

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0

International License.

ISBN 978-0-9997730-9-3

Understanding the DOM — Document
Object Model

Tania Rascia

DigitalOcean, New York City, New York, USA

2020-10

Understanding the DOM — Document
Object Model

1. About DigitalOcean
2. Introduction
3. Introduction to the DOM
4. Understanding the DOM Tree and Nodes
5. How To Access Elements in the DOM
6. How To Traverse the DOM
7. How To Make Changes to the DOM
8. How To Modify Attributes, Classes, and Styles in the DOM
9. Understanding Events in JavaScript

About DigitalOcean

DigitalOcean is a cloud services platform delivering the simplicity
developers love and businesses trust to run production applications at
scale. It provides highly available, secure and scalable compute, storage
and networking solutions that help developers build great software faster.
Founded in 2012 with offices in New York and Cambridge, MA,
DigitalOcean offers transparent and affordable pricing, an elegant user
interface, and one of the largest libraries of open source resources
available. For more information, please visit
https://www.digitalocean.com or follow @digitalocean on Twitter.

https://www.digitalocean.com/
https://twitter.com/digitalocean

Introduction

About this Book

JavaScript is the de facto programming language of the web, but the
language itself does not include any built-in method for working with
input/output (I/O), such as graphics display and sound. Instead, the web
browser provides an API for accessing the HTML document in a tree
structure known as the Document Object Model (DOM). The combination
of JavaScript and the DOM is what allows us to create interactive,
dynamic websites.

Many modern frameworks, such as React, Vue, and Svelte abstract away
much of the DOM from the developer, but frameworks also use the DOM
under the hood. The JavaScript library jQuery was also created to make
working with the DOM easier, but the modern development practice is to
work with the DOM directly. In order to be a proficient web developer,
having a deep understanding of what the DOM is and how to work with it
is essential. The goal of this book is to provide a base understanding of the
DOM, as well as explore examples of the most common and useful
methods for interacting with the DOM.

This book is based on the Understanding the DOM tutorial series found
on the DigitalOcean Community. The topics that it covers include:

The DOM and DOM tree structure
How to access, traverse, and modify nodes and elements in the DOM
How to modify attributes, classes, and styles in the DOM

https://www.digitalocean.com/community/tutorial_series/understanding-the-dom-document-object-model
https://www.digitalocean.com/community

Use events to make interactive, dynamic websites

Each chapter is self-contained and can be followed independently of the
others. However, if you are not yet familiar with the concept of the DOM
and DOM tree, it is recommended that you read the introductory chapters
first.

If you’d like to learn more about JavaScript, visit the DigitalOcean
Community’s JavaScript section. You can follow along with the How to
Code in JavaScript series for a directed learning experience.

https://www.digitalocean.com/community/tags/javascript
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript

Introduction to the DOM

Written by Tania Rascia
The Document Object Model, usually referred to as the DOM, is an

essential part of making websites interactive. It is an interface that allows
a programming language to manipulate the content, structure, and style of
a website. JavaScript is the client-side scripting language that connects to
the DOM in an internet browser.

Almost any time a website performs an action, such as rotating between
a slideshow of images, displaying an error when a user attempts to submit
an incomplete form, or toggling a navigation menu, it is the result of
JavaScript accessing and manipulating the DOM. In this article, we will
learn what the DOM is, how to work with the document object, and the
difference between HTML source code and the DOM.

Note: Although the DOM is language agnostic, or created to be
independent from a particular programming language, throughout this
resource we will focus on and refer to JavaScript’s implementation of the
HTML DOM.

Prerequisites

In order to effectively understand the DOM and how it relates to working
with the web, it is necessary to have an existing knowledge of HTML and
CSS. It is also beneficial to have familiarity with fundamental JavaScript
syntax and code structure.

What is the DOM?

https://www.digitalocean.com/community/tutorials/introduction-to-the-dom
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/CSS
https://www.digitalocean.com/community/tutorials/understanding-syntax-and-code-structure-in-javascript

At the most basic level, a website consists of an HTML document. The
browser that you use to view the website is a program that interprets
HTML and CSS and renders the style, content, and structure into the page
that you see.

In addition to parsing the style and structure of the HTML and CSS, the
browser creates a representation of the document known as the Document
Object Model. This model allows JavaScript to access the text content and
elements of the website document as objects.

JavaScript is an interactive language, and it is easier to understand new
concepts by doing. Let’s create a very basic website. Create an
index.html file and save it in a new project directory.

index.html

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Learning the DOM</title>

 </head>

 <body>

 <h1>Document Object Model</h1>

 </body>

</html>

This code is the familiar HTML source of a new website skeleton. It
contains the absolute most essential aspects of a website document — a
doctype, and an html tag with the head and body nested inside.

For our purposes, we’ll be using the Chrome browser, but you can
receive similar output from other modern browser. Within Chrome, open
up index.html. You’ll see a plain website with our heading saying
“Document Object Model”. Right click anywhere on the page and select
“Inspect”. This will open up Developer Tools.

Under the Elements tab, you’ll see the DOM.

DOM Example

In this case, when expanded, it looks exactly the same as the HTML
source code we just wrote — a doctype, and the few other HTML tags that

we added. Hovering over each element will highlight the respective
element in the rendered website. Little arrows to the left of the HTML
elements allow you to toggle the view of nested elements.

The Document Object

The document object is a built-in object that has many properties and
methods that we can use to access and modify websites. In order to
understand how to work with the DOM, you must understand how objects
work in JavaScript. Review Understanding Objects in JavaScript if you
don’t feel comfortable with the concept of objects.

In Developer Tools on index.html, move to the Console tab. Type
document into the console and press ENTER. You will see that what is
output is the same as what you see in the Elements tab.
document;

https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript

Output

Typing document and otherwise working directly in the console is not
something that you’ll generally ever do outside of debugging, but it helps
solidify exactly what the document object is and how to modify it, as we
will discover below.

What is the Difference Between the DOM and HTML
Source Code?

Currently, with this example, it seems that HTML source code and the
DOM are the exact same thing. There are two instances in which the
browser-generated DOM will be different than HTML source code:

#document

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Learning the DOM</title>

 </head>

 <body>

 <h1>Document Object Model</h1>

 </body>

</html>

The DOM is modified by client-side JavaScript
The browser automatically fixes errors in the source code

Let’s demonstrate how the DOM can be modified by client-side
JavaScript. Type the following into the console:
document.body;

The console will respond with this output:

Output

document is an object, body is a property of that object that we have
accessed with dot notation. Submitting document.body to the console
outputs the body element and everything inside of it.

