

https://caniuse.com/mdn-api_window_showsavefilepicker
https://caniuse.com/mdn-api_window_showsavefilepicker
https://caniuse.com/mdn-api_window_showsavefilepicker
https://caniuse.com/mdn-api_filesystemfilehandle_createwritable
https://developer.mozilla.org/en-US/docs/Web/API/Window/showSaveFilePicker
https://developer.mozilla.org/en-US/docs/Web/API/Window/showSaveFilePicker
https://developer.mozilla.org/en-US/docs/Web/API/Window/showSaveFilePicker
https://developer.mozilla.org/en-US/docs/Web/API/Streams_API/Using_writable_streams
https://developer.mozilla.org/en-US/docs/Web/API/File_System_Access_API
https://ionicframework.com/blog/converting-a-base64-string-to-a-blob-in-javascript/

85 | P a g e

MODERN HTTP COMMUNICATIONS
Once upon a time, there was XMLHttpRequest. It still works great, but

it became limited in some ways as the Cyber world moved forward with

crazy security and processes. To address the needs of modern

asynchronous HTTP calls, the Fetch API was introduced – Yes, this is the

same fetch() that we used in the earlier service worker chapter.

BASIC FETCH CONTENT

CHAPTER-J/1A-FETCH-CONTENT.HTML

<script>
function fetchHTML () {
 // (A) FETCH HTML FILE
 fetch("1b-dummy.html")

 // (B) RETURN RESPONSE AS TEXT
 .then((response) => {
 if (response.status!=200)
 { throw new Error("Bad server response"); }
 return response.text();
 })

 // (C) PUT FETCHED CONTENT INTO <DIV>
 .then((result) => {
 document.getElementById("demoShow")
 .innerHTML = result;
 });
}
</script>

<!-- (D) TEST DIV & BUTTON -->
<div id="demoShow"></div>

86 | P a g e

<input type="button" value="Fetch" onclick="fetchHTML()"/>

CHAPTER-J/1B-DUMMY.HTML

<p>This is loaded via Fetch!</p>

For a start, this is how a “general” fetch request looks like – Typically a

three steps process.

A)Fire the fetch request itself. Specify the target URL, set the options

(more on that later).

B)Parse and return the server response – As text, as JSON, or as

binary data.

C) Do something with the parsed result.

FETCH SEND DATA

FETCH POST

CHAPTER-J/2A-FETCH-POST.HTML

<!-- (A) HTML FORM -->
<form id="form" onsubmit="return fetchPOST()">
 <input type="text" name="name" value="Jon Doe"
 required/>
 <input type="email" name="email" value="jon@doe.com"
 required/>
 <input type="submit" value="Go!"/>
</form>

<script>
function fetchPOST () {
 // (B) INIT FETCH POST

87 | P a g e

 fetch("YOUR-SERVER-SCRIPT", {
 method: "POST",
 body: new FormData(document.getElementById("form"))
 })

 // (C) SERVER RESPONSE
 .then((result) => {
 if (result.status != 200)
 { throw new Error("Bad Server Response"); }
 return result.text();
 })
 .then((response) => { console.log(response); })
 .catch((error) => { console.log(error); });
 return false;
}
</script>

Remember from 1 minute ago that we mentioned “pass options into

fetch()”? Yes, just like the good old XMLHttpRequest, we can set

options to let fetch() submit as a POST request and append

FormData along with it.

FETCH GET

CHAPTER-J/2B-FETCH-GET.HTML

<!-- (A) HTML FORM -->
<form id="form" onsubmit="return fetchGET()">
 <input type="text" name="name" value="Jon Doe"
 required/>
 <input type="email" name="email" value="jon@doe.com"
 required/>
 <input type="submit" value="Go!"/>
</form>

88 | P a g e

<script>
function fetchGET () {
 // (B) INIT FETCH GET
 fetch("YOUR-SERVER-SCRIPT?" + new URLSearchParams(
 new FormData(document.getElementById("form"))
).toString())

 // (C) SERVER RESPONSE
 .then((result) => {
 if (result.status != 200)
 { throw new Error("Bad Server Response"); }
 return result.text();
 })
 .then((response) => { console.log(response); })
 .catch((error) => { console.log(error); });
 return false;
}
</script>

If you are wondering how to do the “GET” counterpart – Just append a

query string to the URL.

FETCH JSON

FETCH SEND JSON DATA

CHAPTER-J/3A-FETCH-SEND-JSON.HTML

<script>
function fetchSendJSON () {
 // (A) DATA OBJECT
 var data = {
 name : "Jon Doe",
 email : "jon@doe.com"
 };

89 | P a g e

 // (B) FETCH POST JSON
 fetch("YOUR-SERVER-SCRIPT", {
 method: "POST",
 headers: { "Content-Type": "application/json" },
 body: JSON.stringify(data)
 })

 // (C) SERVER RESPONSE
 .then((result) => {
 console.log(result);
 if (result.status != 200)
 { throw new Error("Bad Server Response"); }
 return result.text();
 })
 .then((response) => { console.log(response); })
 .catch((error) => { console.log(error); });
}
</script>

<input type="button" value="JSON Send"
 onclick="fetchSendJSON()"/>

If you need to work with arrays and objects – We can also directly send

as JSON using fetch().

FETCH RECEIVE JSON DATA

CHAPTER-J/3B-FETCH-GET-JSON.HTML

<script>
function fetchGetJSON () {
 // (A) FETCH REQUEST
 fetch("3c-dummy.json")

 // (B) RETURN SERVER RESPONSE AS JSON
 .then((result) => {

90 | P a g e

 if (result.status != 200)
 { throw new Error("Bad Server Response"); }
 return result.json();
 })
 .then((response) => { console.log(response); })
 .catch((error) => { console.log(error); });
}
</script>

<input type="button" value="JSON Get"
 onclick="fetchGetJSON()"/>

Remember from the first example that we can parse the server response

as text, JSON, or binary? Yes, this is a small improvement over the

traditional XMLHttpRequest, we do not need to manually JSON parse

the results.

FETCH HTTP BASIC AUTH

CHAPTER-J/4-FETCH-AUTH.HTML

<script>
function fetchAuth () {
 // (A) URL & CREDENTIALS
 var url = "protected/secret.html",
 credentials = btoa("USER:PASS");

 // (B) FETCH WITH HTTP AUTH
 fetch (url, {
 headers: {"Authorization": `Basic ${credentials}`}
 })

 // (C) SERVER RESPONSE
 .then((result) => {
 if (result.status != 200)

91 | P a g e

 { throw new Error("Bad Server Response"); }
 return result.text();
 })
 .then((response) => { console.log(response); })
 .catch((error) => { console.log(error); });
}
</script>

<input type="button" value="Fetch Auth"
 onclick="fetchAuth()"/>

So far so good? The previous examples have been rather “basic”. Let us

move the level up a little – Yes, we can also send an Authorization

header to challenge HTTP basic authentication with fetch().

FETCH AS BINARY

CHAPTER-J/5-FETCH-BINARY.HTML

<script>
function fetchToCanvas () {
 // (A) FETCH IMAGE & RETURN AS BINARY
 fetch ("orange.jpg")
 .then((result) => {
 if (result.status != 200)
 { throw new Error("Bad Server Response"); }
 return result.blob();
 })

 // (B) BLOB TO BASE64 ENCODE TO IMAGE TAG
 .then((blob) => {
 var reader = new FileReader() ;
 reader.onload = function () {
 var img = new Image();
 img.src = this.result;

92 | P a g e

 document.getElementById("demoShow")
 .appendChild(img);
 };
 reader.readAsDataURL(blob);
 })
 .catch((error) => { console.log(error); });
}
</script>

<div id="demoShow"></div>
<input type="button" value="Fetch Canvas"
 onclick="fetchToCanvas()"/>

I know, this is not the smartest example, but it serves its purpose well

enough – We can fetch a file as binary data, encode it, and directly

embed into an HTML page.

LINKS & REFERENCES
• Fetch API – MDN

COMPATIBILITY CHECKS (WITH CANIUSE)
• Fetch API

93 | P a g e

https://caniuse.com/fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

94 | P a g e

WHAT IS A SOCKET?
If you do not already know, HTTP is stateless and non-persistent.

• Connect to the server, request for resource (page, document,

image, video, audio, etc...)

• Download the requested resource and close the connection. The

end, case closed.

HTTP works great for short, simple, anonymous requests. But it sucks

when it comes to live applications (live chat, live updates, live stream,

online games) – How is it going to communicate with the server

continuously? Spam reload every microsecond to check for updates?

So for live applications, it is smarter to use a persistent “will not

disconnect until you say so” connection – This is called a “socket”.

BASIC WEB SOCKET

NODEJS WEB SOCKET SERVER

CHAPTER-K/1A-SERVER.JS

// (A) CREATE WEBSOCKET SERVER AT PORT 8080
const ws = require("ws"),
 wss = new ws.Server({ port: 8080 });

// (B) ON CLIENT CONNECT
wss.on("connection", (socket, req) => {
 // (B1) SEND MESSAGE TO CLIENT
 socket.send("Welcome!");

 // (B2) ON RECEIVING MESSAGE FROM CLIENT
 socket.on("message", (msg) => {

95 | P a g e

 let message = msg.toString(); // MSG IS BUFFER OBJECT
 console.log(message);
 });

 // (B3) ON CLIENT DISCONNECT
 socket.on("close", (code, reason) => {
 console.log(code);
 console.log(reason);
 });
});

// (C) NOT-SO-CRITICAL EVENTS
wss.on("listening", () => { console.log("READY"); });
wss.on("close", () => { console.log("STOPPED"); });
wss.on("error", (err) => { console.log(err); });

To get started with this “socket” thing, let us create a simple web socket

server using NodeJS.

• The ws module is required. Simply navigate to your project folder

in the command line and run npm install ws.

• (A) We create a new ws.Server({ port: 8080 }), that will

open the socket at localhost:8080.

• (B & C) Listen and manage the socket server.

◦ connection When a client connects to the server.

◦ listening The socket server is ready and listening.

◦ close When the server is closed.

◦ error An error has occurred.

• (B) This dummy script pretty much just sends a “welcome”

message to the client on connect, and show all messages received

96 | P a g e

from the client.

• When you are ready, run this script in the command line – node

1a-server.js. Press ctrl-c (cmd-c on Mac) to stop running.

WEB SOCKET CLIENT

CHAPTER-K/1B-CLIENT.HTML

// (A) CONNECT TO WEB SOCKET SERVER
const socket = new WebSocket("ws://localhost:8080");

// (B) ON CONNECTING TO THE SERVER
socket.addEventListener("open", () => {
 socket.send("Hello Server!"); // SEND MESSAGE TO SERVER
});

// (C) ON RECEIVING MESSAGE FROM SERVER
socket.addEventListener("message", (evt) => {
 console.log(evt.data);
});

// (D) ON CONNECTION CLOSE
socket.addEventListener("close", () => {
 console.log("Connection Closed");
});

// (E) ON ERROR
socket.addEventListener("error", (err) => {
 console.log(err);
});

Don’t think this needs a lot of explanation.

• (A) new WebSocket("ws://localhost:8080") connects to

the NodeJS socket server we created earlier.

97 | P a g e

• (B to E) Listen to the socket and manage the connection.

◦ open On connecting to the server. In this example, we just

send “Hello Server” to the server.

◦ message On receiving a message from the server.

◦ close When the connection is closed.

◦ error Handle errors here.

That covers the basics of a web socket connection. But of course, this

dummy example does nothing productive… Let’s go through a live chat

application next.

LIVE CHAT WITH WEB SOCKET

NODEJS LIVE CHAT SERVER

CHAPTER-K/2A-CHAT-SERVER.JS

// (A) INIT + CREATE WEBSOCKET SERVER AT PORT 8080
var ws = require("ws"),
 wss = new ws.Server({ port: 8080 }),
 users = {};

// (B) ON CLIENT CONNECT
wss.on("connection", (socket, req) => {
 // (B1) REGISTER CLIENT
 let id = 0;
 while (true) {
 if (!users.hasOwnProperty(id))
 { users[id] = socket; break; }
 id++;
 }

98 | P a g e

 // (B2) DEREGISTER CLIENT ON DISCONNECT
 socket.on("close", () => { delete users[id]; });

 // (B3) FORWARD MESSAGE TO ALL ON RECEIVING MESSAGE
 socket.on("message", (msg) => {
 let message = msg.toString();
 for (let u in users) { users[u].send(message); }
 });
});

This is pretty much a “modified example” of the basic web socket server.

• When a client connects to the socket server, we store the

connection in users.

• On receiving a message from any client, we simply forward it to all

connected users.

Yep, that’s all it takes to create a simple live chat server.

LIVE CHAT HTML PAGE

CHAPTER-K/2B-CHAT-CLIENT.HTML

<!-- (A) CHAT HISTORY -->
<div id="chatShow"></div>

<!-- (B) CHAT FORM -->
<form id="chatForm" onsubmit="return chat.send();">
 <input id="chatMsg" type="text" required disabled/>
 <input id="chatGo" type="submit" value="Go" disabled/>
</form>

• We show the chat messages in <div id="chatShow">.

• Use <form id="chatForm"> to send a message.

99 | P a g e

LIVE CHAT CLIENT JAVASCRIPT

CHAPTER-K/2B-CHAT-CLIENT.JS

var chat = {
 // (A) INIT CHAT
 name : null, // USER'S NAME
 socket : null, // CHAT WEBSOCKET
 ewrap : null, // HTML CHAT HISTORY
 emsg : null, // HTML CHAT MESSAGE
 ego : null, // HTML CHAT GO BUTTON
 init : () => {
 // (A1) GET HTML ELEMENTS
 chat.ewrap = document.getElementById("chatShow");
 chat.emsg = document.getElementById("chatMsg");
 chat.ego = document.getElementById("chatGo");

 // (A2) USER'S NAME
 chat.name = prompt("What is your name?", "John");
 if (chat.name == null || chat.name=="")
 { chat.name = "Mysterious"; }

 // (A3) CONNECT TO CHAT SERVER
 chat.socket = new WebSocket("ws://localhost:8080");

 // (A4) ON CONNECT - ANNOUNCE "I AM HERE" TO THE WORLD
 chat.socket.addEventListener("open", () => {
 chat.controls(1);
 chat.send("Joined the chat room.");
 });

 // (A5) ON RECEIVE MESSAGE - DRAW IN HTML
 chat.socket.addEventListener("message", (evt) => {
 chat.draw(evt.data);
 });

 // (A6) ON ERROR & CONNECTION LOST

100 | P a g e

 chat.socket.addEventListener("close", () => {
 chat.controls();
 alert("Websocket connection lost!");
 });
 chat.socket.addEventListener("error", (err) => {
 chat.controls();
 console.log(err);
 alert("Websocket connection error!");
 });
 },

 // (B) TOGGLE HTML CONTROLS
 controls : (enable) => {
 if (enable) {
 chat.emsg.disabled = false;
 chat.ego.disabled = false;
 } else {
 chat.emsg.disabled = true;
 chat.ego.disabled = true;
 }
 },

 // (C) SEND MESSAGE TO CHAT SERVER
 send : (msg) => {
 if (msg == undefined) {
 msg = chat.emsg.value;
 chat.emsg.value = "";
 }
 chat.socket.send(JSON.stringify({
 name: chat.name,
 msg: msg
 }));
 return false;
 },

 // (D) DRAW MESSAGE IN HTML
 draw : (msg) => {

101 | P a g e

 // (D1) PARSE JSON
 msg = JSON.parse(msg);
 console.log(msg);

 // (D2) CREATE NEW ROW
 let row = document.createElement("div");
 row.className = "chatRow";
 row.innerHTML = `<div class="chatName">
 ${msg["name"]}</div> <div class="chatMsg">
 ${msg["msg"]}</div>`;
 chat.ewrap.appendChild(row);

 // AUTO SCROLL TO BOTTOM MAY NOT BE THE BEST...
 window.scrollTo(0, document.body.scrollHeight);
 }
};
window.addEventListener("DOMContentLoaded", chat.init);

What the heck is this!? Keep calm and study slowly:

• (A & B) On page load, chat.init() will run. Pretty

straightforward, get the user’s name, connect to the chat server,

and enable the HTML “send message” form.

• (C) Send a message to the chat server. Duh.

• (A5 & D) Remember that the chat server simply forwards a

message to all connected clients? All we need to do here, is to

draw any received message into <div id="chatShow">.

The end. It’s not really that difficult… Just long-winded.

102 | P a g e

MORE USES
So what other uses do web sockets have? There’s plenty I can think of:

• Live scoreboard.

• Live bidding.

• Live streaming – Yes, web socket can stream raw binary data… It’s

a persistent connection to begin with.

• File exchange.

• Group meeting.

• Live support.

• Live restaurant orders management.

• Live tracking.

This list can go on forever, but I am going to end here...

LINKS & REFERENCES
• WebSocket API – MDN

• ws Module Documentation – GitHub

COMPATIBILITY CHECKS (WITH CANIUSE)
• W ebSocket

103 | P a g e

https://caniuse.com/mdn-api_websocket
https://caniuse.com/mdn-api_websocket
https://github.com/websockets/ws/blob/HEAD/doc/ws.md
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

104 | P a g e

DIRECT EXCHANGE
RTC stands for “real time communication”, and yes, this refers to a real-

time peer-to-peer connection with web technologies. However, a peer

server is still required to facilitate the handshaking – Thereafter, data

exchange between the peers are done without going through the server.

VERY SIMPLE PEER-TO-PEER

STEP 1) PEER LIBRARIES

Working with the “native” WebRTC is… raw and painful. To speed things

up, we will be using the PeerJS and PeerServer libraries.

• The client-side PeerJS can be easily loaded from CDNJS.

• The Peer Server can be downloaded with npm install peer.

STEP 2) NODEJS PEER SERVER

CHAPTER-L/1A-SERVER.JS

const { PeerServer } = require("peer");
const peerServer = PeerServer({
 port: 9000,
 path: "/myapp"
});

A basic peer server is as simple as that. Running this will deploy it at

http://localhost:9000/myapp.

105 | P a g e

http://localhost:9000/myapp
https://cdnjs.com/libraries/peerjs
https://www.npmjs.com/package/peer
https://peerjs.com/

STEP 3) PEER CLIENT A

CHAPTER-L/1B-PEER-A.HTML

// (B1) HANDSHAKE WITH PEER SERVER
const peer = new Peer("PEER-A", {
 host: "localhost",
 port: 9000,
 path: "/myapp"
});

// (B2) ON RECEIVING MESSAGE FROM OTHER PEERS
peer.on("connection", (conn) => {
 conn.on("data", (data) => { console.log(data); });
});

Go ahead, access http://localhost/1b-peer-a.html in your

browser. This should be self-explanatory.

• (B1) new Peer(ID, OPTIONS) will do a handshake with the

peer server. Take note of the ID here, we manually set it to

PEER-A, and this must be a unique user ID. More on that later.

• (B2) When another peer connects, we show the message that is

sent over.

STEP 4) PEER CLIENT B

CHAPTER-L/1C-PEER-B.HTML

// (B1) HANDSHAKE WITH PEER SERVER
const peer = new Peer("PEER-B", {
 host: "localhost",
 port: 9000,
 path: "/myapp"

106 | P a g e

});

// (B2) READY - CONNECT & SEND MESSAGE TO PEER A
peer.on("open", (id) => {
 var conn = peer.connect("PEER-A");
 conn.on("open", () => {
 conn.send("Hi from PEER-B!");
 });
});

• (B1) This is the very same “handshake with peer server”, but take

note that we are assigning PEER-B as the user ID this time.

• (B2) On successful handshake with the server, we open a

connection to PEER-A and send a “hi” message.

Now, open a new window or use a different browser. Access

http://localhost/1c-peer-b.html and see the “hi” message

appear in the console panel of PEER-A. Yes, the message is sent

directly from peer-to-peer. The server is not involved.

SIMPLE PEER-TO-PEER CHAT
Next, let us upgrade the very simple P2P exchange into a simple P2P

chat app. Yes, a reminder that this is peer-to-peer (one to one). This is

different from the previous WebSocket chat that is broadcast (one to

many).

107 | P a g e

P2P CHAT HTML

CHAPTER-L/2A-CHAT.HTML

<!-- (B) HTML INTERFACE -->
<form id="chatForm">
 <input type="text" id="chatTxt" disabled required/>
 <input type="submit" id="chatGo" disabled value="Send"/>
 <input type="button" id="chatCx" disabled
 value="Disconnect"/>
</form>
<div id="chatView"></div>

For this simple chat, we have a simple HTML interface.

• chatForm – Chat form on top. With a text box, send and

disconnect buttons.

• chatView – Chat messages below.

P2P CHAT JAVASCRIPT – THE PROPERTIES

CHAPTER-L/2C-CHAT.JS

var chat = {
 // (A) PROPERTIES
 // (A1) CHAT SERVER
 peer : null, conn : null,
 opt : { host: "localhost", port: 9000, path: "/myapp" },

 // (A2) HTML ELEMENTS
 hView : null, hForm : null, hTxt : null,
 hGo : null, hCx : null,
}

First, we begin by defining a chat object and some properties. All of

these should be self-explanatory.

108 | P a g e

P2P CHAT JAVASCRIPT – INITIALIZE

CHAPTER-L/2C-CHAT.JS

// (B) INIT
init : (id, after) => {
 // (B1) GET + SET HTML ELEMENTS
 chat.hView = document.getElementById("chatView");
 chat.hForm = document.getElementById("chatForm");
 chat.hTxt = document.getElementById("chatTxt");
 chat.hGo = document.getElementById("chatGo");
 chat.hCx = document.getElementById("chatCx");
 chat.hForm.onsubmit = chat.send;
 chat.hCx.onclick = chat.disconnect;

 // (B2) HANDSHAKE WITH PEER SERVER
 chat.peer = new Peer(id, chat.opt);

 // (B3) READY
 chat.peer.on("open", (id) => {
 if (after) { after(); }
 });

 // (B4) ON PEER CONNECT
 chat.peer.on("connection", (conn) => {
 chat.conn = conn;
 chat.connector();
 });

 // (B5) ALL OTHER PEER EVENTS
 chat.peer.on("close", () => { console.log("close"); });
 chat.peer.on("disconnected", () =>
 { console.log("dc"); });
 chat.peer.on("error", (err) => { console.log(err); });
 // chat.peer.on("call", () => { console.log("call"); });
}

109 | P a g e

We run the init() function on page load to start the chat. This is just

long-winded, not complicated.

• (B1) Get the HTML elements, set the “chat actions”.

• (B2 To B4) Do the peer server handshake as usual. But keep the

peer object in chat.peer and connection in chat.conn to better

manage the chat app.

• (B5) Do take some time to go through the peer events. R ead the ir

official documentation if you want.

P2P CHAT JAVASCRIPT – PEER CONNECT & DISCONNECT

CHAPTER-L/2C-CHAT.JS

// (C) CONNECT TO PEER
connect : (id) => {
 chat.conn = chat.peer.connect(id);
 chat.connector();
},

// (D) ATTACH PEER LISTENERS
connector : () => {
 chat.conn.on("open", () => { chat.tog(); });
 chat.conn.on("close", () => { chat.tog(true); });
 chat.conn.on("data", chat.recv);
 chat.conn.on("error", (err) => { console.log(err); });
},

// (D) DISCONNECT PEER
disconnect : () => { chat.conn.close(); }

These are the same with the previous very simple example once again,

but broken into different functions to better manage the connection.

110 | P a g e

https://peerjs.com/docs.html#api
https://peerjs.com/docs.html#api
https://peerjs.com/docs.html#api
https://peerjs.com/docs.html#api
https://peerjs.com/docs.html#api

P2P CHAT JAVASCRIPT – DRAW MESSAGE

CHAPTER-L/2C-CHAT.JS

// (E) HELPER - DRAW MESSAGE
draw : (txt, css) => {
 let row = document.createElement("div");
 row.innerHTML = txt;
 row.className = css;
 chat.hView.appendChild(row);
},

// (F) SEND MESSAGE
send : () => {
 chat.conn.send(chat.hTxt.value);
 chat.draw(chat.hTxt.value, "send");
 chat.hTxt.value = "";
 return false;
},

// (G) RECEIVE MESSAGE
recv : (txt) => {
 chat.draw(txt, "recv");
}

Self-explanatory. Draw the sent/received messages in HTML.

P2P CHAT JAVASCRIPT – LOCK/UNLOCK INTERFACE

CHAPTER-L/2C-CHAT.JS

// (H) TOGGLE INTERFACE
tog : (lock) => {
 if (lock) {
 chat.hForm.disabled = true;
 chat.hTxt.disabled = true;

111 | P a g e

 chat.hGo.disabled = true;
 chat.hCx.disabled = true;
 } else {
 chat.hForm.disabled = false;
 chat.hTxt.disabled = false;
 chat.hGo.disabled = false;
 chat.hCx.disabled = false;
 }
}

This final bit is used to lock the HTML interface when no peers are

connected, enable the chat when a peer is connected.

LAUNCH P2P CHAT JAVASCRIPT

CHAPTER-L/2A-CHAT.HTML

window.addEventListener("load", () => {
 chat.init("PEER-A");
});

Now that things are ready, launch http://localhost/2a-

chat.html in your browser. This will wait for a peer connection just

like the previous example.

CHAPTER-L/2B-CHAT.HTML

window.addEventListener("load", () => {
 chat.init("PEER-B", () => {
 chat.connect("PEER-A");
 });
});

Next, open http://localhost/2b-chat.html in another browser or

window. This will connect to PEER-A and the chat example is ready.

112 | P a g e

MYSTERY OF THE USER ID
Must we always manually assign PEER-A and PEER-B? How does that

even work? This is a difficult question to answer, as every app

development is different. Here are a few examples to better illustrate:

• If you already have a user database, it makes sense to tie in and

use it – new Peer(USER-ID-IN-DATABASE, OPTIONS).

• new Peer(null, OPTIONS) will automatically generate a

random ID that you can obtain in peer.on("open", (id) =>

{ … }). Maybe use it to create a URL for the user to share –

http://site.com/chatwith/?u=ID

• If not, you can create your own concept of a “private room” or

sorts, generate and set your own unique ID.

WEBRTC AUDIO VIDEO STREAM
If you have noticed that peer.on("call") event, yes, we can do

audio and video calls with WebRTC. But we will hold on and cover that

in the later chapter on screen sharing and webcams.

LINKS & REFERENCES
• Web RTC API – MDN

COMPATIBILITY CHECKS (WITH CANIUSE)
• WebRTC Compatibility – CanIUse

113 | P a g e

https://caniuse.com/rtcpeerconnection
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API

114 | P a g e

STEP-BY-STEP PUSH
It is no secret that we can do push notifications in browsers. But the

actual implementation is not the easiest, as it involves multiple different

technologies. So instead of throwing out “one massive and confusing

example”, let us take a step-by-step approach instead.

STEP 1) DOWNLOAD NODE MODULES
First, let us get all the required Node modules first. Open the command

line, navigate to your project folder, and run npm install express

body-parser web-push.

STEP 2) GENERATE VAPID KEYS

CHAPTER-M/2-VAPID-KEYS.JS

const vapidKeys = require("web-push").generateVAPIDKeys();
console.log(vapidKeys);

Next, run this snippet to get your own pair of public/private keys – node

2-vapid-keys.js. VAPID stands for Voluntary Application Server

Identification. Basically security and authentication stuff, so people don’t

hijack your push notifications to send funky stuff.

Just hold on to the keys first, we will use it later. But a quick reminder,

always use the private key on the server-side only. Do not expose it

publicly.

115 | P a g e

STEP 3) CLIENT-SIDE

GET PERMISSION TO SHOW NOTIFICATIONS

CHAPTER-M/3-CLIENT.HTML

// (A) OBTAIN USER PERMISSION
// (A1) ASK FOR PERMISSION
if (Notification.permission === "default") {
 Notification.requestPermission().then((perm) => {
 if (Notification.permission === "granted") {
 regWorker().catch((err) =>
 { console.error(err); });
 } else { alert("Please allow notifications."); }
 });
}

// (A2) GRANTED
else if (Notification.permission === "granted") {
 regWorker().catch((err) => { console.error(err); });
}

// (A3) DENIED
else { alert("Please allow notifications."); }

The first thing we do on the HTML page is to get the user’s permission

to display notifications. Very simple, just a couple of things to take note:

• Notification.permission contains the status.

◦ default – The user has not allowed nor denied permission.

◦ granted – The user allowed notifications to be shown.

◦ denied – The user has denied permission.

• If the user has not given permission, we use

Notification.requestPermission() to ask for it.

116 | P a g e

• We proceed to register the service worker when the user has

given permission to display push notifications.

PERMISSIONS & RESTRICTIONS

The Notification API requires a valid https:// website to work, but as

always, http://localhost is an exception. Also, once the user

denied permission, Notification.requestPermission() will not

show the “grant permission” dialog box again. You will have to show

your own “manual remedy instructions”, or just live with it.

P.S. If you do not already know, click on the website icon in the URL bar

to bring up the permissions.

REGISTER SERVICE WORKER

CHAPTER-M/3-CLIENT.HTML

// (B) REGISTER SERVICE WORKER

117 | P a g e

async function regWorker () {
 // (B1) YOUR PUBLIC KEY - CHANGE TO YOUR OWN!
 const publicKey = "YOUR-PUBLIC-KEY";

 // (B2) REGISTER SERVICE WORKER
 const reg = await navigator.serviceWorker.
 register("4-sw.js", { scope: "/" });

 // (B3) SUBSCRIBE TO PUSH SERVER
 const sub = await reg.pushManager.subscribe({
 userVisibleOnly: true,
 applicationServerKey: publicKey
 });

 // (B4) TEST PUSH
 await fetch("/mypush", {
 method: "POST",
 body: JSON.stringify(sub),
 headers: { "content-type": "application/json" }
 });
}

• (B1) Insert your public key here.

• (B2) Looks familiar? Yes, it’s the same old register service worker.

• (B3) After registering the service worker, we also subscribe to the

push server – Pass in the options and public key. Take note that

this returns a subscription object into const sub.

• (B4) After a complete client-side setup, we immediately fire a

fetch request to /mypush. This is an endpoint that we will build

later on the server, to send out a dummy push notification. Take

note, we pass the subscription object sub to the server.

118 | P a g e

STEP 4) SERVICE WORKER

CHAPTER-M/4-SW.JS

self.addEventListener("push", (evt) => {
 const data = evt.data.json();
 self.registration.showNotification(data.title, {
 body: data.body,
 icon: data.icon,
 image: data.image
 });
});

Simply listen to the push event and use

registration.showNotification() to show push messages.

STEP 5) SERVER-SIDE

TURN OFF YOUR WEB SERVER!

Hold your horses, things get complicated here. Now, most hosts in the

real world should already be running an HTTP web server (Apache,

Nginx, IIS, etc…). Here’s the sticky situation:

• If we also deploy the Node push server on port 80, it will clash

with the existing web server.

• We can avert this by deploying it on another port (8080 for

example), but same origin restriction kicks in and this still fails.

• There are 2 possible solutions to further remedy this situation.

◦ Run the push server on port 8080, then set an HTTP proxy in

the web server. I.E. “Map” https://site.com/mypush to

https://site.com:8080/mypush.

119 | P a g e

◦ Turn off the existing web server, set the Node server to cover

both HTTP and push services.

Since setting up a proxy is grossly out of topic for this book, we will go

with the simpler “hostile take over” method. Remember to turn off your

web server… But in your live application, you will want to set up a

proper proxy instead. Or use a server-side language supported on your

server to rebuild the entire push server below.

NODE HTTP & PUSH SERVER

CHAPTER-M/5-SERVER.JS

// (A) MODULES & SETTINGS
const express = require("express"),
 bodyParser = require("body-parser"),
 webpush = require("web-push"),
 mail = "your@email.com",
 port = 80,
 publicKey = "YOUR-PUBLIC-KEY",
 privateKey = "YOUR-PRIVATE-KEY";

// (B) SETUP SERVER
webpush.setVapidDetails("mailto:" + mail, publicKey,
privateKey);
const app = express();
app.use(express.static(__dirname)); // SERVE STATIC FILES
app.use(bodyParser.json()); // JSON PARSER

// (C) SEND TEST PUSH NOTIFICATION
app.post("/mypush", (req, res) => {
 res.status(201).json({}); // REPLY WITH 201 (CREATED)
 webpush.sendNotification(req.body, JSON.stringify({
 title: "YES!",

120 | P a g e

 body: "It works!",
 icon: "note-potato.png",
 image: "note-banner.png"
 }))
 .catch((err) => { console.log(err); });
});

// (D) START!
app.listen(port, () => {
 console.log(`Server deployed at ${port}`)
});

A) Insert your public and private keys.

B)Setup the push server, set Express to use the JSON parser and

serve static files from your project folder.

C) The dummy /mypush endpoint mentioned earlier. Notice how we

“reuse and forward” the subscription object –

webpush.sendNotification(req.body, NOTIFICATION).

D)Start the server. What else?

STEP 6) LAUNCH!

121 | P a g e

• Start the server – node 5-server.js.

• Access http://localhost/3-client.html in the browser.

• Give permission and see the notification roll.

PUSH TEST

Now that the service worker is registered, you can actually do a test

push at any time without the push server. Open up the developer’s

console, go under Application > Service Worker > Try sending this test

push - {"title":"Title","body":"Message","icon":"note-

potato.png","image":"note-banner.png"}

P.S. Try to use absolute URL for the icon and image, it is more reliable

that way.

SECURITY & MORE
Of course, this example only scratched the surface. In your own project,

you will need to tie all of these together:

• Client-side: Ask for user permission, register service worker,

122 | P a g e

subscribe to push server.

• Service Worker: Listen to push requests, show the notification.

• Server-side: NodeJS is not the only one that can work with push

notifications. There are also web push servers for PHP, Python,

Java, C#, etc… Feel free to adopt whichever you are familiar with,

just do a quick search on GitHub. Also, the mypush/ endpoint

should be restricted to “admin only”.