In the console, we can change some of the live properties of the body
object on this website. We’ll edit the style attribute, changing the
background color to fuchsia. Type this into the console:
document.body.style.backgroundColor = 'fuchsia';

After typing and submitting the above code, you’ll see the live update to
the site, as the background color changes.

<body>

 <h1>Document Object Model</h1>

</body>

DOM Live Modification

Switching to the Elements tab, or typing document.body into the
console again, you will see that the DOM has changed.

Output

Note: In order to change the background-color CSS property, we
had to type backgroundColor in the JavaScript. Any hyphenated CSS
property will be written in camelCase in JavaScript.

<body style="background-color: fuchsia;">

 <h1>Document Object Model</h1>

</body>

The JavaScript code we typed, assigning fuchsia to the background
color of the body, is now a part of the DOM.

However, right click on the page and select “View Page Source”. You
will notice that the source of the website does not contain the new style
attribute we added via JavaScript. The source of a website will not change
and will never be affected by client-side JavaScript. If you refresh the
page, the new code we added in the console will disappear.

The other instance in which the DOM might have a different output than
HTML source code is when there are errors in the source code. One
common example of this is the table tag — a tbody tag is required
inside a table, but developers often fail to include it in their HTML. The
browser will automatically correct the error and add the tbody,
modifying the DOM. The DOM will also fix tags that have not been
closed.

Conclusion

In this tutorial, we defined the DOM, accessed the document object,
used JavaScript and the console to update a property of the document
object, and went over the difference between HTML source code and the
DOM.

For more in-depth information on the DOM, review the Document
Object Model (DOM) page on the Mozilla Developer Network.

In the next tutorial, we will review important HTML terminology, learn
about the DOM tree, discover what nodes are, learn about the most
common types of nodes, and begin creating interactive scripts with
JavaScript.

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

Understanding the DOM Tree and Nodes

Written by Tania Rascia
The DOM is often referred to as the DOM tree, and consists of a tree of

objects called nodes. In the Introduction to the DOM, we went over what
the Document Object Model (DOM) is, how to access the document
object and modify its properties with the console, and the difference
between HTML source code and the DOM.

In this tutorial, we will review HTML terminology, which is essential to
working with JavaScript and the DOM, and we will learn about the DOM
tree, what nodes are, and how to identify the most common node types.
Finally, we will move beyond the console and create a JavaScript program
to interactively modify the DOM.

HTML Terminology

Understanding HTML and JavaScript terminology is essential to
understanding how to work with the DOM. Let’s briefly review some
HTML terminology.

To begin, let’s take a look at this HTML element.

Home

Here we have an anchor element, which is a link to index.html.

a is the tag
href is the attribute

https://www.digitalocean.com/community/tutorials/understanding-the-dom-tree-and-nodes
https://www.digitalocean.com/community/tutorials/introduction-to-the-dom
https://www.digitalocean.com/community/tutorials/how-to-use-the-javascript-developer-console

index.html is the attribute value
Home is the text.

Everything between the opening and closing tag combined make the
entire HTML element.

We’ll be working with the index.html from the previous tutorial:

index.html

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Learning the DOM</title>

 </head>

 <body>

 <h1>Document Object Model</h1>

 </body>

</html>

The simplest way to access an element with JavaScript is by the id
attribute. Let’s add the link we have above into our index.html file
with an id of nav.

https://www.digitalocean.com/community/tutorials/introduction-to-the-dom

index.html

...

<body>

 <h1>Document Object Model</h1>

 <^>Home<^>

</body>

...

Load or reload the page in your browser window and look at the DOM
to ensure that the code has been updated.

We’re going to use the getElementById() method to access the
entire element. In the console, type the following:
document.getElementById('nav');

Output

Home

We have retrieved the entire element using getElementById().
Now, instead of typing that object and method every time we want to
access the nav link, we can place the element into a variable to work with
it more easily.
let navLink = document.getElementById('nav');

The navLink variable contains our anchor element. From here, we can
easily modify attributes and values. For example, we can change where the

link goes by changing the href attribute:
navLink.href = 'https://www.wikipedia.org';

We can also change the text content by reassigning the textContent
property:
navLink.textContent = 'Navigate to Wikipedia';

Now when we view our element, either in the console or by checking the
Elements tag, we can see how the element has been updated.
navLink;

Output

<a id="nav"

href="https://www.wikipedia.org/">Navigate to

Wikipedia

This is also reflected on the front-end of the website.

Updated Link via DOM

Refreshing the page will revert everything back to their original values.
At this point, you should understand how to use a document method to

access an element, how to assign an element to a variable, and how to
modify properties and values in the element.

The DOM Tree and Nodes

All items in the DOM are defined as nodes. There are many types of
nodes, but there are three main ones that we work with most often:

Element nodes
Text nodes
Comment nodes

When an HTML element is an item in the DOM, it is referred to as an
element node. Any lone text outside of an element is a text node, and an
HTML comment is a comment node. In addition to these three node types,
the document itself is a document node, which is the root of all other
nodes.

The DOM consists of a tree structure of nested nodes, which is often
referred to as the DOM tree. You may be familiar with an ancestral family
tree, which consists of parents, children, and siblings. The nodes in the
DOM are also referred to as parents, children, and siblings, depending on
their relation to other nodes.

To demonstrate, create a nodes.html file. We’ll add text, comment,
and element nodes.

nodes.html

<!DOCTYPE html>

<html>

 <head>

 <title>Learning About Nodes</title>

 </head>

 <body>

 <h1>An element node</h1>

 <!-- a comment node -->

 A text node.

 </body>

</html>

The html element node is the parent node. head and body are
siblings, children of html. body contains three child nodes, which are all
siblings — the type of node does not change the level at which it is nested.

Note: When working with an HTML-generated DOM, the indentation of
the HTML source code will create many empty text nodes, which won’t be
visible from the DevTools Elements tab. Read about Whitespace in the
DOM

Identifying Node Type

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Whitespace_in_the_DOM

Every node in a document has a node type, which is accessed through the
nodeType property. The Mozilla Developer Network has an up-to-date
list of all node type constants. Below is a chart of the most common node
types that we are working with in this tutorial.

N��� T��� V���� E������

ELEMENT_NODE 1 The <body> element

TEXT_NODE 3 Text that is not part of an element

COMMENT_NODE 8 <!-- an HTML comment -->

In the Elements tab of Developer Tools, you may notice that whenever
you click on and highlight any line in the DOM the value of == $0 will
appear next to it. This is a very handy way to access the currently active
element in Developer Tools by typing $0.

In the console of nodes.html, click on the first element in the body,
which is an h1 element.

https://developer.mozilla.org/en-US/docs/Web/API/Node/nodeType

DOM Node Type

In the console, get the node type of the currently selected node with the
nodeType property.
$0.nodeType;

Output

1

With the h1 element selected, you would see 1 as the output, which we
can see correlates to ELEMENT_NODE. Do the same for the text and the
comment, and they will output 3 and 8 respectively.

When you know how to access an element, you can see the node type
without highlighting the element in the DOM.
document.body.nodeType;

Output

1

In addition to nodeType, you can also use the nodeValue property
to get the value of a text or comment node, and nodeName to get the tag
name of an element.

Modifying the DOM with Events

Up until now, we’ve only seen how to modify the DOM in the console,
which we have seen is temporary; every time the page is refreshed, the
changes are lost. In the Introduction to the DOM tutorial, we used the
console to update the background color of the body. We can combine what
we’ve learned throughout this tutorial to create an interactive button that
does this when clicked.

Let’s go back to our index.html file and add a button element with
an id. We’ll also add a link to a new file in a new js directory
js/scripts.js.

https://www.digitalocean.com/community/tutorials/introduction-to-the-dom

index.html

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Learning the DOM</title>

 </head>

 <body>

 <h1>Document Object Model</h1>

 <button id="changeBackground">Change

Background Color</button>

 <script src="scripts.js"></script>

 </body>

</html>

An event in JavaScript is an action the user has taken. When the user
hovers their mouse over an element, or clicks on an element, or presses a
specific key on the keyboard, these are all types of events. In this
particular case, we want our button to listen and be ready to perform an
action when the user clicks on it. We can do this by adding an event
listener to our button.

Create scripts.js and save it in the new js directory. Within the
file, we’ll first find the button element and assign it to a variable.

js/scripts.js

let button =

document.getElementById('changeBackground');

Using the addEventListener() method, we will tell the button to
listen for a click, and perform a function once clicked.

js/scripts.js

...

button.addEventListener('click', () => {

 // action will go here

});

Finally, inside of the function, we will write the same code from the
previous tutorial to change the background color to fuchsia.

js/scripts.js

...

document.body.style.backgroundColor = 'fuchsia';

https://www.digitalocean.com/community/tutorials/introduction-to-the-dom

Here is our entire script:

js/scripts.js

let button =

document.getElementById('changeBackground');

button.addEventListener('click', () => {

 document.body.style.backgroundColor = 'fuchsia';

});

Once you save this file, refresh index.html in the browser. Click the
button, and the event will fire.

Modify Background with Events

The background color of the page has changed to fuchsia due to the
JavaScript event.

Conclusion

In this tutorial, we reviewed terminology that will allow us to understand
and modify the DOM. We learned how the DOM is structured as a tree of
nodes that will usually be HTML elements, text, or comments, and we
created a script that would allow a user to modify a website without
having to manually type code into the developer console.

How To Access Elements in the DOM

Written by Tania Rascia
In Understanding the DOM Tree and Nodes, we went over how the

DOM is structured as a tree of objects called nodes, and that nodes can be
text, comments, or elements. Usually when we access content in the DOM,
it will be through an HTML element node.

In order to be proficient at accessing elements in the DOM, it is
necessary to have a working knowledge of CSS selectors, syntax and
terminology as well as an understanding of HTML elements. In this
tutorial, we will go over several ways to access elements in the DOM: by
ID, class, tag, and query selectors.

Overview

Here is a table overview of the five methods we will cover in this tutorial.

G��� S������� S����� M�����

ID #demo getElementById()

Class .demo getElementsByClassName()

Tag demo getElementsByTagName()

Selector (single) querySelector()

Selector (all) querySelectorAll()

https://www.digitalocean.com/community/tutorials/how-to-access-elements-in-the-dom
https://www.digitalocean.com/community/tutorials/understanding-the-dom-tree-and-nodes

It is important when studying the DOM to type the examples on your
own computer to ensure that you are understanding and retaining the
information you learn.

You can save this HTML file, access.html, to your own project to
work through the examples along with this article. If you are unsure how
to work with JavaScript and HTML locally, review our How To Add
JavaScript to HTML tutorial.

https://www.digitalocean.com/community/tutorials/how-to-add-javascript-to-html

access.html

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-

width, initial-scale=1.0">

 <title>Accessing Elements in the DOM</title>

 <style>

 html { font-family: sans-serif; color: #333; }

 body { max-width: 500px; margin: 0 auto;

padding: 0 15px; }

 div, article { padding: 10px; margin: 5px;

border: 1px solid #dedede; }

 </style>

</head>

<body>

 <h1>Accessing Elements in the DOM</h1>

 <h2>ID (#demo)</h2>

 <div id="demo">Access me by ID</div>

 <h2>Class (.demo)</h2>

 <div class="demo">Access me by class (1)</div>

 <div class="demo">Access me by class (2)</div>

 <h2>Tag (article)</h2>

 <article>Access me by tag (1)</article>

 <article>Access me by tag (2)</article>

 <h2>Query Selector</h2>

 <div id="demo-query">Access me by query</div>

 <h2>Query Selector All</h2>

 <div class="demo-query-all">Access me by query

all (1)</div>

 <div class="demo-query-all">Access me by query

all (2)</div>

</body>

</html>

In this HTML file, we have many elements that we will access with
different document methods. When we render the file in a browser, it
will look similar to this:

Browser rendering of access.html page

We’ll be using the different methods that we outlined in the Overview
above to access the available elements in the file.

Accessing Elements by ID

The easiest way to access a single element in the DOM is by its unique ID.
We can grab an element by ID with the getElementById() method of
the document object.

document.getElementById();

In order to be accessed by ID, the HTML element must have an id
attribute. We have a div element with an ID of demo.

https://www.digitalocean.com/community/tutorials/how-to-access-elements-in-the-dom#overview
https://developer.mozilla.org/en-US/docs/Web/API/Element/id
https://developer.mozilla.org/en-US/docs/Web/API/Document/getElementById

<div id="demo">Access me by ID</div>

In the Console, let’s get the element and assign it to the demoId
variable.
const demoId = document.getElementById('demo');

Logging demoId to the console will return our entire HTML element.
console.log(demoId);

Output

<div id="demo">Access me by ID</div>

We can be sure we’re accessing the correct element by changing the
border property to purple.
demoId.style.border = '1px solid purple';

Once we do so, our live page will look like this:

Browser rendering of ID element styling

Accessing an element by ID is an effective way to get an element
quickly in the DOM. However, it has drawbacks; an ID must always be
unique to the page, and therefore you will only ever be able to access a
single element at a time with the getElementById() method. If you
wanted to add a function to many elements throughout the page, your code
would quickly become repititious.