LINKS & REFERENCES
• Notification API – MDN

• Push API – MDN

• Push Manager API – MDN

COMPATIBILITY CHECKS (WITH CANIUSE)
• Web Notification

• Push Manager

123 | P a g e

https://caniuse.com/mdn-api_pushmanager
https://caniuse.com/notifications
https://developer.mozilla.org/en-US/docs/Web/API/PushManager
https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://developer.mozilla.org/en-US/docs/Web/API/notification
https://developer.mozilla.org/en-US/docs/Web/API/notification
https://github.com/search?q=web+push

124 | P a g e

DRY TOPIC
Streaming, it is nothing new these days. But just what does it mean? In

layman terms – Instead of dealing with “one big file”, we split it into

smaller chunks. While this sounds easy, the concepts behind streaming

can be dry and boring. So let’s get over it, with simple examples.

NODEJS WRITABLE FILE STREAM

CHAPTER-N/1-WRITE-FILE-STREAM.JS

// (A) WRITE STREAM
let stream = require("fs").createWriteStream("dummy.txt");

// (B) COMMON WRITE STREAM EVENTS
// (B1) ERROR
stream.on("error", (err) => { console.log(err); });
// (B2) FINISHED WRITING
stream.on("finish", () => { console.log("Finished"); });
// (B3) STREAM CLOSED
stream.on("close", () => { console.log("Closed"); });

// (C) WRITE DUMMY DATA
for (let i=0; i<99; i++) {
 stream.write("Lorem ipsum dolor sit amet, consectetur
 adipiscing elit. Curabitur ut odio viverra turpis
 interdum pulvinar.");
}
stream.end();

Yes, you should have already seen this in the “write files” chapter. Using

a writable file stream in Node is as straightforward as can be:

• Open file stream – STREAM = fs.createWriteStream(FILE).

125 | P a g e

• Write into the file stream – STREAM.write(DATA).

• Properly close the stream – STREAM.end().

Take note of the events though, these may come in handy in your app:

• error – Handle when an error occurs.

• finish – On write finish, but take note that the stream remains

open. In plain English, this simply means “finished writing

everything to the file, buffer is emptied”.

• close – Fired after STREAM.end(), when the stream is closed.

NODEJS READABLE FILE STREAM

CHAPTER-N/2-READ-FILE-STREAM.JS

// (A) READ STREAM
let stream = require("fs").createReadStream("dummy.txt");
// TO READ SPECIFIC BYTES ONLY
// ("dummy.txt", {start: 0, end: 99})

// (B) COMMON WRITE STREAM EVENTS
// (B1) ERROR
stream.on("error", (err) => { console.log(err); });
// (B2) REACHED END OF FILE
stream.on("end", () => { console.log("EOF"); });
// (B3) STREAM CLOSED
stream.on("close", () => { console.log("Closed"); });

// (C) READ FROM FILE STREAM
stream.on("data", (chunk) => {
 console.log("Read", chunk);
});

The readable stream counterpart should be self-explanatory too.

126 | P a g e

• Open file stream – STREAM = fs.createReadStream(FILE).

• Read the file chunk-by-chunk – STREAM.on("data", (chunk)

=> { … }).

Similarly, the common events that may be useful:

• error – When an error occurs.

• end – When the file pointer reaches the end of file.

• close – When the stream is closed.

PIPE CHAIN

CHAPTER-N/3-PIPE.JS

// (A) LOAD MODULES
const fs = require("fs"),
 http = require("http");

// (B) PIPE DUMMY FILE TO HTTP RESPONSE
const server = http.createServer();
server.on("request", (req, res) => {
 fs.createReadStream("dummy.txt").pipe(res);
});

// (C) START!
server.listen(8080, () => {
 console.log("Server deployed at 8080")
});

With the basic read and write out of the way, let us now introduce a

concept called “pipe chain” – It is quite literally what it means. We

“plug” the stream into a pipe, let the data flow into another process. In

this example:

127 | P a g e

• When a user connects to this dummy HTTP server, we will start

reading dummy.txt into a file stream.

• Pipe the stream into the HTTP response. That is, we serve the

contents of dummy.txt to the user chunk by chunk.

• Go ahead and see this for yourself, run node 3-pipe.js then

access http://localhost:8080 in your browser.

Piping is actually a clever technique that can transform data on-the-fly.

For example, we can install a zip module and serve a ZIP file instead –

fs.createReadStream("dummy.txt").pipe(ZIP).pipe(res)

“RAW” READ & WRITE STREAMS

CHAPTER-N/4-READ-WRITE.JS

// (A) READABLE & WRITABLE STREAMS
const Stream = require("stream"),
 rStream = new Stream.Readable(),
 wStream = new Stream.Writable();

// (B) SET STREAMS TO ECHO DATA
// (B1) CONSUMER
rStream.on("data", (chunk) => {
 console.log("Read Stream", chunk.toString());
});
// (B2) SINK
wStream._write = (chunk, encoding, next) => {

128 | P a g e

 console.log("Write Stream", chunk.toString());
 next();
};

// (C) DUMB TEST - PIPE READ STREAM INTO WRITE
rStream.pipe(wStream);
rStream.push("Hello World!");

// (D) CLOSE STREAM
rStream.destroy();

So far so good? Let us take things up one notch, literally. Streams don’t

always have to be associated with files. In this example:

A)We create 2 “raw” readable and writable data streams.

B)Set both streams to echo data. By the way, the process in which

read streams deal with data is called a “consumer”, while the write

stream is called a “sink”.

C) Pipe the readable stream into the writable stream.

Well, this is not productive, but should serve its purpose for

demonstration. A better real-world example is:

• Feed web cam data into the read stream.

• Pipe the read stream into a video compressor or encoder.

• Lastly, pipe the compressed data into a file write stream.

DUPLEX STREAM

CHAPTER-N/5-DUPLEX.JS

// (A) DUPLEX STREAM
const Stream = require("stream"),

129 | P a g e

 dStream = new Stream.Duplex();

// (B) SET STREAMS TO ECHO DATA
dStream._read = () => {};
dStream._write = (chunk, encoding, next) => {
 console.log("Write Stream", chunk.toString());
 next();
};
dStream.on("data", (chunk) => {
 console.log("Read Stream", chunk.toString());
});

// (C) DUPLEX IS ESSENTIALLY 2-IN-1
dStream.push("Hello World!");
dStream.write("Goodbye World!");

Some of you guys may be thinking “why so stupid, why do we need 2

streams for read and write”? Well, we also have a duplex stream in

Node. Essentially, the duplex is just a read and write stream 2-in-1

instant mix – Duplex inherits whatever the read and write stream has,

but take note, they are still separate channels within the duplex.

VIDEO STREAM

SETTING UP THIS DEMO

All right, here’s one last “actually pretty useful” demo for the server-

side. But before that, do three things:

• npm install express.

• Do an online search for “free stock video”, download any free

video for testing.

• Move the video file into your project folder. Edit 6b-vid-

130 | P a g e

server.js and change (C2) const vid to your own.

DUMMY VIDEO PAGE

CHAPTER-N/6A-VID-PAGE.HTML

<video src="http://localhost:8080/video"
 style="width:100%" controls autoplay></video>

There is only one video tag on this test page. Take note that the source

points to localhost:8080/video.

NODE HTTP VIDEO STREAM

CHAPTER-N/6B-VID-SERVER.JS

// (A) MODULES & EXPRESS SERVER
const express = require("express"),
 fs = require("fs"),
 app = express();

// (B) SERVE DEFAULT HTML PAGE
app.get("/", (req, res) => {
 res.sendFile(__dirname + "/6a-vid-page.html");
});

// (C) SERVE VIDEO STREAM
app.get("/video", (req, res) => {
 // (C1) VIDEO RANGE MUST BE SPECIFIED
 const range = req.headers.range;
 if (!range) {
 res.status(400).send("Requires range header");
 }

131 | P a g e

 // (C2) VIDEO STATS
 const vid = __dirname + "/video.mp4",
 vidSize = fs.statSync(vid).size,
 chunkSize = 10 ** 6, // 1MB
 start = Number(range.replace(/\D/g, "")),
 end = Math.min(start + chunkSize, vidSize - 1),
 contentLength = end - start + 1;

 // (C3) SERVE HTTP 206 (PARTIAL CONTENT)
 res.writeHead(206, {
 "Content-Range": `bytes ${start}-${end}/${vidSize}`,
 "Accept-Ranges": "bytes",
 "Content-Length": contentLength,
 "Content-Type": "video/mp4",
 });

 // (C4) SERVE VIDEO STREAM
 fs.createReadStream(vid, { start, end }).pipe(res);
});

// (D) LAUNCH!
app.listen(8080, () => {
 console.log("Server deployed at 8080!");
});

Credits go to Abdisalan, this post on dev.to. Go ahead, run this node

6b-vid-server.js and access http://localhost:8080. What the

heck does this script do?

• (B) Serve 6a-vid-page.html when you access

localhost:8080.

• (C) Serve the video when you access localhost:8080/video.

This is the juicy part. Take note of how the file stream reads a

chunk of the video file and outputs it to HTTP response.

132 | P a g e

https://dev.to/abdisalan_js/how-to-code-a-video-streaming-server-using-nodejs-2o0

Sure thing, most web servers already do this video streaming

“automatically”. But this example is a quick appreciation to the

technologies behind – Even the <video> tag automatically does

streaming and buffering behind the scenes, without requiring you to

write a single line of code.

CLIENT-SIDE READABLE STREAM

CHAPTER-N/7-READ-STREAM.HTML

// (A) FETCH DUMMY TEXT FILE & RETURN STREAM
fetch("dummy.txt")
.then((res) => { return res.body.getReader(); })

// (B) READ THE STREAM
.then((reader) => {
 reader.read().then(function process({ done, value }) {
 // (B1) NO MORE DATA TO READ
 if (done) {
 console.log("End of stream.");
 return;
 }

 // (B2) READ CHUNK
 console.log(value); // UINT8ARRAY

 // (B3) IF YOU WANT TO CONVERT TO STRING
 var string = new TextDecoder().decode(value);
 console.log(string);

 // (B4) CONTINUE READ NEXT CHUNK
 return reader.read().then(process);
 });
});

133 | P a g e

Streaming is obviously not a “server-side only” thing – Readable streams

also exist on client-side Javascript.

CLIENT-SIDE WRITABLE STREAM

CHAPTER-N/8-WRITE-STREAM.HTML

<!-- (A) TO PUT CONTENTS INTO -->
<div id="demo"></div>

<script>
// (B) GET HTML <DIV> + TEXT DECODER
const demo = document.getElementById("demo"),
 decoder = new TextDecoder();

// (C) CREATE WRITABLE STREAM
const writer = new WritableStream({
 // (C1) SINK
 write (chunk) {
 console.log(chunk);
 demo.innerHTML += decoder.decode(chunk);
 },

 // (C2) ON STREAM CLOSE
 close () { console.log("Done"); }
});

// (D) FETCH & PIPE TO WRITABLE STREAM
fetch("dummy.txt")
.then((res) => { res.body.pipeTo(writer); });
</script>

Warning: Writable streams are not supported in Firefox at the

time of writing.

Yep, this is the writable stream counterpart. This is yet another “super

134 | P a g e

inefficient and unproductive” example of piping the fetch read stream

into a write stream... That pretty much outputs the results into an HTML

<div>. In your own project, you will want to change the sink (C1) to do

something productive instead.

LINKS & REFERENCES
• Stream – NodeJS

• S treams API – MDN

COMPATIBILITY CHECKS (WITH CANIUSE)
• ReadableS tream API

• WritableStream API

135 | P a g e

https://caniuse.com/mdn-api_writablestream
https://caniuse.com/mdn-api_readablestream
https://caniuse.com/mdn-api_readablestream
https://developer.mozilla.org/en-US/docs/Web/API/Streams_API
https://developer.mozilla.org/en-US/docs/Web/API/Streams_API
https://nodejs.org/api/stream.html

136 | P a g e

SUPER EASY FULLSCREEN MODE

CHAPTER-O/1-FULLSCREEN.HTML

<!-- (A) IMAGE FOR TESTING FULLSCREEN -->

<!-- (B) FULLSCREEN BUTTONS -->
<div>
 <!-- (B1) ENTIRE PAGE -->
 <input type="button" value="Entire Page"
 onclick="document.documentElement
 .requestFullscreen()"/>

 <!-- (B2) IMAGE ONLY -->
 <input type="button" value="Image Only"
 onclick="document.getElementById('demo')
 .requestFullscreen()"/>

 <!-- (B3) EXIT FULLSCREEN -->
 <input type="button" value="Exit"
 onclick="document.exitFullscreen();"/>
</div>

• To engage fullscreen – ELEMENT.requestFullscreen()

• To disengage fullscreen – document.exitFullscreen()

Yes, this pretty much sums up the entire chapter.

• document.documentElement refers to the whole HTML page,

so document.documentElement.requestFullscreen()

engages fullscreen on the entire page.

• Self-explanatory, to engage fullscreen on a section only –

document.getElementById(ID).requestFullscreen()

137 | P a g e

DETECTING FULLSCREEN TOGGLE

CHAPTER-O/1-FULLSCREEN.HTML

// (C) LISTEN TO FULLSCREEN TOGGLE
document.addEventListener("fullscreenchange", () => {
 if (document.fullscreenElement===null) {
 console.log("Exited fullscreen");
 } else {
 console.log("Entered fullscreen");
 }
});

// (D) ON FULLSCREEN ERROR
document.addEventListener("fullscreenerror", (evt) => {
 console.error(evt);
});

• The fullscreenchange event is triggered when the user toggles

fullscreen mode.

• When fullscreen mode encounters an error, fullscreenerror is

triggered

• document.fullscreenElement holds the current fullscreen

element. This is null when fullscreen mode is not engaged.

LINKS & REFERENCES
• Fullscreen API – MDN

COMPATIBILITY CHECKS (WITH CANIUSE)
• F ullscreen API Compatibility – CanIUse

138 | P a g e

https://caniuse.com/fullscreen
https://caniuse.com/fullscreen
https://developer.mozilla.org/en-US/docs/Web/API/Fullscreen_API

139 | P a g e

MAKE SOME SOUND
Once upon a time in the Iron Age of the Internet, we have to use all

sorts third-party plugins and implement our own server-side solutions to

stream audio files. Now? It’s as simple as <audio>, or:

• var audio = new Audio("SONG.MP3");

• audio.play();

• audio.pause();

• audio.volume = 0.0 TO 1.0;

• audio.currentTime = SECONDS;

Yep, no idea why some people still complain “it’s so difficult”. That

absolutely makes no sense. Javascript audio is long-winded, but it is by

all means, far from being “complicated”. Let’s walk through a custom

audio player (with playlist) in this chapter.

P.S. There are no demo songs in the zip file (possible copyright issues) –

Search for “free stock music” and download your own.

STEP 1) THE HTML

CHAPTER-P/1-PLAYER.HTML

<!-- MATERIAL ICON -->
<link rel="stylesheet" href="https://fonts.googleapis.com/
icon?family=Material+Icons">

<div id="aWrap">
 <!-- (A) PLAY/PAUSE BUTTON -->
 <button id="aPlay" disabled>

140 | P a g e

 play_arrow
 </button>

 <!-- (B) TIME -->
 <div id="aCron">
 /
 </div>

 <!-- (C) SEEK BAR -->
 <input id="aSeek" type="range" min="0" value="0"
 step="1" disabled/>

 <!-- (D) VOLUME SLIDE -->

 volume_up

 <input id="aVolume" type="range" min="0" max="1"
 value="1" step="0.1" disabled/>

 <!-- (E) PLAYBACK SPEED -->
 <select id="aRate">
 <option value="0.5">0.5</option>
 <option value="1.0" selected>1.0</option>
 <option value="1.5">1.5</option>
 <option value="2.0">2.0</option>
 </select>

 <!-- (F) PLAYLIST -->
 <div id="aList"></div>
</div>

There are 6 components in this custom audio player:

A)aPlay Play/pause button. aPlayIco Holds the play/pause icon, I

have used Google’s Material Icon here.

141 | P a g e

https://fonts.google.com/icons?selected=Material+Icons

B)aNow The current playtime. aTime Length of the current track.

C)aSeek Time seek bar, the value is in seconds.

D)aVolume Volume slider bar, this is a number from 0.0 (mute) to

1.0 (loudest). aVolIco Volume icon.

E) aRate Playback speed selector. There doesn’t seem to have a

hard limit on how fast this can go… But we will stop at 2.0, any

faster, and you will be listening to gibberish.

F) aList Audio playlist. Will be generated with Javascript.

STEP 2) INITIALIZING THE PLAYER

CHAPTER-P/1-PLAYER.JS

window.addEventListener("DOMContentLoaded", () => {
 // (A) PLAYER INIT
 // (A1) PLAYLIST - CHANGE TO YOUR OWN!
 let playlist = [
 {name: "Sugar Plum Fairy", src: "S1.mp3"},
 {name: "If I Had A Chicken", src: "S2.mp3"},
 {name: "Run Little Chicken", src: "S3.mp3"}
];

 // (A2) AUDIO PLAYER & GET HTML CONTROLS
 const audio = new Audio(),
 aPlay = document.getElementById("aPlay"),
 aPlayIco = document.getElementById("aPlayIco"),
 aNow = document.getElementById("aNow"),
 aTime = document.getElementById("aTime"),
 aSeek = document.getElementById("aSeek"),
 aVolume = document.getElementById("aVolume"),
 aVolIco = document.getElementById("aVolIco"),

142 | P a g e

 aRate = document.getElementById("aRate"),
 aList = document.getElementById("aList");
 // (A3) BUILD PLAYLIST
 for (let i in playlist) {
 let row = document.createElement("div");
 row.className = "aRow";
 row.innerHTML = playlist[i]["name"];
 row.addEventListener("click", () => { audPlay(i); });
 playlist[i]["row"] = row;
 aList.appendChild(row);
 }
});

• (A1) Start by defining the playlist, this is an array of objects.

Each entry should have the name and src.

• (A2) Self-explanatory, create the new Audio() object, and get

all the HTML controls.

• (A3) Loop through playlist to build the HTML. Take note that

clicking on a row will trigger audPlay().

STEP 3) PLAY MECHANISM

CHAPTER-P/1-PLAYER.JS

// (B) PLAY MECHANISM
// (B1) FLAGS
var audNow = 0, // current song
 audStart = false, // auto start next song

// (B2) PLAY SELECTED SONG
audPlay = (idx, nostart) => {
 audNow = idx;
 audStart = nostart ? false : true;

143 | P a g e

 audio.src = playlist[idx]["src"];
 audio.playbackRate = aRate.value;
 for (let i in playlist) {
 if (i == idx) {
 playlist[i]["row"].classList.add("now");
 } else {
 playlist[i]["row"].classList.remove("now");
 }
 }
};

// (B3) AUTO START WHEN SUFFICIENTLY BUFFERED
audio.addEventListener("canplay", () => { if (audStart) {
 audio.play();
 audStart = false;
}});

// (B4) AUTOPLAY NEXT SONG IN THE PLAYLIST
audio.addEventListener("ended", () => {
 audNow++;
 if (audNow >= playlist.length) { audNow = 0; }
 audPlay(audNow);
});

// (B5) INIT SET FIRST SONG
audPlay(0, true);

The rather painful part…

• (B1) We have to use 2 flags to control audio player.

◦ Since playlist is an array, audNow is used the track the

current song. E.G. audNow = 2 will indicate that the third song

is currently playing.

◦ audStart is used to control the autostart in (B4).

144 | P a g e

• (B2) Remember that clicking on an item in the HTML list will

trigger audPlay()? This plays the selected song by simply setting

audio.src = playlist[N]["src"]. Take note of how this

sets the audStart flag as well.

• (B3) Autoplay mechanism and control.

◦ When the audio file is sufficiently buffered and canplay, we

simply start playing. But take note of the use of the audStart

flag here.

◦ Basically, canplay can be triggered by 2 possible means –

When we set audio.src and after the user recovers from a

bad connection.

◦ We do not want to force a choppy playback, so audStart is

used to trigger autoplay for manual “click on playlist” and

“autoplay next song” only.

• (B4) When the current song has ended, we do a audNow++ and

play the next song automatically.

• (B5) Init set the first song, but don’t autoplay.

STEP 4) PLAY/PAUSE BUTTON

CHAPTER-P/1-PLAYER.JS

// (C) PLAY/PAUSE BUTTON
// (C1) AUTO SET PLAY/PAUSE TEXT
audio.addEventListener("play", () => {
 aPlayIco.innerHTML = "pause";
});

145 | P a g e

audio.addEventListener("pause", () => {
 aPlayIco.innerHTML = "play_arrow";
});
// (C2) CLICK TO PLAY/PAUSE
aPlay.addEventListener("click", () => {
 if (audio.paused) { audio.play(); }
 else { audio.pause(); }
});

• (C1) Auto set the play/pause icon.

• (C2) If the audio is paused, click to play. If the audio is playing,

click to pause.

STEP 5) TRACK PROGESS (TIME)

CHAPTER-P/1-PLAYER.JS

// (D) TRACK PROGRESS
// (D1) SUPPORT FUNCTION - FORMAT HH:MM:SS
var timeString = (secs) => {
 // HOURS, MINUTES, SECONDS
 let ss = Math.floor(secs),
 hh = Math.floor(ss / 3600),
 mm = Math.floor((ss - (hh * 3600)) / 60);
 ss = ss - (hh * 3600) - (mm * 60);

 // RETURN FORMATTED TIME
 if (hh>0) { mm = mm<10 ? "0"+mm : mm; }
 ss = ss<10 ? "0"+ss : ss;
 return hh>0 ? `${hh}:${mm}:${ss}` : `${mm}:${ss}` ;
};

// (D2) INIT SET TRACK TIME
audio.addEventListener("loadedmetadata", () => {
 aNow.innerHTML = timeString(0);

146 | P a g e

 aTime.innerHTML = timeString(audio.duration);
});

// (D3) UPDATE TIME ON PLAYING
audio.addEventListener("timeupdate", () => {
 aNow.innerHTML = timeString(audio.currentTime);
});

• (D1) The track length audio.duration and

audio.currentTime are both in seconds (with 2 decimal places

microseconds). We need this support function to manually format

a “nice display time”.

• (D2) When the metadata is loaded, we reset the HTML current

time to 0:00, and set the total time.

• (D3) As the track plays, we update the HTML current time.

STEP 6) TIME SEEK BAR

CHAPTER-P/1-PLAYER.JS

// (E) SEEK BAR
audio.addEventListener("loadedmetadata", () => {
 // (E1) SET SEEK BAR MAX TIME
 aSeek.max = Math.floor(audio.duration);

 // (E2) USER CHANGE SEEK BAR TIME
 var aSeeking = false; // USER IS NOW CHANGING TIME
 aSeek.addEventListener("input", () => {
 aSeeking = true; // PREVENTS CLASH WITH (E3)
 });
 aSeek.addEventListener("change", () => {
 audio.currentTime = aSeek.value;
 if (!audio.paused) { audio.play(); }

147 | P a g e

 aSeeking = false;
 });

 // (E3) UPDATE SEEK BAR ON PLAYING
 audio.addEventListener("timeupdate", () => {
 if (!aSeeking) {
 aSeek.value = Math.floor(audio.currentTime);
 }
 });
});

• (E1) When the metadata is loaded, we set the max of the time

seek bar.

• (E3) Update the seek bar as the track plays.

• (E2 & E3) Time seek action.

◦ Very simply, we set audio.currentTime = SELECTED TIME

when the user changes the seek bar.

◦ But take note of that when the user is changing the seek bar

(input) we engage aSeeking = true. This is to “disable”

(E3), so that the seek bar don’t “skip” as the user is trying to

drag the seek bar.

STEP 7) SET VOLUME

CHAPTER-P/1-PLAYER.JS

// (F) VOLUME
aVolume.addEventListener("change", () => {
 audio.volume = aVolume.value;
 aVolIco.innerHTML = (aVolume.value==0 ? "volume_mute" :
 "volume_up");

148 | P a g e

});

Probably the easiest part, no explanation required.

STEP 8) PLAYBACK SPEED

CHAPTER-P/1-PLAYER.JS

// (G) PLAYBACK SPEED
aRate.addEventListener("change", () => {
 audio.playbackRate = aRate.value;
});

Another self-explanatory part.

STEP 9) ENABLE/DISABLE

CHAPTER-P/1-PLAYER.JS

// (H) ENABLE/DISABLE CONTROLS
audio.addEventListener("canplay", () => {
 aPlay.disabled = false;
 aVolume.disabled = false;
 aSeek.disabled = false;
 aRate.disabled = false;
});
audio.addEventListener("waiting", () => {
 aPlay.disabled = true;
 aVolume.disabled = true;
 aSeek.disabled = true;
 aRate.disabled = true;
});

Enable the controls when playback is possible, disable when the audio is

loading.

149 | P a g e

EXTRA) EFFECTS WITH WEB AUDIO API

THE HTML

CHAPTER-P/2-WEB-AUDIO-API.HTML

<input type="button" value="Start!" onclick="start()"/>

Adding audio effects with Javascript? Yes we can. But take note that the

web audio API cannot start unless the user clicks or interacts with

something first, thus the need for this HTML button.

THE JAVASCRIPT

CHAPTER-P/2-WEB-AUDIO-API.JS

function start () {
 // (A) AUDIO CONTEXT
 const audio = new Audio("S2.mp3"),
 audioCTX = new AudioContext(),
 audioSRC = audioCTX
 .createMediaElementSource(audio);

 // (B) GAIN
 const audioGAIN = audioCTX.createGain();
 audioGAIN.gain.value = 1.5; // 1.5 TIMES LOUDER

 // (C) PANNING
 // -1 LEFT, 0 CENTER, 1 RIGHT
 const audioPAN = audioCTX.createStereoPanner();
 audioPAN.pan.value = 0.7;

 // (D) COMPRESSOR
 const audioCOM = audioCTX.createDynamicsCompressor();
 // NOT AN AUDIO ENGINEER - DON'T KNOW WHAT I AM DOING
 audioCOM.threshold.setValueAtTime(-50,

150 | P a g e

 audioCTX.currentTime);
 audioCOM.attack.setValueAtTime(5, audioCTX.currentTime);
 audioCOM.knee.setValueAtTime(40, audioCTX.currentTime);
 audioCOM.ratio.setValueAtTime(12, audioCTX.currentTime);
 audioCOM.release.setValueAtTime(0.25,
 audioCTX.currentTime);

 // (E) CONNECT THE DOTS
 audioSRC
 .connect(audioGAIN)
 .connect(audioPAN)
 .connect(audioCOM)
 .connect(audioCTX.destination);
 audio.play();
}

To use the Web Audio API:

1. Create an <audio> or new Audio() as usual.

2. Create an audioCTX = new AudioContext() object.

3. “Connect” the audio context to the source – audioSRC =

audioCTX.createMediaElementSource(HTML AUDIO OR

AUDIO OBJECT).

4. Set all the effects you like – Pan, gain, compressor, modulator,

delay, etc…

5. Lastly chain all of them together –

audioSRC.connect(EFFECT).connect(EFFECT).

Sorry guys, I am not a sound engineer. So I literally don’t know much

about what is going on here… But if you want to “tweak the sound”,

there’s all sorts filters available. Check out the Web Audio API link

below.

151 | P a g e

LINKS & REFERENCES
• Media Element – MDN

• W eb Audio API – MDN

COMPATIBILITY CHECKS (WITH CANIUSE)
• A udio

• Web Audio API

152 | P a g e

https://caniuse.com/audio-api
https://caniuse.com/audio
https://caniuse.com/audio
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement

153 | P a g e

LOOKS FAMILIAR...
Oh no! It’s a video! Things are going to be difficult… Not! This chapter is

going to look very familiar. Yes, this chapter is literally a copy-and-paste

of the previous chapter, but for video.

P.S. No videos are included again, please download your own.

STEP 1) THE HTML

CHAPTER-Q/VIDEO.HTML

<!-- MATERIAL ICON -->
<link rel="stylesheet" href="https://fonts.googleapis.com/
icon?family=Material+Icons">

<div id="vWrap">
 <!-- (A) VIDEO TAG -->
 <video id="vVid"></video>

 <!-- (B) PLAY/PAUSE BUTTON -->
 <button id="vPlay" disabled>

 play_arrow
 </button>

 <!-- (C) TIME -->
 <div id="vCron">
 /
 </div>

 <!-- (D) SEEK BAR -->
 <input id="vSeek" type="range" min="0" value="0"
 step="1" disabled/>
 <!-- (E) VOLUME SLIDE -->

154 | P a g e

 volume_up

 <input id="vVolume" type="range" min="0" max="1"
 value="1" step="0.1" disabled/>

 <!-- (F) PLAYBACK SPEED -->
 <select id="vRate">
 <option value="0.5">0.5</option>
 <option value="1.0" selected>1.0</option>
 <option value="1.5">1.5</option>
 <option value="2.0">2.0</option>
 </select>

 <!-- (G) PLAYLIST -->
 <div id="vList"></div>
</div>

This is just about the same as the audio player.

A)vPlay The HTML video tag itself.

B)vPlay Play/pause button, vPlayIco is the play/pause icon. Same

old Google’s Material Icon.

C)vNow current playtime, vTime length of the current video.

D)vSeek Time seek bar, in seconds.

E) vVolume Volume slider bar, from 0.0 (mute) to 1.0 (loudest).

vVolIco Volume icon.

F) vRate Playback speed selector.

G)vList Video playlist.

155 | P a g e

https://fonts.google.com/icons?selected=Material+Icons

STEP 2) INITIALIZING THE PLAYER

CHAPTER-Q/VIDEO.JS

window.addEventListener("DOMContentLoaded", () => {
 // (A) PLAYER INIT
 // (A1) PLAYLIST - CHANGE TO YOUR OWN!
 let playlist = [
 {name: "Video A", src: "v1.mp4"},
 {name: "Video B", src: "v2.mp4"},
 {name: "Video C", src: "v3.mp4"}
];

 // (A2) VIDEO PLAYER & GET HTML CONTROLS
 const video = document.getElementById("vVid"),
 vPlay = document.getElementById("vPlay"),
 vPlayIco = document.getElementById("vPlayIco"),
 vNow = document.getElementById("vNow"),
 vTime = document.getElementById("vTime"),
 vSeek = document.getElementById("vSeek"),
 vVolume = document.getElementById("vVolume"),
 vVolIco = document.getElementById("vVolIco"),
 vRate = document.getElementById("vRate"),
 vList = document.getElementById("vList");

 // (A3) BUILD PLAYLIST
 for (let i in playlist) {
 let row = document.createElement("div");
 row.className = "vRow";
 row.innerHTML = playlist[i]["name"];
 row.addEventListener("click", () => { vidPlay(i); });
 playlist[i]["row"] = row;
 vList.appendChild(row);
 }
});

156 | P a g e

• (A1) First, we start with defining the video playlist. Each entry

should have the name and src.

• (A2) Get all the HTML elements.

• (A3) Loop through playlist to build the HTML. Clicking on a

playlist item will trigger vidPlay().

STEP 3) PLAY MECHANISM

CHAPTER-Q/VIDEO.JS

// (B) PLAY MECHANISM
// (B1) FLAGS
var vidNow = 0, // current video
 vidStart = false, // auto start next video

// (B2) PLAY SELECTED VIDEO
vidPlay = (idx, nostart) => {
 vidNow = idx;
 vidStart = nostart ? false : true;
 video.src = playlist[idx]["src"];
 video.playbackRate = vRate.value;
 for (let i in playlist) {
 if (i == idx)
 { playlist[i]["row"].classList.add("now"); }
 else { playlist[i]["row"].classList.remove("now"); }
 }
};

// (B3) AUTO START WHEN SUFFICIENTLY BUFFERED
video.addEventListener("canplay", () => { if (vidStart) {
 video.play();
 vidStart = false;
}});

157 | P a g e

// (B4) AUTOPLAY NEXT VIDEO IN THE PLAYLIST
video.addEventListener("ended", () => {
 vidNow++;
 if (vidNow >= playlist.length) { vidNow = 0; }
 vidPlay(vidNow);
});

// (B5) INIT SET FIRST VIDEO
vidPlay(0, true);

• (B1) Same old flags to control the video player.

◦ vidNow Index of the currently playing video of playlist.

◦ vidStart used to indicate if a video should auto play in (B4).

• (B2) vidPlay() plays the selected video by setting video.src

= playlist[N]["src"].

• (B3) Autoplay mechanism and control.

◦ Start playing when the video canplay.

◦ Same problem, canplay can either be triggered by setting

video.src, or after the user recovers from a bad connection.

◦ We don’t want to force a choppy playback, so vidStart only

triggers auto play for manual “click on playlist” and “play next

video” only.

• (B4) vidNow++ automatically plays the next video when the

current ends.

• (B5) Init set the first video, but don’t start playing (user needs to

click on something to start playing anyway).

158 | P a g e

STEP 4) PLAY/PAUSE BUTTON

CHAPTER-Q/VIDEO.JS

// (C) PLAY/PAUSE BUTTON
// (C1) AUTO SET PLAY/PAUSE TEXT
video.addEventListener("play", () => {
 vPlayIco.innerHTML = "pause";
});
video.addEventListener("pause", () => {
 vPlayIco.innerHTML = "play_arrow";
});

// (C2) CLICK TO PLAY/PAUSE
vPlay.addEventListener("click", () => {
 if (video.paused) { video.play(); }
 else { video.pause(); }
});

• (C1) Automatic set the play/pause icon.

• (C2) Click to play when the video is paused. Click to pause if the

video is playing.

STEP 5) TRACK PROGESS (TIME)

CHAPTER-Q/VIDEO.JS

// (D) TRACK PROGRESS
// (D1) SUPPORT FUNCTION - FORMAT HH:MM:SS
var timeString = (secs) => {
 // HOURS, MINUTES, SECONDS
 let ss = Math.floor(secs),
 hh = Math.floor(ss / 3600),
 mm = Math.floor((ss - (hh * 3600)) / 60);
 ss = ss - (hh * 3600) - (mm * 60);

159 | P a g e

 // RETURN FORMATTED TIME
 if (hh>0) { mm = mm<10 ? "0"+mm : mm; }
 ss = ss<10 ? "0"+ss : ss;
 return hh>0 ? `${hh}:${mm}:${ss}` : `${mm}:${ss}` ;
};

// (D2) INIT SET TRACK TIME
video.addEventListener("loadedmetadata", () => {
 vNow.innerHTML = timeString(0);
 vTime.innerHTML = timeString(video.duration);
});

// (D3) UPDATE TIME ON PLAYING
video.addEventListener("timeupdate", () => {
 vNow.innerHTML = timeString(video.currentTime);
});

• (D1) Same story, video.duration and video.currentTime

are in seconds. We need a support “nice display time” function.