Accessing Elements by Class

The class attribute is used to access one or more specific elements in the
DOM. We can get all the elements with a given class name with the
getElementsByClassName() method.

document.getElementsByClassName();

https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/class
https://developer.mozilla.org/en-US/docs/Web/API/Document/getElementsByClassName

Now we want to access more than one element, and in our example we
have two elements with a demo class.

<div class="demo">Access me by class (1)</div>

<div class="demo">Access me by class (2)</div>

Let’s access our elements in the Console and put them in a variable
called demoClass.
const demoClass =

document.getElementsByClassName('demo');

At this point, you might think you can modify the elements the same
way you did with the ID example. However, if we try to run the following
code and change the border property of the class demo elements to
orange, we will get an error.
demoClass.style.border = '1px solid orange';

Output

Uncaught TypeError: Cannot set property 'border'

of undefined

The reason this doesn’t work is because instead of just getting one
element, we have an array-like object of elements.
console.log(demoClass);

Output

(2) [div.demo, div.demo]

JavaScript arrays must be accessed with an index number. We can
therefore change the first element of this array by using an index of 0.
demoClass[0].style.border = '1px solid orange';

Generally when accessing elements by class, we want to apply a change
to all the elements in the document with that particular class, not just one.
We can do this by creating a for loop, and looping through every item in
the array.
for (i = 0; i < demoClass.length; i++) {

 demoClass[i].style.border = '1px solid orange';

}

When we run this code, our live page will be rendered like this:

Browser rendering of class element styling

https://www.digitalocean.com/community/tutorials/understanding-arrays-in-javascript

We have now selected every element on the page that has a demo class,
and changed the border property to orange.

Accessing Elements by Tag

A less specific way to access multiple elements on the page would be by
its HTML tag name. We access an element by tag with the
getElementsByTagName() method.

document.getElementsByTagName();

For our tag example, we’re using article elements.
<article>Access me by tag (1)</article>

<article>Access me by tag (2)</article>

Just like accessing an element by its class,
getElementsByTagName() will return an array-like object of
elements, and we can modify every tag in the document with a for loop.
const demoTag =

document.getElementsByTagName('article');

for (i = 0; i < demoTag.length; i++) {

 demoTag[i].style.border = '1px solid blue';

}

Upon running the code, the live page will be modified like so:

https://developer.mozilla.org/en-US/docs/Web/API/Element/getElementsByTagName

Browser rendering of tag element styling

The loop changed the border property of all article elements to
blue.

Query Selectors

If you have any experience with the jQuery API, you may be familiar with
jQuery’s method of accessing the DOM with CSS selectors.

$('#demo'); // returns the demo ID element in

jQuery

We can do the same in plain JavaScript with the querySelector()
and querySelectorAll() methods.

https://jquery.com/

document.querySelector();

document.querySelectorAll();

To access a single element, we will use the querySelector()
method. In our HTML file, we have a demo-query element

<div id="demo-query">Access me by query</div>

The selector for an id attribute is the hash symbol (#). We can assign
the element with the demo-query id to the demoQuery variable.
const demoQuery = document.querySelector('#demo-

query');

In the case of a selector with multiple elements, such as a class or a tag,
querySelector() will return the first element that matches the query.
We can use the querySelectorAll() method to collect all the
elements that match a specific query.

In our example file, we have two elements with the demo-query-all
class applied to them.

<div class="demo-query-all">Access me by query all

(1)</div>

<div class="demo-query-all">Access me by query all

(2)</div>

The selector for a class attribute is a period or full stop (.), so we can
access the class with .demo-query-all.

https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelectorAll

const demoQueryAll =

document.querySelectorAll('.demo-query-all');

Using the forEach() method, we can apply the color green to the
border property of all matching elements.
demoQueryAll.forEach(query => {

 query.style.border = '1px solid green';

});

Browser rendering of querySelector() styling

With querySelector(), comma-separated values function as an OR
operator. For example, querySelector('div, article') will
match div or article, whichever appears first in the document. With
querySelectorAll(), comma-separated values function as an AND

operator, and querySelectorAll('div, article') will match
all div and article values in the document.

Using the query selector methods is extremely powerful, as you can
access any element or group of elements in the DOM the same way you
would in a CSS file. For a complete list of selectors, review CSS Selectors
on the Mozilla Developer Network.

Complete JavaScript Code

Below is the complete script of the work we did above. You can use it to
access all the elements on our example page. Save the file as access.js
and load it in to the HTML file right before the closing body tag.

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors

access.js

// Assign all elements

const demoId = document.getElementById('demo');

const demoClass =

document.getElementsByClassName('demo');

const demoTag =

document.getElementsByTagName('article');

const demoQuery = document.querySelector('#demo-

query');

const demoQueryAll =

document.querySelectorAll('.demo-query-all');

// Change border of ID demo to purple

demoId.style.border = '1px solid purple';

// Change border of class demo to orange

for (i = 0; i < demoClass.length; i++) {

 demoClass[i].style.border = '1px solid orange';

}

// Change border of tag demo to blue

for (i = 0; i < demoTag.length; i++) {

 demoTag[i].style.border = '1px solid blue';

}

// Change border of ID demo-query to red

demoQuery.style.border = '1px solid red';

// Change border of class query-all to green

demoQueryAll.forEach(query => {

 query.style.border = '1px solid green';

});

Your final HTML file will look like this:

access.html

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-

width, initial-scale=1.0">

 <title>Accessing Elements in the DOM</title>

 <style>

 html { font-family: sans-serif; color: #333; }

 body { max-width: 500px; margin: 0 auto;

padding: 0 15px; }

 div, article { padding: 10px; margin: 5px;

border: 1px solid #dedede; }

 </style>

</head>

<body>

 <h1>Accessing Elements in the DOM</h1>

 <h2>ID (#demo)</h2>

 <div id="demo">Access me by ID</div>

 <h2>Class (.demo)</h2>

 <div class="demo">Access me by class (1)</div>

 <div class="demo">Access me by class (2)</div>

 <h2>Tag (article)</h2>

 <article>Access me by tag (1)</article>

 <article>Access me by tag (2)</article>

 <h2>Query Selector</h2>

 <div id="demo-query">Access me by query</div>

 <h2>Query Selector All</h2>

 <div class="demo-query-all">Access me by query

all (1)</div>

 <div class="demo-query-all">Access me by query

all (2)</div>

 <script src="access.js"></script>

</body>

</html>

You can continue to work on these template files to make additional
changes by accessing HTML elements.