• (D2) When the metadata is loaded, reset the HTML current time

to 0:00, and set the total play time.

• (D3) As the video plays, update the HTML current time.

STEP 6) TIME SEEK BAR

CHAPTER-Q/VIDEO.JS

// (E) SEEK BAR
video.addEventListener("loadedmetadata", () => {
 // (E1) SET SEEK BAR MAX TIME
 vSeek.max = Math.floor(video.duration);

 // (E2) USER CHANGE SEEK BAR TIME
 var vSeeking = false; // USER IS NOW CHANGING TIME

160 | P a g e

 vSeek.addEventListener("input", () => {
 vSeeking = true; // PREVENTS CLASH WITH (E3)
 });
 vSeek.addEventListener("change", () => {
 video.currentTime = vSeek.value;
 if (!video.paused) { video.play(); }
 vSeeking = false;
 });

 // (E3) UPDATE SEEK BAR ON PLAYING
 video.addEventListener("timeupdate", () => {
 if (!vSeeking) { vSeek.value =
 Math.floor(video.currentTime); }
 });
});

• (E1) Set the max of the time seek bar.

• (E3) Update the seek bar as the video plays.

• (E2 & E3) Time seek action. Same old “use a flag to prevent a

jumping time bar when the user drags the bar”.

STEP 7) SET VOLUME

CHAPTER-Q/VIDEO.JS

// (F) VOLUME
vVolume.addEventListener("change", () => {
 video.volume = vVolume.value;
 vVolIco.innerHTML = (vVolume.value==0 ? "volume_mute" :
 "volume_up");
});

Same as audio...

161 | P a g e

STEP 8) PLAYBACK SPEED

CHAPTER-Q/VIDEO.JS

// (G) PLAYBACK SPEED
vRate.addEventListener("change", () => {
 video.playbackRate = vRate.value;
});

Same as audio again...

STEP 9) ENABLE/DISABLE

CHAPTER-Q/VIDEO.JS

// (H) ENABLE/DISABLE CONTROLS
video.addEventListener("canplay", () => {
 vPlay.disabled = false;
 vVolume.disabled = false;
 vSeek.disabled = false;
 vRate.disabled = false;
});
video.addEventListener("waiting", () => {
 vPlay.disabled = true;
 vVolume.disabled = true;
 vSeek.disabled = true;
 vRate.disabled = true;
});

Enable the controls when playback is possible, disable when loading.

162 | P a g e

LINKS & REFERENCES
• Media Element – MDN

COMPATIBILITY CHECKS (WITH CANIUSE)
• Video

163 | P a g e

https://caniuse.com/video
https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement

164 | P a g e

JAVASCRIPT PAINT
The HTML canvas element has actually been around for a long time

now. All those “crop image”, “add watermark”, “combine images”, and

whatever “online draw apps” – They are probably driven with canvas.

It’s powerful, but canvas can go in very deep and broad. Everything

from 2D to 3D drawing, and even image manipulation.

Since the title of this book is not “how to create a browser game”, we

will keep things simple and not bore you to tears. We will only touch on

the quick basics and walk through some useful image editing magic in

this chapter.

CANVAS BASICS – FILL, STROKE, CLEAR

CHAPTER-R/1-FILL-STROKE-CLEAR.HTML

<!-- (A) HTML CANVAS -->
<canvas id="mycanvas" width="200" height="200"></canvas>
<script>
// (B) GET CANVAS CONTEXT
var ctx =
document.getElementById("mycanvas").getContext("2d");

// (C) FILL RECTANGLE
ctx.fillStyle = "red";
ctx.fillRect(5, 5, 100, 100);

// (D) STROKE RECTANGLE
ctx.strokeStyle = "green";
ctx.lineWidth = 10;
ctx.strokeRect(120, 15, 50, 50);

165 | P a g e

// (E) CLEAR RECTANGLE
ctx.clearRect(50, 50, 40, 40);
</script>

• (A) To work with the canvas, we need to first create a <canvas>.

Setting the width and height are optional, but highly

recommended (give fixed dimensions to not break the layout of

the page). You can also set these in CSS.

• (B) Get the 2D drawing context. Yes, canvas is also capable of

drawing in 3D space with webgl... But we won’t touch on that.

• (C To E) In 2D drawings, there are 3 “common drawing modes”

that you need to know:

◦ Fill – Draws a solid shape. In this example, fillRect(X, Y,

WIDTH, HEIGHT) draws a solid rectangle/square. We can also

use fillStyle to control the fill color, this takes in a CSS

color value (rgb, rgba, #RRGGBB).

◦ Stroke – Draws the outline, strokeRect(X, Y, WIDTH,

HEIGHT) draws the outline of a rectangle/square. Use

lineWidth to specify the thickness, and strokeStyle to

specify the color (same CSS color values).

◦ Clear – Self-explanatory, clearRect(X, Y, WIDTH,

HEIGHT) will clear the specified area on the canvas.

166 | P a g e

CANVAS BASICS – WRITE TEXT

CHAPTER-R/2-TEXT.HTML

<!-- (A) HTML CANVAS -->
<canvas id="mycanvas" width="200" height="200"></canvas>
<script>
// (B) GET CANVAS CONTEXT
var ctx =
document.getElementById("mycanvas").getContext("2d");

// (C) FILL TEXT
ctx.font = "bold 24px Arial";
ctx.fillStyle = "red";
ctx.fillText("FOO", 10, 30);

// (D) STROKE TEXT
ctx.font = "italic 30px Arial";
ctx.strokeStyle = "green";
ctx.strokeText("BAR", 80, 30);
</script>

• (A & B) Same old canvas and drawing context.

• (C) Remember fill? We use fillText(TEXT, X, Y) to draw

“solid text”, use font to set the font itself – This takes in a regular

CSS font property.

• (D) Remember stroke? Yep, use strokeText(TEXT, X, Y) to

draw “outline text”.

167 | P a g e

TRIANGLES & OTHER SHAPES – USE PATH

CHAPTER-R/3-PATH-TRIANGLE.HTML

<!-- (A) HTML CANVAS -->
<canvas id="mycanvas" width="200" height="200"></canvas>
<script>
// (B) GET CANVAS CONTEXT
var ctx =
document.getElementById("mycanvas").getContext("2d");

// (C) TRIANGLE PATH
ctx.beginPath();
ctx.moveTo(100, 10);
ctx.lineTo(50, 100);
ctx.lineTo(150, 100);
ctx.closePath();
ctx.fill();
</script>

Yes, it’s crazy. For any other shapes, you have to manually draw it by

defining a path.

• beginPath() Start drawing a path.

• moveTo(X, Y) Move to coordinates, but don’t draw.

• lineTo(X, Y) Move to coordinates and draw a line.

168 | P a g e

• closePath() Automatically connect to the nearest point to close

the path.

• fill() Fill with solid color.

• stroke() Draw the outline.

ARCS & CIRCLES

CHAPTER-R/4-ARC.HTML

<!-- (A) HTML CANVAS -->
<canvas id="mycanvas" width="200" height="200"></canvas>
<script>
// (B) GET CANVAS CONTEXT
var ctx =
document.getElementById("mycanvas").getContext("2d");

// (C) DRAW ARC
// ARC (X, Y, RADIUS, START ANGLE, END ANGLE, DIRECTION)

// (C1) 1/4 CIRCLE
ctx.beginPath();
ctx.arc(50, 30, 20, 0, 0.5 * Math.PI);
ctx.strokeStyle = "red";
ctx.stroke();

// (C2) 1/2 CIRCLE
ctx.beginPath();
ctx.arc(120, 30, 20, 0, 1 * Math.PI);
ctx.strokeStyle = "green";
ctx.stroke();

// (C3) 3/4 CIRCLE
ctx.beginPath();
ctx.arc(50, 100, 20, 0, 1.5 * Math.PI);

169 | P a g e

ctx.strokeStyle = "blue";
ctx.stroke();

// (C4) CIRCLE
ctx.beginPath();
ctx.arc(120, 100, 20, 0, 2 * Math.PI);
ctx.fillStyle = "red";
ctx.fill();
</script>

Arcs and circles are the worst. Let’s take this step-by-step.

• We use arc() to draw an arc or circle, and it takes in 6

parameters.

• The first two parameters are X and Y, the center of where to

draw the circle or arc on the canvas.

• The third parameter is the radius… Self-explanatory.

• Followed by the starting and ending angle. Confusing, but let’s

do it the easy way:

170 | P a g e

◦ Start 0 PI, end 0.5 PI creates a “bottom right quarter circle”.

◦ Start 0 PI, end 1 PI creates a “bottom half circle”.

◦ Start 0 PI, end 1.5 PI creates a “missing top right circle”.

◦ Start 0 PI, end 2 PI creates a “full circle”.

• Lastly, we have direction. This is false by default, which

draws the circle in a clockwise manner. Change this to true to

draw in an anti-clockwise manner.

SAVE CANVAS – DOWNLOAD

CHAPTER-R/5-DOWNLOAD.HTML

<!-- (A) DUMMY CANVAS -->
<canvas id="demo" width="200" height="200"></canvas>

<script>
// (B) GET CANVAS + 2D
let canvas = document.getElementById("demo");
 ctx = canvas.getContext("2d");

// (C) DRAW DUMMY BLACK SQUARES
ctx.fillRect(0, 0, 100, 100);
ctx.fillRect(50, 50, 100, 100);

// (D) CREATE DOWNLOAD LINK
// image/jpg, image/png, image/gif, image/webp
let anchor = document.createElement("a");
anchor.download = "download.png";
anchor.href = canvas.toDataURL("image/png");

// (E) "FORCE DOWNLOAD"

171 | P a g e

anchor.click();
anchor.remove();

// (F) SAFER ALTERNATIVE - LET USER CLICK ON LINK
anchor.innerHTML = "Download";
document.body.appendChild(anchor);
</script>

So far so good? What good is a canvas if we cannot save it? In most

modern browsers, we can actually right click on the canvas and pick the

“save as” option. In Javascript, we have a roundabout trick:

• Create an HTML anchor – var anc =

document.createElement("a");

• Set the link to the canvas data URL (base 64 encoded) –

anc.href = canvas.toDataURL(MIME TYPE);

• “Force download” with anc.click();

• Take note, this may not always work due to security restriction.

The safer way is to attach the link to the page, let the user

manually click on it.

SAVE CANVAS – UPLOAD

CHAPTER-R/6-UPLOAD.HTML

<!-- (A) DUMMY CANVAS -->
<canvas id="demo" width="200" height="200"></canvas>

<script>
// (B) GET CANVAS + 2D
let canvas = document.getElementById("demo");
 ctx = canvas.getContext("2d");

172 | P a g e

// (C) DRAW DUMMY BLACK SQUARES
ctx.fillRect(0, 0, 100, 100);
ctx.fillRect(50, 50, 100, 100);

// (D) TO BLOB & UPLOAD
canvas.toBlob((blob) => {
 // (D1) CREATE FILE
 let file = new File([blob], "demo.png", { type:
 "image/png" });

 // (D2) UPLOAD
 var data = new FormData();
 data.append("up", file);
 fetch("SERVER-SCRIPT", { method:"POST", body:data })
 .then(res => res.text())
 .then((txt) => { console.log(txt); });
});
</script>

How about uploading? Remember new blob() from earlier? We simply

turn the canvas into a file and upload it “as usual”.

RESIZING IMAGES WITH CANVAS

CHAPTER-R/7-RESIZE.HTML

<!-- (A) DEMO CANVAS -->
<canvas id="demo"></canvas>

<script>
// (B) RESIZE ON IMAGE LOAD
var img = new Image();
img.onload = () => {
 // (B1) NEW DIMENSIONS - 50%
 let width = Math.ceil(0.5 * img.naturalWidth),
 height = Math.ceil(0.5 * img.naturalHeight);

173 | P a g e

 // (B2) CANVAS RESIZE
 let canvas = document.getElementById("demo"),
 ctx = canvas.getContext("2d");
 canvas.width = width;
 canvas.height = height;
 ctx.drawImage(img, 0, 0, width, height);
};

// (C) GO!
img.src = "eggs.jpg";
</script>

Manually drawing on a canvas is probably not very useful, so here’s a

practical example – Resizing an image. Not going to explain step-by-

step, but the essentials:

• We load the source image with var img = new Image() and

img.src=”IMAGE.PNG”.

• Proceed with the resize only when the image is fully loaded –

img.onload = () => { RESIZE };

• The resizing is as simple as drawImage(img, X, Y, WIDTH,

HEIGHT). Basically, copy the source image onto the canvas at the

specified coordinates (X, Y) with the specified dimensions

(WIDTH, HEIGHT).

CROP IMAGES WITH CANVAS

CHAPTER-R/8-CROP.HTML

<!-- (A) DEMO CANVAS -->
<canvas id="demo" width="300" height="300"></canvas>

174 | P a g e

<script>
// (B) CROP ON IMAGE LOAD
var img = new Image();
img.onload = () => {
 // (B1) GET CANVAS
 let canvas = document.getElementById("demo"),
 ctx = canvas.getContext("2d");

 // (B2) DO YOUR OWN CROP CALCULATIONS...
 ctx.drawImage(img, 170, 20, 300, 300, 0, 0, 300, 300);
};

// (C) GO!
img.src = "eggs.jpg";
</script>

If we can resize an image, we can also crop it. Not going to explain line-

by-line again, but the star is ctx.drawImage() once again. As you can

see, there are are a lot of parameters now – IMAGE, SX, SY,

SWIDTH, SHEIGHT, DX, DY, DWIDTH, DHEIGHT. Not to be

confused, we are just copying a part of the source image onto the

canvas to do the “crop”. This diagram will explain all the parameters:

175 | P a g e

WATERMARK (COMPOSITE) IMAGES

CHAPTER-R/9-WATERMARK.HTML

<!-- (A) DEMO CANVAS -->
<canvas id="demo"></canvas>

<script>
// (B) IMAGES + CANVAS
var iBack = new Image(),
 iMark = new Image(),
 iText = "FOO BAR",
 loaded = 0;
 canvas = document.getElementById("demo"),
 ctx = canvas.getContext("2d");

// (C) PROCEED WHEN ALL IMAGES LOADED
function cmark () { loaded++; if (loaded==2) {
 // (C1) MAIN IMAGE
 canvas.width = iBack.naturalWidth;
 canvas.height = iBack.naturalHeight;
 ctx.drawImage(iBack, 0, 0, iBack.naturalWidth,
iBack.naturalHeight);

 // (C2) WATERMARK IMAGE
 ctx.drawImage(iMark, 0, 0, iMark.naturalWidth,
iMark.naturalHeight);

 // (C3) TEXT
 ctx.font = "bold 24px Arial";
 ctx.fillStyle = "rgba(255, 0, 0, 0.5)";
 ctx.fillText(iText, 100, 30);
}}

// (D) GO!
iBack.onload = cmark;
iMark.onload = cmark;

176 | P a g e

iBack.src = "eggs.jpg";
iMark.src = "potato.png";
</script>

Add watermark or text on an image? No problem – Just use what we

have walked through earlier. Add the “main background” image to the

canvas first, then composite whatever you want on top.

PICK IMAGE & SHOW ON CANVAS

CHAPTER-R/10-PICK.HTML

<!-- (A) FILE PICKER + CANVAS -->
<input type="file" id="picker"
accept="image/jpeg,image/png,image/webp"/>
<canvas id="demo"></canvas>

<script>
// (B) GET PICKER + CANVAS
let picker = document.getElementById("picker"),
 canvas = document.getElementById("demo"),
 ctx = canvas.getContext("2d");

// (B) AUTO START ON SELECT FILE
picker.onchange = () => {
 // (B1) CREATE NEW IMAGE + URL TO SELECTED FILE
 let img = new Image(),
 surl = URL.createObjectURL(picker.files[0]);

 // (B2) PUT ONTO CANVAS ON IMAGE LOAD
 img.onload = () => {
 canvas.width = img.naturalWidth;
 canvas.height = img.naturalHeight;
 ctx.drawImage(img, 0, 0, img.naturalWidth,
 img.naturalHeight);
 URL.revokeObjectURL(surl);

177 | P a g e

 };

 // (B3) GO!
 img.src = surl;
};
</script>

Of course, we can. This just needs a little roundabout:

• Create an object URL to the selected file –

URL.createObjectURL(picker.files[0])

• The rest are the same. Create an image object, set the source to

the above URL, draw the image onto the canvas.

LINKS & REFERENCES
• Canvas API – MDN

COMPATIBILITY CHECKS (WITH CANIUSE)
• Canvas

178 | P a g e

https://caniuse.com/canvas
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API

179 | P a g e

EASIER THAN EXPECTED
Voice recognition. Most people will probably think that it is a complicated

process. Actually, no. It’s long-winded, but still pretty straightforward.