Conclusion

In this tutorial, we went over 5 ways to access HTML elements in the
DOM — by ID, by class, by HTML tag name, and by selector. The method
you will use to get an element or group of elements will depend on
browser support and how many elements you will be manipulating. You
should now feel confident to access any HTML element in a document
with JavaScript through the DOM.

How To Traverse the DOM

Written by Tania Rascia
The previous tutorial in this series, How to Access Elements in the

DOM, covers how to use the built-in methods of the document object to
access HTML elements by ID, class, tag name, and query selectors. We
know that the DOM is structured as a tree of nodes with the document
node at the root and every other node (including elements, comments, and
text nodes) as the various branches.

Often, you will want to move through the DOM without specifying each
and every element beforehand. Learning how to navigate up and down the
DOM tree and move from branch to branch is essential to understanding
how to work with JavaScript and HTML.

In this tutorial, we will go over how to traverse the DOM (also known as
walking or navigating the DOM) with parent, child, and sibling properties.

Setup

To begin, we will create a new file called nodes.html comprised of the
following code.

https://www.digitalocean.com/community/tutorials/how-to-traverse-the-dom
https://www.digitalocean.com/community/tutorials/how-to-access-elements-in-the-dom
https://www.digitalocean.com/community/tutorials/understanding-the-dom-tree-and-nodes

nodes.html

<!DOCTYPE html>

<html>

<head>

 <title>Learning About Nodes</title>

 <style>

 * { border: 2px solid #dedede; padding: 15px;

margin: 15px; }

 html { margin: 0; padding: 0; }

 body { max-width: 600px; font-family: sans-

serif; color: #333; }

 </style>

</head>

<body>

 <h1>Shark World</h1>

 <p>The world's leading source on

shark related information.</p>

 <h2>Types of Sharks</h2>

 Hammerhead

 Tiger

 Great White

</body>

<script>

 const h1 = document.getElementsByTagName('h1')

[0];

 const p = document.getElementsByTagName('p')[0];

 const ul = document.getElementsByTagName('ul')

[0];

</script>

</html>

When we load the file in a web browser, we’ll see rendering that looks
like the following screenshot.

nodes.html page

In this example website, we have an HTML document with a few
elements. Some basic CSS has been added in a style tag to make each
element obviously visible, and a few variables have been created in the
script for ease of access of a few elements. Since there is only one of
each h1, p, and ul, we can access the first index on each respective
getElementsByTagName property.

Root Nodes

The document object is the root of every node in the DOM. This object
is actually a property of the window object, which is the global, top-level

object representing a tab in the browser. The window object has access to
such information as the toolbar, height and width of the window, prompts,
and alerts. The document consists of what is inside of the inner
window.

Below is a chart consisting of the root elements that every document
will contain. Even if a blank HTML file is loaded into a browser, these
three nodes will be added and parsed into the DOM.

P������� N��� N��� T���

document #document DOCUMENT_NODE

document.documentElement html ELEMENT_NODE

document.head head ELEMENT_NODE

document.body body ELEMENT_NODE

Since the html, head, and body elements are so common, they have
their own properties on the document.

Open the Console in DevTools and test each of these four properties by
submitting them and viewing the output. You can also test h1, p, and ul
which will return the elements due to the variables we added in the
script tag.

Parent Nodes

The nodes in the DOM are referred to as parents, children, and siblings,
depending on their relation to other nodes. The parent of any node is the
node that is one level above it, or closer to the document in the DOM

https://developer.mozilla.org/en-US/docs/Web/API/Window

hierarchy. There are two properties to get the parent — parentNode and
parentElement.

P������� G���

parentNode Parent Node

parentElement Parent Element Node

In our nodes.html example:

html is the parent of head, body, and script.
body is the parent of h1, h2, p and ul, but not li, since li is two
levels down from body.

We can test what the parent of our p element is with the parentNode
property. This p variable comes from our custom
document.getElementsByTagName('p')[0] declaration.
p.parentNode;

Output

► <body>...</body>

The parent of p is body, but how can we get the grandparent, which is
two levels above? We can do so by chaining properties together.
p.parentNode.parentNode;

Output

► <html>...</html>

https://developer.mozilla.org/en-US/docs/Web/API/Node/parentNode
https://developer.mozilla.org/en-US/docs/Web/API/Node/parentElement

Using parentNode twice, we retrieved the grandparent of p.
There are properties to retrieve the parent of a node, but only one small

difference between them, as demonstrated in this snippet below.
// Assign html object to html variable

const html = document.documentElement;

console.log(html.parentNode); // > #document

console.log(html.parentElement); // > null

The parent of almost any node is an element node, as text and comments
cannot be parents to other nodes. However, the parent of html is a
document node, so parentElement returns null. Generally,
parentNode is more commonly used when traversing the DOM.

Children Nodes

The children of a node are the nodes that are one level below it. Any nodes
beyond one level of nesting are usually referred to as descendants.

P������� G���

childNodes Child Nodes

firstChild First Child Node

lastChild Last Child Node

children Element Child Nodes

firstElementChild First Child Element Node

lastElementChild Last Child Element Node

https://developer.mozilla.org/en-US/docs/Web/API/Node/childNodes
https://developer.mozilla.org/en-US/docs/Web/API/Node/firstChild
https://developer.mozilla.org/en-US/docs/Web/API/Node/lastChild
https://developer.mozilla.org/en-US/docs/Web/API/ParentNode/children
https://developer.mozilla.org/en-US/docs/Web/API/ParentNode/firstElementChild
https://developer.mozilla.org/en-US/docs/Web/API/ParentNode/lastElementChild

The childNodes property will return a live list of every child of a
node. You might expect the ul element to get three li elements. Let’s test
what it retrieves.
ul.childNodes;

Output

► (7) [text, li, text, li, text, li, text]

In addition to the three li elements, it also gets four text nodes. This is
because we wrote our own HTML (it was not generated by JavaScript) and
the indentation between elements is counted in the DOM as text nodes.
This is not intuitive, as the Elements tab of DevTools strips out white
space nodes.

If we attempted to change the background color of the first child node
using the firstChild property, it would fail because the first node is
text.
ul.firstChild.style.background = 'yellow';

[secondary_label Output]

Uncaught TypeError: Cannot set property

'background' of undefined

The children, firstElementChild and lastElementChild
properties exist in these types of situations to retrieve only the element
nodes. ul.children will only return the three li elements.