SPEECH TO TEXT

CHAPTER-S/1-SPEECH-TEXT.HTML

<!-- (A) TEST HTML -->
<div id="demo"></div>

<script>
// (B) GET HTML
let demo = document.getElementById("demo");

// (C) ASK FOR MIC PERMISSION
navigator.mediaDevices.getUserMedia({ audio: true })

// (D) OK - INIT
.then((stream) => {
 // (D1) SPEECH RECOGNITION OBJECT & SETTINGS
 const SR = window.SpeechRecognition ||
 window.webkitSpeechRecognition;
 let recog = new SR();
 recog.lang = "en-US";
 recog.continuous = false;
 recog.interimResults = false;

 // (D2) ON SPEECH RECOGNITION - SHOW TRANSCRIPT
 recog.onresult = (evt) => {
 demo.innerHTML += evt.results[0][0]
 .transcript.toLowerCase();
 recog.stop();
 };

180 | P a g e

 // (D3) ON SPEECH RECOGNITION ERROR
 recog.onerror = (err) =>
 { demo.innerHTML = err.message; };

 // (D4) START!
 demo.innerHTML = "Speak now - ";
 recog.start();
})

// (E) ERROR
.catch((err) => { demo.innerHTML = err.message; });
</script>

For the first example, we have a simple speech-to-text – Which is

essentially what the voice recognition API does. Important parts:

• (C) navigator.mediaDevices.getUserMedia({ audio:

true }) – Ask for access to the microphone. Same as push

notifications, once denied, we can only ask the user to manually

give permission (click on icon beside URL).

• (D1) let recog = new SR() and the settings – Yes, we can

set speech recognition non-English languages, but this is still a

gray area at the time of writing. We do not know if the browser

will support other languages, and there is no reliable way to check.

• (D2) recog.onresult should be self-explanatory enough. But

getting the text transcript is kind of a dumb-dumb thing –

evt.results[0][0].transcript.toLowerCase(). It is what

it is, we will just use results[0][0].transcript as the

developers set.

• recog.start() to start recognition, recog.stop() to end.

181 | P a g e

VOICE SEARCH

CHAPTER-S/2-SPEECH-SEARCH.HTML

<form onsubmit="return false;">
 <!-- (A) USUAL SEARCH FIELD & BUTTON -->
 <input type="text" id="sfield"/>
 <button type="submit" disabled>
 search
 </button>

 <!-- (B) SPEECH SEARCH -->
 <button id="sspeech" disabled>
 mic
 </button>
</form>

Let’s put that “speech-to-text” into good use next. Here, we have a

“usual search form” with an additional voice search button.

CHAPTER-S/2-SPEECH-SEARCH.JS

var voice = {
 // (A) INIT SPEECH RECOGNITION
 sfield : null, // HTML SEARCH FIELD
 sspeech : null, // HTML VOICE SEARCH BUTTON
 ssicon : null, // HTML VOICE SEARCH ICON
 recog : null, // SPEECH RECOGNITION OBJECT
 init : () => {
 // (A1) GET HTML ELEMENTS
 voice.sfield = document.getElementById("sfield");
 voice.sspeech = document.getElementById("sspeech");
 voice.ssicon = document.getElementById("ssicon");

 // (A2) GET MICROPHONE ACCESS
 navigator.mediaDevices.getUserMedia({ audio: true })

182 | P a g e

 .then((stream) => {
 // (A3) SPEECH RECOGNITION OBJECT + SETTINGS
 const SR = window.SpeechRecognition ||
 window.webkitSpeechRecognition;
 voice.recog = new SR();
 voice.recog.lang = "en-US";
 voice.recog.continuous = false;
 voice.recog.interimResults = false;

 // (A4) POPUPLATE SEARCH FIELD ON SPEECH RECOGNITION
 voice.recog.onresult = (evt) => {
 let said = evt.results[0][0]
 .transcript.toLowerCase();
 voice.sfield.value = said;
 voice.stop();
 // SUBMIT SEARCH FORM OR AJAX SEARCH IF YOU WANT
 };

 // (A5) ON SPEECH RECOGNITION ERROR
 voice.recog.onerror = (err) =>
 { console.error(err); };

 // (A6) READY!
 voice.sspeech.disabled = false;
 voice.stop();
 })
 .catch((err) => { console.error(err); });
 },

 // (B) START SPEECH RECOGNITION
 start : () => {
 voice.recog.start();
 voice.sspeech.onclick = voice.stop;
 voice.ssicon.innerHTML = "record_voice_over";
 },

 // (C) STOP/CANCEL SPEECH RECOGNITION

183 | P a g e

 stop : () => {
 voice.recog.stop();
 voice.sspeech.onclick = voice.start;
 voice.ssicon.innerHTML = "mic";
 }
};
window.addEventListener("DOMContentLoaded", voice.init);

This may look confusing, but all of these are essentially the same as the

speech-to-text. Except that it has some bells and whistles, plus, it

populates a search field instead.

VOICE COMMANDS

CHAPTER-S/3-SPEECH-CMD.HTML

<!-- (A) DEMO WRAPPER -->
<div id="vwrap"></div>

<!-- (B) DEMO BUTTON -->
<input type="button" id="vbtn" value="Loading" disabled/>
<div>Try "power on", "power off", or "say hello".</div>

Ever wonder if we can create our own voice command driven web page?

Yes, we can.

CHAPTER-S/3-SPEECH-CMD.JS

var voice = {
 // (A) INIT VOICE COMMAND
 wrap : null, // HTML DEMO <DIV> WRAPPER
 btn : null, // HTML DEMO BUTTON
 recog : null, // SPEECH RECOGNITION OBJECT
 init : () => {
 // (A1) GET HTML ELEMENTS

184 | P a g e

 voice.wrap = document.getElementById("vwrap");
 voice.btn = document.getElementById("vbtn");

 // (A2) GET MIC ACCESS PERMISSION
 navigator.mediaDevices.getUserMedia({ audio: true })
 .then((stream) => {
 // (A3) SPEECH RECOGNITION OBJECT & SETTINGS
 const SR = window.SpeechRecognition ||
 window.webkitSpeechRecognition;
 voice.recog = new SR();
 voice.recog.lang = "en-US";
 voice.recog.continuous = false;
 voice.recog.interimResults = false;

 // (A4) ON SPEECH RECOGNITION - RUN COMMAND
 voice.recog.onresult = (evt) => {
 let said = evt.results[0][0].
 transcript.toLowerCase();
 if (cmd[said]) { cmd[said](); }
 else { said += " (command not found)"; }
 voice.wrap.innerHTML = said;
 voice.stop();
 };

 // (A5) ON SPEECH RECOGNITION ERROR
 voice.recog.onerror = (err) =>
 { console.error(evt); };

 // (A6) READY!
 voice.btn.disabled = false;
 voice.stop();
 })
 .catch((err) => {
 console.error(err);
 voice.wrap.innerHTML = "Please enable access and
 attach a microphone.";
 });

185 | P a g e

 },

 // (B) START SPEECH RECOGNITION
 start : () => {
 voice.recog.start();
 voice.btn.onclick = voice.stop;
 voice.btn.value = "Speak Now Or Click To Cancel";
 },

 // (C) STOP/CANCEL SPEECH RECOGNITION
 stop : () => {
 voice.recog.stop();
 voice.btn.onclick = voice.start;
 voice.btn.value = "Press To Speak";
 }
};
window.addEventListener("DOMContentLoaded", voice.init);

// (D) COMMANDS LIST
var cmd = {
 "power on" : () => {
 voice.wrap.style.backgroundColor = "yellow";
 voice.wrap.style.color = "black";
 },

 "power off" : () => {
 voice.wrap.style.backgroundColor = "black";
 voice.wrap.style.color = "white";
 },

 "say hello" : () => {
 alert("Hello World!");
 }
};

186 | P a g e

Once again, this is long-winded, but does the same speech-to-text. The

essentials:

• (D) We define a whole list of functions in an object. var cmd =

{ "VOICE COMMAND" => FUNCTION }

• (A4) On getting the text transcription, we attempt to “map and

run” the voice command – cmd[SAID]().

Yes, it’s just a simple trick.

LINKS & REFERENCES
• Speech Recognition API – MDN

COMPATIBILITY CHECKS (WITH CANIUSE)
• Speech Recognition

187 | P a g e

https://caniuse.com/speech-recognition
https://developer.mozilla.org/en-US/docs/Web/API/SpeechRecognition
https://developer.mozilla.org/en-US/docs/Web/API/SpeechRecognition

188 | P a g e

JAVASCRIPT CAMERA
Webcams have been around for a long time now, and it is made even

more popular with mobile devices. This should not be a surprise by now

– We can access webcams with Javascript, take photos and videos.

VERY SIMPLE LIVE FEED

CHAPTER-T/1-LIVE-FEED.HTML

<!-- (A) VIDEO TAG -->
<video id="kam-live" autoplay></video>

<script>
// (B) GET PERMISSION TO ACCESS CAMERA
navigator.mediaDevices.getUserMedia({ video: true
/*, audio: true*/ })

// (C) ATTACH LIVE STREAM TO <VIDEO>
.then((stream) => {
 document.getElementById("kam-live").srcObject = stream;
})

// (D) HANDLE ERRORS
.catch((err) => { console.error(err); });
</script>

A)Start by defining an empty HTML video tag with autoplay.

B)Then, we need to get access permission to the webcam with

navigator.mediaDevices.getUserMedia({ video:

true }). If you need to capture the audio, also include audio:

true in the options.

C) Attach the webcam stream into the <video> tag.

189 | P a g e

That’s all for a simple live feed… But this does nothing productive. Let’s

build a simple “camera” app next.

TAKING PHOTOS WITH WEBCAM

STEP 1) WEBCAM HTML

CHAPTER-T/2-WEBCAM.HTML

<!-- (A) VIDEO LIVE FEED -->
<video id="kam-live" autoplay></video>

<!-- (B) SNAPSHOTS -->
<div id="kam-snaps"></div>

<!-- (C) CONTROLS -->
<div id="kam-controls">
 <button id="kam-take" disabled>
 photo_camera
 </button>
 <button id="kam-save" disabled>
 save
 </button>
</div>

A)Same old <video> tag for the live feed.

B)Camera snapshots will be placed here.

C) A button to take a photo, another to offer a “save as”.

190 | P a g e

STEP 2) WEBCAM PROPERTIES

CHAPTER-T/2-WEBCAM.JS

// (A) INITIALIZE
hVid : null, hSnaps :null, hTake : null, hSave : null,
init : () => {
 // (A1) GET HTML ELEMENTS
 webkam.hVid = document.getElementById("kam-live"),
 webkam.hSnaps = document.getElementById("kam-snaps"),
 webkam.hTake = document.getElementById("kam-take"),
 webkam.hSave = document.getElementById("kam-save");

 // (A2) GET USER PERMISSION TO ACCESS CAMERA
 navigator.mediaDevices.getUserMedia({ video: true })
 .then((stream) => {
 // "LIVE FEED" WEB CAM TO <VIDEO>
 webkam.hVid.srcObject = stream;

 // ENABLE BUTTONS
 webkam.hTake.onclick = webkam.take;
 webkam.hSave.onclick = webkam.save;
 webkam.hTake.disabled = false;
 webkam.hSave.disabled = false;
 })
 .catch((err) => { console.error(err); });
}
window.addEventListener("load", webkam.init);

webkam.init() will run on window load to initialize the app:

• (A1) Get the HTML elements.

• (A2) Same old get webcam permission, set live feed. But small

extra now, also enable the HTML buttons.

191 | P a g e

STEP 3) TAKE A SNAPSHOT

CHAPTER-T/2-WEBCAM.JS

// (B) HELPER - SNAP VIDEO FRAME TO CANVAS
snap : () => {
 // (B1) CREATE NEW CANVAS
 let canvas = document.createElement("canvas"),
 ctx = canvas.getContext("2d"),
 vWidth = webkam.hVid.videoWidth,
 vHeight = webkam.hVid.videoHeight;

 // (B2) CAPTURE VIDEO FRAME TO CANVAS
 canvas.width = vWidth;
 canvas.height = vHeight;
 ctx.drawImage(webkam.hVid, 0, 0, vWidth, vHeight);

 // (B3) DONE
 return canvas;
},

// (C) TAKE A SNAPSHOT - PUT CANVAS INTO <DIV> WRAPPER
take : () => {
 webkam.hSnaps.appendChild(webkam.snap());
}

Remember the canvas? Yes, to “take a photo”, we literally:

• Create a new HTML canvas element.

• Capture the current video frame onto the canvas.

192 | P a g e

STEP 4) SAVE SNAPSHOT AS IMAGE

CHAPTER-T/2-WEBCAM.JS

// (D) SAVE SNAPSHOT
save : () => {
 // (D1) TAKE A SNAPSHOT, CREATE DOWNLOAD LINK
 let canvas = webkam.snap(),
 anchor = document.createElement("a");
 anchor.href = canvas.toDataURL("image/png");
 anchor.download = "snap.png";

 // (D2) "FORCE DOWNLOAD" - MAY NOT ALWAYS WORK!
 anchor.click();
 anchor.remove();
 canvas.remove();

 // (D3) SAFER - LET USERS MANUAL CLICK
 // anchor.appendChild(canvas);
 // webkam.hSnaps.appendChild(anchor);
}

Remember how to save an HTML canvas as an image? This is the same.

P2P LIVE VIDEO CHAT

STEP 1) PEERJS SERVER

CHAPTER-T/3A-SERVER.JS

const { PeerServer } = require("peer");
const peerServer = PeerServer({
 port: 9000,
 path: "/myapp"
 /*
 ssl : {

193 | P a g e

 key: fs.readFileSync("/path/ssl.key"),
 cert: fs.readFileSync("/pathcertificate.crt")
 }
 */
});

Remember this fella from earlier? We will now use this to create a

simple P2P video chat. Run npm install peer if you have deleted the

package, then launch this in the command line – node 3a-server.js.

Take note of SSL here. In your live application, please make sure that

you have a valid SSL cert, or things will not work – More on that below.

STEP 2) PEER A

CHAPTER-T/3B-PEER-A.HTML

<!-- (A) VIDEO TAGS -->
You: <video id="vMe" autoplay></video>
Caller: <video id="vCaller" autoplay></video>

<!-- (B) VIDEO CALL -->
<script
src="https://cdnjs.cloudflare.com/ajax/libs/peerjs/1.3.2/p
eerjs.min.js"></script>
<script>
async function kamcall (id) {
 // (B1) VIDEO LIVE FEED
 let streamMe = null;
 try {
 streamMe = await navigator.mediaDevices.getUserMedia({
 video: true, audio: true });
 } catch(err) {
 console.error(err);
 return false;

194 | P a g e

 }
 document.getElementById("vMe").srcObject = streamMe;

 // (B2) HANDSHAKE WITH PEER SERVER
 const peer = new Peer(id, {
 host: "192.168.0.101", // CHANGE TO YOUR OWN!
 port: 9000,
 path: "/myapp"
 });

 // (B3) AUTO ANSWER CALLS
 peer.on("call", (call) => {
 call.answer(streamMe);
 call.on("stream", (streamCaller) => {
 document.getElementById("vCaller").srcObject =
 streamCaller;
 });
 });
}
kamcall("PEER-A");
</script>

This should look very familiar, here’s a quick walk through:

• (A) We now have 2 <video> tags. One for your own live feed,

the other to show the caller’s video feed.

• (B1) Same old “get video AND audio permission”, feed into

<video> tag.

• (B2) Same old handshake with peer server.

• (B3) Take note, it’s peer.on(“call”) now. In this example, we

simply accept a call, then put the caller’s video feed into the other

<video> tag.

195 | P a g e

STEP 3) PEER B

CHAPTER-T/3C-PEER-B.HTML

// (B3) CALL "PEER-A"
peer.on("open", () => {
 console.log("READY!");
 let call = peer.call("PEER-A", streamMe);
 call.on("stream", (streamCaller) => {
 document.getElementById("vCaller").srcObject =
 streamCaller;
 });
});

Look no further, this is the same as Peer A. Except that we make a

video call to Peer A once the handshake is complete.

MANY OTHER USES
There are many more uses for the webcam that I can think of:

• Do an online search for “Javascript QR code scanner” or “Barcode

scanner” – Yes, we can bake these directly into the web app itself.

• Live stream. Remember web socket? Send the video stream to the

server, then broadcast it live to everyone. Although the bit rate,

chunking, and whatever controls are going to be a royal pain to

deal with.

• If you want, you can even save the video on the server.

• Home security or build your own web-based local intercom system.

This is probably endless, so I shall stop here.

196 | P a g e

LINKS & REFERENCES
• Get User Media – MDN

COMPATIBILITY CHECKS (WITH CANIUSE)
• G et User Media (Stream) Compatibility - CanIUse

197 | P a g e

https://caniuse.com/stream
https://caniuse.com/stream
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia

198 | P a g e

“ALTERNATE” VIDEO STREAM
If we can stream audio and video, what’s stopping us from sharing

screens? Yes, this feature is also baked directly inside most “Grade A”

modern browsers as well.

SIMPLE SCREEN SHARING

THE HTML

CHAPTER-U/SCREEN-CAP.HTML

<!-- (A) HTML INTERFACE -->
<video id="video" style="width:100%;" autoplay></video>
<button id="start">Start Capture</button>
<button id="stop">Stop Capture</button>

It’s the same old <video> tag again. You should already have an idea

of what we will do in the Javascript next.

START SCREEN CAPTURE

CHAPTER-U/SCREEN-CAP.HTML

// (B) GET HTML ELEMENTS
const hVid = document.getElementById("video"),
 hStart = document.getElementById("start"),
 hStop = document.getElementById("stop");

// (C) START CAPTURE
hStart.onclick = () => {
 navigator.mediaDevices.getDisplayMedia({
 video: { cursor: "always" },
 audio: false

199 | P a g e

 })
 .then((stream) => { hVid.srcObject = stream; })
 .catch((err) => { console.error(err); });
};

Does this look familiar? I am sure it does.

• To get permission to the webcam, we use getUserMedia().

• To get permission to the screen, we use getDisplayMedia().

That’s all. The rest are all the same – Once the user gives permission,

we “map” the stream into the <video> tag.

STOP SCREEN CAPTURE

CHAPTER-U/SCREEN-CAP.HTML

// (D) STOP CAPTURE
hStop.onclick = () => {
 hVid.srcObject.getTracks().forEach(track =>
 track.stop());
 hVid.srcObject = null;
};

To stop the sharing, we simply run through all the “video tracks” and

stop the one-by-one.

TAKING A SCREENSHOT
All right, I am getting lazy, but it’s the same as the webcam. Create a

canvas, capture a frame from the video onto the canvas.

200 | P a g e

SCREEN SHARING
It’s the same as again, use PeerJS to do the same video call. But instead

of feeding in the webcam, we feed in the screen capture instead.

LINKS & REFERENCES
• Get Display Media – MDN

COMPATIBILITY CHECKS (WITH CANIUSE)
• G et Display Media

201 | P a g e

https://caniuse.com/mdn-api_mediadevices_getdisplaymedia
https://caniuse.com/mdn-api_mediadevices_getdisplaymedia
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getDisplayMedia
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getDisplayMedia
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getDisplayMedia

202 | P a g e

SMALL BUT ADVANCED
Mobile devices. They fit into pockets, and we use them without thinking

much these days. But the amount of technologies packed inside is

actually amazing – GPS, camera, audio, video, gyroscope, light sensors,

wireless, etc… Let us walk through how to use some of these mobile

sensors in this chapter.

GPS

CHAPTER-V/1-GPS.HTML

<!-- (A) DEMO HTML -->
Lat <div id="lat"></div>
Lng <div id="lng"></div>
<input type="button" value="GPS" onclick="getGPS()"/>

<script>
function getGPS () {
 // (B) GET HTML ELEMENTS
 let lat = document.getElementById("lat"),
 lng = document.getElementById("lng");

 // (C) GET GPS COORDINATES
 navigator.geolocation.getCurrentPosition(
 // (C1) ON SUCCESS
 (pos) => {
 lat.innerHTML = pos.coords.latitude;
 lng.innerHTML = pos.coords.longitude;
 },
 // (C2) ON FAILURE - OPTIONAL
 (err) => {
 lat.innerHTML = err.message;
 console.error(err);

203 | P a g e

 },
 // (C3) OPTIONS - OPTIONAL
 {
 enableHighAccuracy: true,
 timeout: 5000,
 maximumAge: 0
 }
);
}
</script>

• Use navigator.geolocation.getCurrentPosition() to

request for the GPS coordinates, it takes in 3 parameters.

• The first parameter is a function to call on successfully getting the

GPS coordinates – pos.coords.latitude and

pos.coords.longitude are probably all we are interested in.

• The second parameter is optional, a function to deal with errors.

This is triggered when the user denies access to the GPS and on

GPS timeout. Yes, when the device fails to get the coordinates.

• Lastly, the GPS options. Optional again.

◦ enableHighAccuracy Self-explanatory. Drains a little more

battery, but high accuracy.

◦ timeout When to give up on not getting a GPS signal.

◦ maximumAge In milliseconds. If set, the device will cache the

GPS coordinates for the set time. This is to save the battery.

HOW ABOUT MAPS?
There are a dozen of map services on the Internet. It is not possible to

204 | P a g e

cover all of them, so check out some of these in your own time:

• Google Maps

• HERE Maps

• Apple Maps

• Bing Maps

• Mapbox

• Mapzen

• Leaflet

• Open Layers

• Thunderforest

GYROSCOPE

CHAPTER-V/2-GYRO.HTML

<!-- (A) DEMO HTML -->
X <div id="gx"></div>
Y <div id="gy"></div>
Z <div id="gz"></div>
<input type="button" value="Gyroscope"
onclick="getGyro()"/>

<script>
function getGyro () {
 // (B) GET HTML ELEMENTS
 let gx = document.getElementById("gx"),
 gy = document.getElementById("gy"),
 gz = document.getElementById("gz");

205 | P a g e

https://www.thunderforest.com/
https://openlayers.org/
https://leafletjs.com/
https://www.mapzen.com/
https://www.mapbox.com/
https://www.microsoft.com/en-us/maps/choose-your-bing-maps-api
https://developer.apple.com/maps/
https://developer.here.com/
https://developers.google.com/maps/documentation/

 // (C) READ GYRO
 let gyro = new Gyroscope({frequency: 10});
 gyro.addEventListener("reading", (e) => {
 gx.innerHTML = gyro.x;
 gy.innerHTML = gyro.y;
 gz.innerHTML = gyro.z;
 });
 gyro.start();

 // (D) ON ERROR - OPTIONAL
 gyro.addEventListener("error", (e) => {
 gx.innerHTML = e.message;
 });
}
</script>

• Create let gyro = new Gyroscope() object. The frequency is

the number of scans per second. The higher the number, the more

“sensitive” it is .

• Define what to do on getting a reading – gyro.onreading = DO

SOMEHTING. This will return the XYZ “angular velocity of the

device”.

• Start – gyro.start().

Sorry, I am not a physicist. My layman understanding of a Gyroscope is

“how much in which direction is the device tilted”. For a better

explanation, I will just point to a Google image search on “Gyroscope

XYZ”.

206 | P a g e

https://www.google.com/search?q=smartphone+gyroscope+XYZ&tbm=isch&ved=2ahUKEwiIncXExrL0AhWMxDgGHc3gAOUQ2-cCegQIABAA&oq=smartphone+gyroscope+XYZ&gs_lcp=CgNpbWcQAzoHCCMQ7wMQJzoFCAAQgAQ6BAgAEBg6BAgAEB5Q3wZY6g5gkhNoAHAAeACAAcwBiAGPA5IBBTQuMC4xmAEAoAEBqgELZ3dzLXdpei1pbWfAAQE&sclient=img&ei=LwCfYcjJEIyJ4-EPzcGDqA4&bih=870&biw=1246
https://www.google.com/search?q=smartphone+gyroscope+XYZ&tbm=isch&ved=2ahUKEwiIncXExrL0AhWMxDgGHc3gAOUQ2-cCegQIABAA&oq=smartphone+gyroscope+XYZ&gs_lcp=CgNpbWcQAzoHCCMQ7wMQJzoFCAAQgAQ6BAgAEBg6BAgAEB5Q3wZY6g5gkhNoAHAAeACAAcwBiAGPA5IBBTQuMC4xmAEAoAEBqgELZ3dzLXdpei1pbWfAAQE&sclient=img&ei=LwCfYcjJEIyJ4-EPzcGDqA4&bih=870&biw=1246
https://www.google.com/search?q=smartphone+gyroscope+XYZ&tbm=isch&ved=2ahUKEwiIncXExrL0AhWMxDgGHc3gAOUQ2-cCegQIABAA&oq=smartphone+gyroscope+XYZ&gs_lcp=CgNpbWcQAzoHCCMQ7wMQJzoFCAAQgAQ6BAgAEBg6BAgAEB5Q3wZY6g5gkhNoAHAAeACAAcwBiAGPA5IBBTQuMC4xmAEAoAEBqgELZ3dzLXdpei1pbWfAAQE&sclient=img&ei=LwCfYcjJEIyJ4-EPzcGDqA4&bih=870&biw=1246
https://www.google.com/search?q=smartphone+gyroscope+XYZ&tbm=isch&ved=2ahUKEwiIncXExrL0AhWMxDgGHc3gAOUQ2-cCegQIABAA&oq=smartphone+gyroscope+XYZ&gs_lcp=CgNpbWcQAzoHCCMQ7wMQJzoFCAAQgAQ6BAgAEBg6BAgAEB5Q3wZY6g5gkhNoAHAAeACAAcwBiAGPA5IBBTQuMC4xmAEAoAEBqgELZ3dzLXdpei1pbWfAAQE&sclient=img&ei=LwCfYcjJEIyJ4-EPzcGDqA4&bih=870&biw=1246

ACCELEROMETER

CHAPTER-V/3-ACCELEROMETER.HTML

<!-- (A) DEMO HTML -->
X <div id="ax"></div>
Y <div id="ay"></div>
Z <div id="az"></div>
<input type="button" value="Accelerometer"
onclick="getAccel()"/>

<script>
function getAccel () {
 // (B) GET HTML ELEMENTS
 let ax = document.getElementById("ax"),
 ay = document.getElementById("ay"),
 az = document.getElementById("az");

 // (C) READ ACCELEROMETER
 let accel = new Accelerometer({frequency: 10});
 accel.addEventListener("reading", (e) => {
 ax.innerHTML = accel.x;
 ay.innerHTML = accel.y;
 az.innerHTML = accel.z;
 });
 accel.start();

 // (D) ON ERROR - OPTIONAL
 accel.addEventListener("error", (e) => {
 ax.innerHTML = e.message;
 });
}
</script>

Right. As it seems, an “accelerometer” is different from “gyroscope”.

According to online technical terms:

207 | P a g e

• Gyroscope – Angular velocity.

• Accelerometer - Acceleration of the device.

So my layman understanding:

• Gyroscope – How much in which direction is the device tilted.

• Accelerometer – How fast in which direction is the device tilted or

moved at.

LIGHT METER

CHAPTER-V/4-LIGHT.HTML

<!-- (A) DEMO HTML -->
Illuminance <div id="illum"></div>
<input type="button" value="Light Meter"
onclick="getLum()"/>

<script>
function getLum () {
 // (B) GET HTML ELEMENTS
 let il = document.getElementById("illum");

 // (C) READ LIGHT SENSOR
 let ls = new AmbientLightSensor();
 ls.addEventListener("reading", (e) => {
 il.innerHTML = ls.illuminance;
 });
 ls.start();

 // (D) ON ERROR - OPTIONAL
 ls.addEventListener("error", (e) => {
 il.innerHTML = e.message;
 });

208 | P a g e

}
</script>

This should be self-explanatory. The light sensor will return the current

light level in LUX.

EVEN MORE SENSORS
We have covered some of the common mobile device sensors, but there

are actually more.

• Gravity Sensor

• Magnetometer

• Proximity Sensor

• Linear Acceleration Sensor

No idea what these even do…

DO YOUR FEATURE CHECKS!
Yes, not all devices have all the sensors built in. A reminder to do your

own homework on checking for the required feature, implement your

own fallback and warning messages.

LINKS & REFERENCES
• Get Current Position – MDN

• G yroscope – MDN

• Accelerometer – MDN

209 | P a g e

https://developer.mozilla.org/en-US/docs/Web/API/Accelerometer
https://developer.mozilla.org/en-US/docs/Web/API/Gyroscope
https://developer.mozilla.org/en-US/docs/Web/API/Gyroscope
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation/getCurrentPosition
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation/getCurrentPosition

• Light Sensor – MDN

COMPATIBILITY CHECKS (WITH CANIUSE)
• Get Current Position

• G yroscope

• Accelerometer

• Light Sensor

210 | P a g e

https://caniuse.com/ambient-light
https://caniuse.com/accelerometer
https://caniuse.com/gyroscope
https://caniuse.com/gyroscope
https://caniuse.com/mdn-api_geolocation_getcurrentposition
https://caniuse.com/mdn-api_geolocation_getcurrentposition
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Feature-Policy/ambient-light-sensor

211 | P a g e

SUPER SHORT CHAPTER
Let’s go.

VIBRATION CONTROL

CHAPTER-W/VIBRATE.HTML

<!-- (A) DEMO HTML -->
<input type="button" value="Single" onclick="vOne()"/>
<input type="button" value="Many" onclick="vMany()"/>
<input type="button" value="Stop" onclick="vStop()"/>

<script>
function vOne () {
 navigator.vibrate(1000);
}
function vMany () {
 navigator.vibrate([200, 50, 200, 50]);
}
function vStop () {
 navigator.vibrate(0);
 navigator.vibrate([]);
}
</script>

• Use navigator.vibrate(MS) to vibrate once.

• Use navigator.vibrate([MS, MS, …]) for a vibration

pattern.

• Use navigator.vibrate(0) or navigator.vibrate([]) to

stop vibrating.

The end.

212 | P a g e

LINKS & REFERENCES
• Vibrate – MDN

COMPATIBILITY CHECKS (WITH CANIUSE)
• Vibrate

213 | P a g e

https://caniuse.com/mdn-api_navigator_vibrate
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/vibrate

214 | P a g e

NATIVE SHARE BUTTON

I am sure that you are not a stranger to “social share buttons” in this

age. But know what? There is an actual native “share” implementation

in Javascript. Take note though, this mostly only applies to mobile

devices at the time of writing.

JAVASCRIPT SHARE

CHAPTER-X/WEB-SHARE.HTML

<!-- (A) DEMO BUTTON -->
<input type="button" value="Share" id="wshare"
onclick="wshare()"/>

<script>
// (B) SHARE
function wshare () {
 // (B1) DATA TO SHARE

215 | P a g e

 const data = {
 title: "Code Boxx",
 text: "Check out the Web Share API!",
 url: "https://code-boxx.com"
 // files: [FILE OBJECT, FILE OBJECT, ...]
 };

 // (B2) SHARE DIALOG
 navigator.share(data)
 .then(() => { alert("SHARED"); })
 .catch((err) => { alert(err.message); });
}
</script>

• Just use navigator.share(DATA) to activate the share dialog.

• The share data takes in 4 parameters.

◦ title Title of the share.

◦ text Description or share text.

◦ url Self-explanatory.

◦ files If sharing files, this is an array of file objects.

LINKS & REFERENCES
• Web Share – MDN

COMPATIBILITY CHECKS (WITH CANIUSE)
• Web Share

216 | P a g e

https://caniuse.com/web-share
https://developer.mozilla.org/en-US/docs/Web/API/Web_Share_API

217 | P a g e

COMPILED VS INTERPRETED

For you guys who somehow missed this out:

• Javascript is an interpreted language. The source code is read as-

it-is and executed on-the-fly.

• But compiled languages (such as C, C++, Java) require the

source code to be compiled into an executable first.

FREAKY JAVASCRIPT COLLAB
So you can pretty much guess what Web Assembly is all about. Letting

Javascript run a piece of compiled code. Yes, it’s kind of freaky, but

compiled code does offer better overall performance.

218 | P a g e

INSTALLATION MAYHEM
To get started with Web Assembly, we have to go through a baptism by

installation first.

PYTHON

Yes, Python is required by the tool we are going to use next. So install it

if you have not already done so.

EMSCRIPTEN

The tool that we are going to use is called EMScripten. If you have Git

installed, just create a folder and run git clone

https://github.com/emscripten-core/emsdk.git. If not, you

can also manually download it from Github.

EMSCRIPTEN TOOLCHAIN

Following up, we need to install the Toolchain.

FOR WINDOWS

cd WHERE/YOU/INSTALLED/EMSCRIPTEN
emsdk update
emsdk install latest
emsdk activate latest
emsdk_env.bat
emcmdprompt.bat

219 | P a g e

https://github.com/emscripten-core/emsdk
https://www.python.org/

FOR LINUX/MAC

cd WHERE/YOU/INSTALLED/EMSCRIPTEN
./emsdk install latest
./emsdk activate latest
source ./emsdk_env.sh

P.S. If you get a “Python not found” error, the system path to Python is

probably not properly set. Do your own research on how to fix.

HELLO WORLD IN C

CHAPTER-Y/2-HELLO-WORLD.C

#include <stdio.h>
int main(int argc, char ** argv) {
 printf("Hello world!\n");
}

Now that the installation nightmare is over, let us create a “Hello World”

script. In C, that is.

COMPILE
Then, compile the script with emcc 2-hello-world.c -s WASM=1 -

o hello-world.html.

• -s WASM=1 specifies that we want a WASM output.

• -o hello-world.html saves the output to hello-

world.html

220 | P a g e

LAUNCH

Lastly, just open http://localhost/hello-world.html. Well

done, you have created your first WASM application.

LINKS & REFERENCES
Of course, this is only the first step into WASM. Read up more if you are

interested:

• Web Assembly – MDN

• E MScripten

• WebAssembly.org

COMPATIBILITY CHECKS (WITH CANIUSE)
• Web Assembly

221 | P a g e

https://caniuse.com/wasm
https://caniuse.com/wasm
https://webassembly.org/getting-started/developers-guide/
https://emscripten.org/
https://emscripten.org/
https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/WebAssembly

222 | P a g e

NEXT GENERATION JAVASCRIPT
No joke, we have come to the last chapter, but there is still so much

more that cannot be contained within this book. So I shall pave one last

step toward the “next generation Javascript”. That is, making Javascript

work just like a native mobile app.

DEVELOPING MOBILE APPS WITH WEB TECHNOLOGY
Not going deep into this one, as this topic can be an entire book on its

own. But it is possible to develop mobile apps using HTML, CSS, and

Javascript. There are 2 “main schools” in this:

• Bridge or “convert” Javascript into a native app.