Using firstElementChild, we can change the background color of
the first li in the ul.
ul.firstElementChild.style.background = 'yellow';

When you run the code above, your webpage will be updated to modify
the background color.

firstElementChild.style.background modification

When doing basic DOM manipulation such as in this example, the
element-specific properties are extremely helpful. In JavaScript-generated
web apps, the properties that select all nodes are more likely to be used, as
white-space newlines and indentation will not exist in this case.

A for...of loop can be used to iterate through all children
elements.

https://www.digitalocean.com/community/tutorials/how-to-construct-for-loops-in-javascript#forof-loop

for (let element of ul.children) {

 element.style.background = 'yellow';

}

Now, each child element will have a yellow background.

children elements modification

Since our p element has both text and elements inside of it, the
childNodes property is helpful for accessing that information.
for (let element of p.childNodes) {

 console.log(element);

}

Output

"The world's leading source on "

 shark

" related information."

childNodes and children do not return arrays with all the Array
properties and methods, but they appear and behave similarly to
JavaScript arrays. You can access nodes by index number, or find their
length property.
document.body.children[3].lastElementChild.style.b

ackground = 'fuchsia';

The above code will find the last element child (li) of the fourth child
element (ul) of body and apply a style.

https://www.digitalocean.com/community/tutorial_series/working-with-arrays-in-javascript

last child element modification

Using parent and child properties, you can retrieve any node in the
DOM.

Sibling Nodes

The siblings of a node are any node on the same tree level in the DOM.
Siblings do not have to be the same type of node - text, element, and
comment nodes can all be siblings.

P������� G���

previousSibling Previous Sibling Node

nextSibling Next Sibling Node

previousElementSibling Previous Sibling Element Node

nextElementSibling Next Sibling Element Node

Sibling properties work the same way as the children nodes, in that
there is a set of properties to traverse all nodes, and a set of properties for
only element nodes. previousSibling and nextSibling will get
the next node that immediately precedes or follows the specified node, and
previousElementSibling and nextElementSibling will only
get element nodes.

In our nodes.html example, let’s select the middle element of ul.
const tiger = ul.children[1];

Since we created our DOM from scratch and not as a JavaScript web
app, we will need to use the element sibling properties to access the
previous and next element nodes, as there is white space in the DOM.
tiger.nextElementSibling.style.background =

'coral';

tiger.previousElementSibling.style.background =

'aquamarine';

Running this code should have applied coral to the background of
Hammerhead and aquamarine to the background of Great White.

https://developer.mozilla.org/en-US/docs/Web/API/Node/previousSibling
https://developer.mozilla.org/en-US/docs/Web/API/Node/nextSibling
https://developer.mozilla.org/en-US/docs/Web/API/NonDocumentTypeChildNode/previousElementSibling
https://developer.mozilla.org/en-US/docs/Web/API/NonDocumentTypeChildNode/nextElementSibling

sibling element modification

Sibling properties can be chained together, just like parent and node
properties.

Conclusion

In this tutorial, we covered how to access the root nodes of every HTML
document and how to walk the DOM tree through parent, child, and sibling
properties.

With what you learned in How to Access Elements in the DOM and this
tutorial, you should be able to confidently access any node in the DOM of
any website.

https://www.digitalocean.com/community/tutorials/how-to-access-elements-in-the-dom

How To Make Changes to the DOM

Written by Tania Rascia
In the previous two installments of the Understanding the DOM series,

we learned How To Access Elements in the DOM and How To Traverse the
DOM. Using this knowledge, a developer can use classes, tags, ids, and
selectors to find any node in the DOM, and use parent, child, and sibling
properties to find relative nodes.

The next step to becoming more fully proficient with the DOM is to
learn how to add, change, replace, and remove nodes. A to-do list
application is one practical example of a JavaScript program in which you
would need to be able to create, modify, and remove elements in the DOM.

In this tutorial, we will go over how to create new nodes and insert them
into the DOM, replace existing nodes, and remove nodes.

Creating New Nodes

In a static website, elements are added to the page by directly writing
HTML in an .html file. In a dynamic web app, elements and text are
often added with JavaScript. The createElement() and
createTextNode() methods are used to create new nodes in the DOM.

https://www.digitalocean.com/community/tutorials/how-to-make-changes-to-the-dom
https://www.digitalocean.com/community/tutorial_series/understanding-the-dom-document-object-model
https://www.digitalocean.com/community/tutorials/how-to-access-elements-in-the-dom
https://www.digitalocean.com/community/tutorials/how-to-traverse-the-dom

P�������/M����� D����������

createElement() Create a new element node

createTextNode() Create a new text node

node.textContent Get or set the text content of an element node

node.innerHTML Get or set the HTML content of an element

To begin, let’s create an index.html file and save it in a new project
directory.

index.html

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Learning the DOM</title>

 </head>

 <body>

 <h1>Document Object Model</h1>

 </body>

</html>

https://developer.mozilla.org/en-US/docs/Web/API/Document/createElement
https://developer.mozilla.org/en-US/docs/Web/API/Document/createTextNode
https://developer.mozilla.org/en-US/docs/Web/API/Node/textContent
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML

Right click anywhere on the page and select “Inspect” to open up
Developer Tools, then navigate to the Console.

We will use createElement() on the document object to create a
new p element.
const paragraph = document.createElement('p');

We’ve created a new p element, which we can test out in the Console.
console.log(paragraph)

Output

<p></p>

The paragraph variable outputs an empty p element, which is not
very useful without any text. In order to add text to the element, we’ll set
the textContent property.
paragraph.textContent = "I'm a brand new

paragraph.";

console.log(paragraph)

Output

<p>I'm a brand new paragraph.</p>

A combination of createElement() and textContent creates a
complete element node.

An alternate method of setting the content of the element is with the
innerHTML property, which allows you to add HTML as well as text to
an element.

https://www.digitalocean.com/community/tutorials/how-to-use-the-javascript-developer-console

paragraph.innerHTML = "I'm a paragraph with

bold text.";

Note: While this will work and is a common method of adding content
to an element, there is a possible cross-site scripting (XSS) risk associated
with using the innerHTML method, as inline JavaScript can be added to
an element. Therefore, it is recommended to use textContent instead,
which will strip out HTML tags.

It is also possible to create a text node with the createTextNode()
method.
const text = document.createTextNode("I'm a new

text node.");

console.log(text)

Output

"I'm a new text node."

With these methods, we’ve created new elements and text nodes, but
they are not visible on the front end of a website until they’ve been
inserted into the document.

Inserting Nodes into the DOM

In order to see the new text nodes and elements we create on the front end,
we will need to insert them into the document. The methods
appendChild() and insertBefore() are used to add items to the
beginning, middle, or end of a parent element, and replaceChild() is
used to replace an old node with a new node.

https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML#Security_considerations

P�������/M����� D����������

node.appendChild() Add a node as the last child of a parent element

node.insertBefore() Insert a node into the parent element before a specified

sibling node

node.replaceChild() Replace an existing node with a new node

To practice these methods, let’s create a to-do list in HTML:

todo.html

 Buy groceries

 Feed the cat

 Do laundry

When you load your page in the browser, it will look like this:

https://developer.mozilla.org/en-US/docs/Web/API/Node/appendChild
https://developer.mozilla.org/en-US/docs/Web/API/Node/insertBefore
https://developer.mozilla.org/en-US/docs/Web/API/Node/replaceChild

DOM Screenshot 1

In order to add a new item to the end of the to-do list, we have to create
the element and add text to it first, as we did in the “Creating New Nodes”
section above.
// To-do list ul element

const todoList = document.querySelector('ul');

// Create new to-do

const newTodo = document.createElement('li');

newTodo.textContent = 'Do homework';

Now that we have a complete element for our new to-do, we can add it
to the end of the list with appendChild().
// Add new todo to the end of the list

todoList.appendChild(newTodo);

You can see the new li element has been appended to the end of the
ul.

todo.html

 Buy groceries

 Feed the cat

 Do laundry

 Do homework

DOM Screenshot 2

Maybe we have a higher priority task to do, and we want to add it to the
beginning of the list. We’ll have to create another element, as

createElement() only creates one element and cannot be reused.
// Create new to-do

const anotherTodo = document.createElement('li');

anotherTodo.textContent = 'Pay bills';

We can add it to the beginning of the list using insertBefore().
This method takes two arguments — the first is the new child node to be
added, and the second is the sibling node that will immediately follow the
new node. In other words, you’re inserting the new node before the next
sibling node. This will look similar to the following pseudocode:

parentNode.insertBefore(newNode, nextSibling);

For our to-do list example, we’ll add the new anotherTodo element
before the first element child of the list, which is currently the Buy
groceries list item.
// Add new to-do to the beginning of the list

todoList.insertBefore(anotherTodo,

todoList.firstElementChild);

todo.html

 Pay bills

 Buy groceries

 Feed the cat

 Do laundry

 Do homework

DOM Screenshot 3

The new node has successfully been added at the beginning of the list.
Now we know how to add a node to a parent element. The next thing we

may want to do is replace an existing node with a new node.
We’ll modify an existing to-do to demonstrate how to replace a node.

The first step of creating a new element remains the same.
const modifiedTodo = document.createElement('li');

modifiedTodo.textContent = 'Feed the dog';

Like insertBefore(), replaceChild() takes two arguments —
the new node, and the node to be replaced, as shown in the pseudocode
below.

parentNode.replaceChild(newNode, oldNode);

We will replace the third element child of the list with the modified to-
do.
// Replace existing to-do with modified to-do

todoList.replaceChild(modifiedTodo,

todoList.children[2]);

todo.html

 Pay bills

 Buy groceries

 Feed the dog

 Do laundry

 Do homework

DOM Screenshot 4

With a combination of appendChild(), insertBefore(), and
replaceChild(), you can insert nodes and elements anywhere in the
DOM.

Removing Nodes from the DOM

Now we know how to create elements, add them to the DOM, and modify
existing elements. The final step is to learn to remove existing nodes from
the DOM. Child nodes can be removed from a parent with
removeChild(), and a node itself can be removed with remove().

M����� D����������

node.removeChild() Remove child node

node.remove() Remove node

Using the to-do example above, we’ll want to delete items after they’ve
been completed. If you completed your homework, you can remove the Do
homework item, which happens to be the last child of the list, with
removeChild().
todoList.removeChild(todoList.lastElementChild);

todo.html

 Pay bills

 Buy groceries

 Feed the dog

 Do laundry

https://developer.mozilla.org/en-US/docs/Web/API/Node/removeChild
https://developer.mozilla.org/en-US/docs/Web/API/ChildNode/remove

DOM Screenshot 5

Another method could be to remove the node itself, using the
remove() method directly on the node.
// Remove second element child from todoList

todoList.children[1].remove();

todo.html

 Pay bills

 Feed the dog

 Do laundry

DOM Screenshot 6

Between removeChild() and remove(), you can remove any node
from the DOM. Another method you may see for removing child elements
from the DOM is setting the innerHTML property of a parent element to
an empty string (""). This is not the preferred method because it is less
explicit, but you might see it in existing code.

Conclusion

In this tutorial, we learned how to use JavaScript to create new nodes and
elements and insert them into the DOM, and replace and remove existing
nodes and elements.

At this point in the Understanding the DOM series you know how to
access any element in the DOM, walk through any node in the DOM, and

https://www.digitalocean.com/community/tutorial_series/understanding-the-dom-document-object-model

modify the DOM itself. You can now feel confident in creating basic front-
end web apps with JavaScript.

How To Modify Attributes, Classes, and
Styles in the DOM

Written by Tania Rascia
In the previous tutorial in this series, “How To Make Changes to the DOM,”

we covered how to create, insert, replace, and remove elements from the
Document Object Model (DOM) with built-in methods. By increasing your
proficiency in manipulating the DOM, you are better able to utilize
JavaScript’s interactive capabilities and modify web elements.

In this tutorial, we will learn how to further alter the DOM by modifying
styles, classes, and other attributes of HTML element nodes. This will give
you a greater understanding of how to manipulate essential elements within
the DOM.

Review of Selecting Elements

Until recently, a popular JavaScript library called jQuery was most often used
to select and modify elements in the DOM. jQuery simplified the process of
selecting one or more elements and applying changes to all of them at the
same time. In “How To Access Elements in the DOM,” we reviewed the DOM
methods for grabbing and working with nodes in vanilla JavaScript.

To review, document.querySelector() and
document.getElementById() are the methods that are used to access a
single element. Using a div with an id attribute in the example below, we
can access that element either way.