• The “mobile app” itself is just a browser running a “mini localhost”.

I shall point to some projects worth checking out:

• Apache Cordova

• React Native

• Native Script

• Flutter

• Ionic

PROGRESSIVE WEB APPLICATION (PWA)
Apart from mobile apps, there is something called “PWA”. Long story

short, PWA is pretty much “an installable website that can function like a

native app even when the user is offline”.

223 | P a g e

https://ionicframework.com/
https://flutter.dev/
https://nativescript.org/
https://reactnative.dev/
https://cordova.apache.org/

As to the specific requirements of what makes a PWA, there’s none.

Yep, PWA is still a pretty loose term, but I will point to 3 main principles

that Google pointed out – dev.to

• Capable – The web app can perform all kinds of things. Live calls,

store data, retrieve data, GPS maps, and whatever else funky

under the sun.

• Reliable – Works offline. Has fallback for older browsers. Handles

errors and graceful fails.

• Installable – The user can choose to install and create an icon on

the home screen. This makes the PWA run in a standalone

manner, much like a native app.

Basically, a PWA is everything covered in this book – Service workers,

offline caching, sync, indexed databases, WebRTC, Web Sockets, GPS,

etc… Except that we are missing on the “installable” part. Let’s get into

a simple example next.

BAREBONES PWA

THE HTML

CHAPTER-Z/1-INDEX.HTML

<!DOCTYPE html>
<html lang="en">
 <head>
 <!-- (A) TITLE + CHARSET + DESCRIPTION -->
 <title>Barebones PWA</title>
 <meta charset="utf-8">
 <meta name="description" content="Barebones PWA page">

224 | P a g e

https://web.dev/what-are-pwas/
https://web.dev/what-are-pwas/

 <!-- (B) VIEWPORT (ALLOW ZOOM IN, NOT OUT) -->
 <meta name="viewport" content="width=device-width,
 initial-scale=1.0, maximum-scale=1.5">

 <!-- (C) WEB APP MANIFEST -->
 <!-- https://web.dev/add-manifest/ -->
 <link rel="manifest" href="4-manifest.json">

 <!-- (D) GOOD OLD FAVICON -->
 <link rel="icon" href="favicon.png" type="image/png">

 <!-- (E) ANDROID/CHROME -->
 <meta name="mobile-web-app-capable" content="yes">
 <meta name="theme-color" content="white">

 <!-- (F) IOS APP ICON + MOBILE SAFARI -->
 <link rel="apple-touch-icon" href="icon-512.png">
 <meta name="apple-mobile-web-app-capable"
 content="yes">
 <meta name="apple-mobile-web-app-status-bar-style"
 content="black">
 <meta name="apple-mobile-web-app-title" content="Hello
 World">

 <!-- (G) WINDOWS -->
 <meta name="msapplication-TileImage" content="icon-
 512.png">
 <meta name="msapplication-TileColor"
 content="#ffffff">

 <!-- (H) STYLESHEET + JAVASCRIPT -->
 <link rel="stylesheet" href="2-style.css">
 <script defer src="3a-main.js"></script>
 </head>
 <body>
 It Works!
 </body>

225 | P a g e

</html>

As you can see, a “PWA website” is still the same old HTML. Except that

it has a ton of meta tags.

• (A) The usual title, character set, description.

• (B) Viewport. AKA ”pinch zoom control”.

• (C) The web app manifest, very important for PWA. This is

nothing but a JSON file.

• (D To G) Irritating. Everyone has their own set of meta tags to

define the icon and browser-specific color theme. Not going too

deep into that, just keep things simple – Serve 64X64 for favicon,

give the rest a huge 512X512 icon.

• (H) The usual CSS and Javascript.

THE CSS

CHAPTER-Z/2-STYLE.CSS

* { font-family: arial, sans-serif; }
body {
 background: #000;
 color: #fff;
}

Just some dummy styles.

226 | P a g e

JAVASCRIPT – MAIN PAGE

CHAPTER-Z/3A-MAIN.JS

if ("serviceWorker" in navigator) {
 navigator.serviceWorker.register("3b-sw.js");
}

Looks familiar? Yes, register a service worker.

JAVASCRIPT – SERVICE WORKER CACHE

CHAPTER-Z/3A-MAIN.JS

// (A) FILES TO CACHE
const cName = "demo-pwa",
cFiles = [
 "1-index.html",
 "2-style.css",
 "3a-main.js"
];

// (B) CREATE/INSTALL CACHE
self.addEventListener("install", (evt) => {
 evt.waitUntil(
 caches.open(cName)
 .then((cache) => { return cache.addAll(cFiles); })
 .catch((err) => { console.error(err) })
);
});

// (C) LOAD FROM CACHE, FALLBACK TO NETWORK IF NOT FOUND
self.addEventListener("fetch", (evt) => {
 evt.respondWith(
 caches.match(evt.request)
 .then((res) => { return res || fetch(evt.request); })

227 | P a g e

);
});

Looks familiar again? Yes, offline cache storage.

WEB APP MANIFEST

CHAPTER-Z/4-MANIFEST.JSON

{
 "short_name": "DPWA",
 "name": "Demo PWA",
 "icons": [{
 "src": "favicon.png",
 "sizes": "64x64",
 "type": "image/png"
 }, {
 "src": "icon-512.png",
 "sizes": "512x512",
 "type": "image/png"
 }],
 "start_url": "1-index.html",
 "scope": "/",
 "background_color": "white",
 "theme_color": "white",
 "display": "standalone"
}

The manifest file pretty much describes your web app, the icons, and all

the settings stuff. See this post for the full list of manifest properties.

228 | P a g e

https://web.dev/add-manifest/

LAUNCH!
Simply access http://localhost/1-index.html in your browser,

there should be an icon to install the PWA.

Go ahead. This will create an icon on your desktop/home screen, and

also the apps page in your browser. Open chrome://apps OR

edge://apps OR opera://apps.

To remove the app, you have to do it in the browser. Deleting the icon

on the desktop/home screen will not remove it.

229 | P a g e

MANUAL INSTALL

CHAPTER-Z/5-MANUAL-INSTALL.HTML

<!-- (A) INSTALL PWA BUTTON -->
<input type="button" id="iBtn" style="display:none"
 value="Add To Home Screen"/>

<script>
// (B) PRE-INSTALL
let iBtn = document.getElementById("iBtn"), // HTML BUTTON
 iPrompt; // TO HOLD THE "INSTALL APP" PROMPT

// (C) LISTEN FOR "BEFORE INSTALL PROMPT" EVENT
window.addEventListener("beforeinstallprompt", (evt) => {
 // (C1) STOP DEFAULT "INSTALL APP" PROMPT
 evt.preventDefault();

 // (C2) "STORE" THE "INSTALL APP" PROMPT
 iPrompt = evt;

 // (C3) SHOW "INSTALL APP" ON CLICK
 iBtn.addEventListener("click", () => {
 iPrompt.prompt();
 iPrompt.userChoice.then((res) => {
 if (res.outcome === "accepted") {
 console.log("ACCEPTED INSTALL");
 } else {
 console.log("DISMISSED INSTALL");
 }
 iBtn.remove();
 iPrompt = null;
 });
 });
 iBtn.style.display = "block";
});
</script>

230 | P a g e

If you want to create your own “manual install button” or “nice-looking

install app offer”:

• (A) Create your HTML. For this example, we will just use a simple

HTML button – Hidden by default.

• (B) In the Javascript, we put the HTML button into iBtn and

create an empty iPrompt to hold the “install prompt” event.

• (C) If the browser deems your PWA as “installable”, the

beforeinstallprompt event will fire.

◦ (C1 & C2) We “hijack and precent” the default behavior to

show an installation prompt, and “store” it into iPrompt.

◦ (C3) Self-explanatory, we show the “install app” button, and

the user has to click on it to show the install prompt.

STARTED AS STANDALONE APP OR ACCESS FROM WEB?

CHAPTER-Z/5-MANUAL-INSTALL.HTML

// (D) DETECT STANDALONE PWA OR ACCESSED FROM WEB
const isStandalone = window.matchMedia("(display-mode:
standalone)").matches || navigator.standalone;
console.log(isStandalone ? "Standalone APP" : "Web");

For this final little bit, if you need to check if the user has started as a

PWA (by clicking on the icon) or accessed from the Internet – Just do a

quick check with window.matchMedia() and

navigator.standalone.

231 | P a g e

LINKS & REFERENCES
• Progressive Web App – MDN

• P rogressive Web App – web.dev

COMPATIBILITY CHECKS (WITH CANIUSE)
• Add To Home Screen

232 | P a g e

https://caniuse.com/web-app-manifest
https://web.dev/progressive-web-apps/
https://web.dev/progressive-web-apps/
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps

233 | P a g e

BUGS SPOTTED?!
I have done some due diligence of running through the code after each

chapter to make sure that it at least works. But sadly, I don’t have a

team of editors… So my apologies if there are still some bugs scattered

around. Kindly drop a note on Code Boxx and let me know… If you want

to. I will revise that in future editions of this book.

code-boxx@mail.com

DISCOUNT COUPON
A big thank you for getting this eBook! Should you be interested in

getting more goodies from the Code Boxx Store , please use the

following promo code at to get a 10% off –

THANKYOU4896

234 | P a g e

https://payhip.com/codeboxx
https://payhip.com/codeboxx
mailto:code-boxx@mail.com

	BREAKTHROUGH JAVASCRIPT
	FOREWORD
	SOFTWARE LICENSE
	TABLE OF CONTENTS
	INTENDED AUDIENCE
	WARNING – EXPERIMENTAL TECHNOLOGY
	SERVER-SIDE REQUIREMENTS
	CLIENT-SIDE REQUIREMENTS
	NO BACKWARD COMPATIBILITY CHECKS & FALLBACK
	SECURE ORIGINS – HTTPS://
	OVERRIDING THE SECURITY POLICY
	SIMPLE START
	“TRADITIONAL” FUNCTIONS ARE SYNCHRONOUS
	ASYNCHRONOUS FUNCTIONS & PROMISES
	ARROW FUNCTIONS
	THREADING MAGIC
	SIMPLE WEB WORKER
	SHARED WORKER
	SERVICE WORKER
	REGISTERING SERVICE WORKERS
	INSPECTING & MANAGING SERVICE WORKERS
	SERVICE WORKER SCOPE
	SERVICE WORKER RESTRICTIONS
	SERVICE WORKER CACHING
	SERVICE WORKER MESSAGE
	SERVICE WORKER BACKGROUND SYNC
	MORE SERVICE WORKER USES
	LOCAL STORAGE & SESSION STORAGE
	WHAT’S IN MY LOCAL & SESSION STORAGE?
	LOCAL STORAGE BASIC USAGE
	SESSION STORAGE BASIC USAGE
	LOCAL STORAGE VS SESSION STORAGE
	THE BITS & PIECES
	LINKS & REFERENCES
	JAVASCRIPT DATABASE
	INDEXED DB STRUCTURE IN A NUTSHELL
	WHAT’S IN MY INDEXED DB?
	INITIALIZING & CREATING A DATABASE
	BASIC TRANSACTIONS
	UPGRADING A DATABASE
	INDEXES
	GET ALL & CURSORS
	KEY RANGE (LIMIT)
	SEARCH
	PERSISTENT STORAGE
	LINKS & REFERENCES
	READING FILES IN NODEJS
	READ FILE AS TEXT
	READ FILE AS DATA URL (BASE 64 ENCODED)
	READ FILE AS BINARY DATA
	CALLING THE FILE PICKER PROGRAMMATICALLY
	CLIENT-SIDE RESTRICTION – EXPLICIT PERMISSION
	LINKS & REFERENCES
	WRITING FILES IN NODEJS
	BLOB DOWNLOAD
	WRITABLE FILE STREAM
	LOCAL STORAGE BASE 64 ENCODED STRING
	LINKS & REFERENCES
	MODERN HTTP COMMUNICATIONS
	BASIC FETCH CONTENT
	FETCH SEND DATA
	FETCH JSON
	FETCH HTTP BASIC AUTH
	FETCH AS BINARY
	LINKS & REFERENCES
	WHAT IS A SOCKET?
	BASIC WEB SOCKET
	LIVE CHAT WITH WEB SOCKET
	MORE USES
	LINKS & REFERENCES
	COMPATIBILITY CHECKS (WITH CANIUSE)
	DIRECT EXCHANGE
	VERY SIMPLE PEER-TO-PEER
	SIMPLE PEER-TO-PEER CHAT
	MYSTERY OF THE USER ID
	WEBRTC AUDIO VIDEO STREAM
	LINKS & REFERENCES
	COMPATIBILITY CHECKS (WITH CANIUSE)
	STEP-BY-STEP PUSH
	STEP 1) DOWNLOAD NODE MODULES
	STEP 2) GENERATE VAPID KEYS
	STEP 3) CLIENT-SIDE
	STEP 4) SERVICE WORKER
	STEP 5) SERVER-SIDE
	STEP 6) LAUNCH!
	PUSH TEST
	SECURITY & MORE
	LINKS & REFERENCES
	COMPATIBILITY CHECKS (WITH CANIUSE)
	DRY TOPIC
	NODEJS WRITABLE FILE STREAM
	NODEJS READABLE FILE STREAM
	“RAW” READ & WRITE STREAMS
	DUPLEX STREAM
	VIDEO STREAM
	CLIENT-SIDE READABLE STREAM
	CLIENT-SIDE WRITABLE STREAM
	LINKS & REFERENCES
	COMPATIBILITY CHECKS (WITH CANIUSE)
	SUPER EASY FULLSCREEN MODE
	DETECTING FULLSCREEN TOGGLE
	LINKS & REFERENCES
	COMPATIBILITY CHECKS (WITH CANIUSE)
	MAKE SOME SOUND
	STEP 1) THE HTML
	STEP 2) INITIALIZING THE PLAYER
	STEP 3) PLAY MECHANISM
	STEP 4) PLAY/PAUSE BUTTON
	STEP 5) TRACK PROGESS (TIME)
	STEP 6) TIME SEEK BAR
	STEP 7) SET VOLUME
	STEP 8) PLAYBACK SPEED
	STEP 9) ENABLE/DISABLE
	EXTRA) EFFECTS WITH WEB AUDIO API
	LINKS & REFERENCES
	COMPATIBILITY CHECKS (WITH CANIUSE)
	LOOKS FAMILIAR...
	STEP 1) THE HTML
	STEP 2) INITIALIZING THE PLAYER
	STEP 3) PLAY MECHANISM
	STEP 4) PLAY/PAUSE BUTTON
	STEP 5) TRACK PROGESS (TIME)
	STEP 6) TIME SEEK BAR
	STEP 7) SET VOLUME
	STEP 8) PLAYBACK SPEED
	STEP 9) ENABLE/DISABLE
	LINKS & REFERENCES
	COMPATIBILITY CHECKS (WITH CANIUSE)
	JAVASCRIPT PAINT
	CANVAS BASICS – FILL, STROKE, CLEAR
	CANVAS BASICS – WRITE TEXT
	TRIANGLES & OTHER SHAPES – USE PATH
	ARCS & CIRCLES
	SAVE CANVAS – DOWNLOAD
	SAVE CANVAS – UPLOAD
	RESIZING IMAGES WITH CANVAS
	LINKS & REFERENCES
	COMPATIBILITY CHECKS (WITH CANIUSE)
	EASIER THAN EXPECTED
	SPEECH TO TEXT
	LINKS & REFERENCES
	COMPATIBILITY CHECKS (WITH CANIUSE)
	JAVASCRIPT CAMERA
	MANY OTHER USES
	LINKS & REFERENCES
	COMPATIBILITY CHECKS (WITH CANIUSE)
	“ALTERNATE” VIDEO STREAM
	SIMPLE SCREEN SHARING
	TAKING A SCREENSHOT
	SCREEN SHARING
	LINKS & REFERENCES
	COMPATIBILITY CHECKS (WITH CANIUSE)
	SMALL BUT ADVANCED
	GPS
	HOW ABOUT MAPS?
	GYROSCOPE
	ACCELEROMETER
	LIGHT METER
	EVEN MORE SENSORS
	DO YOUR FEATURE CHECKS!
	LINKS & REFERENCES
	COMPATIBILITY CHECKS (WITH CANIUSE)
	SUPER SHORT CHAPTER
	VIBRATION CONTROL
	LINKS & REFERENCES
	COMPATIBILITY CHECKS (WITH CANIUSE)
	NATIVE SHARE BUTTON
	JAVASCRIPT SHARE
	LINKS & REFERENCES
	COMPATIBILITY CHECKS (WITH CANIUSE)
	COMPILED VS INTERPRETED
	FREAKY JAVASCRIPT COLLAB
	INSTALLATION MAYHEM
	HELLO WORLD IN C
	COMPILE
	LAUNCH
	LINKS & REFERENCES
	COMPATIBILITY CHECKS (WITH CANIUSE)
	NEXT GENERATION JAVASCRIPT
	BAREBONES PWA
	LAUNCH!
	MANUAL INSTALL
	STARTED AS STANDALONE APP OR ACCESS FROM WEB?
	LINKS & REFERENCES
	COMPATIBILITY CHECKS (WITH CANIUSE)
	BUGS SPOTTED?!
	DISCOUNT COUPON