<div id="demo-id">Demo ID</div>

https://www.digitalocean.com/community/tutorials/how-to-modify-attributes-classes-and-styles-in-the-dom
https://www.digitalocean.com/community/tutorial_series/understanding-the-dom-document-object-model
https://www.digitalocean.com/community/tutorials/how-to-make-changes-to-the-dom
https://www.digitalocean.com/community/tutorials/an-introduction-to-jquery
https://www.digitalocean.com/community/tutorials/how-to-access-elements-in-the-dom

The querySelector() method is more robust in that it can select an
element on the page by any type of selector.

// Both methods will return a single element

const demoId = document.querySelector('#demo-id');

Accessing a single element, we can easily update a part of the element such
as the text inside.

// Change the text of one element

demoId.textContent = 'Demo ID text updated.';

However, when accessing multiple elements by a common selector, such as
a specific class, we have to loop through all the elements in the list. In the
code below, we have two div elements with a common class value.

<div class="demo-class">Demo Class 1</div>

<div class="demo-class">Demo Class 2</div>

We’ll use querySelectorAll() to grab all elements with demo-
class applied to them, and forEach() to loop through them and apply a
change. It is also possible to access a specific element with
querySelectorAll() the same way you would with an array — by using
bracket notation.

// Get a NodeList of all .demo elements

const demoClasses = document.querySelectorAll('.demo-

class');

// Change the text of multiple elements with a loop

demoClasses.forEach(element => {

 element.textContent = 'All demo classes updated.';

});

// Access the first element in the NodeList

demoClasses[0];

This is one of the most important differences to be aware of when
progressing from jQuery to vanilla JavaScript. Many examples of modifying
elements will not explain the process of applying those methods and
properties to multiple elements.

The properties and methods in this article will often be attached to event
listeners in order to respond to clicks, hovers, or other triggers.

Note: The methods getElementsByClassName() and
getElementsByTagName() will return HTML collections which do not
have access to the forEach() method that querySelectorAll() has.
In these cases, you will need to use a standard for loop to iterate through the
collection.

Modifying Attributes

Attributes are values that contain additional information about HTML
elements. They usually come in name/value pairs, and may be essential
depending on the element.

https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://www.digitalocean.com/community/tutorials/how-to-construct-for-loops-in-javascript

Some of the most common HTML attributes are the src attribute of an
img tag, the href of an a tag, class, id, and style. For a full list of
HTML attributes, view the attribute list on the Mozilla Developer Network.
Custom elements that are not part of the HTML standard will be prepended
with data-.

In JavaScript, we have four methods for modifying element attributes:

M����� D���������� E������

hasAttribute() Returns a true or false

boolean

element.hasAttribute('href');

getAttribute() Returns the value of a

specified attribute or null

element.getAttribute('href');

setAttribute() Adds or updates value of a

specified attribute

element.setAttribute('href',

'index.html');

removeAttribute() Removes an attribute from

an element

element.removeAttribute('href');

Let’s create a new HTML file with an img tag with one attribute. We’ll link
to a public image available via a URL, but you can swap it out for an alternate
local image if you’re working offline.

https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes

attributes.html

<!DOCTYPE html>

<html lang="en">

<body>

 <img src="https://js-

tutorials.nyc3.digitaloceanspaces.com/shark.png">

</body>

</html>

When you load the above HTML file into a modern web browser and open
the built-in Developer Console, you should see something like this:

https://www.digitalocean.com/community/tutorials/how-to-use-the-javascript-developer-console

First rendering of classes.html

Now, we can test all the attribute methods on the fly.

// Assign image element

const img = document.querySelector('img');

img.hasAttribute('src'); // returns

true

img.getAttribute('src'); // returns

"...shark.png"

img.removeAttribute('src'); // remove the

src attribute and value

At this point, you will have removed the src attribute and value associated
with img, but you can reset that attribute and assign the value to an alternate

image with img.setAttribute():

img.setAttribute('src', 'https://js-

tutorials.nyc3.digitaloceanspaces.com/octopus.png');

Second rendering of classes.html

Finally, we can modify the attribute directly by assigning a new value to the
attribute as a property of the element, setting the src back to the
shark.png file

img.src = 'https://js-

tutorials.nyc3.digitaloceanspaces.com/shark.png';

Any attribute can be edited this way as well as with the above methods.

The hasAttribute() and getAttribute() methods are usually
used with conditional statements, and the setAttribute() and
removeAttribute() methods are used to directly modify the DOM.

Modifying Classes

The class attribute corresponds to CSS class selectors. This is not to be
confused with ES6 classes, a special type of JavaScript function.

CSS classes are used to apply styles to multiple elements, unlike IDs which
can only exist once per page. In JavaScript, we have the className and
classList properties to work with the class attribute.

https://www.digitalocean.com/community/tutorials/how-to-write-conditional-statements-in-javascript
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/class
https://developer.mozilla.org/en-US/docs/Web/CSS/Class_selectors
https://www.digitalocean.com/community/tutorials/understanding-classes-in-javascript
https://developer.mozilla.org/en-US/docs/Web/API/Element/className
https://developer.mozilla.org/en-US/docs/Web/API/Element/classList

M�����/P������� D���������� E������

className Gets or sets

class value

element.className;

classList.add() Adds one or

more class

values

element.classList.add('active');

classList.toggle() Toggles a class

on or off

element.classList.toggle('active');

classList.contains() Checks if class

value exists

element.classList.contains('active');

classList.replace() Replace an

existing class

value with a

new class value

element.classList.replace('old',

'new');

classList.remove() Remove a class

value

element.classList.remove('active');

We’ll make another HTML file to work with the class methods, with two
elements and a few classes.

classes.html

<!DOCTYPE html>

<html lang="en">

<style>

 body {

 max-width: 600px;

 margin: 0 auto;

 font-family: sans-serif;

 }

 .active {

 border: 2px solid blue;

 }

 .warning {

 border: 2px solid red;

 }

 .hidden {

 display: none;

 }

 div {

 border: 2px dashed lightgray;

 padding: 15px;

 margin: 5px;

 }

</style>

<body>

 <div>Div 1</div>

 <div class="active">Div 2</div>

</body>

</html>

When you open the classes.html file into a web browser, you should
receive a rendering that looks similar to the following:

First rendering of classes.html

The className property was introduced to prevent conflicts with the
class keyword found in JavaScript and other languages that have access to
the DOM. You can use className to assign a value directly to the class.

// Select the first div

const div = document.querySelector('div');

// Assign the warning class to the first div

div.className = 'warning';

We have assigned the warning class defined in the CSS values of
classes.html to the first div. You’ll receive the following output:

Second rendering of classes.html

Note that if any classes already exist on the element, this will override
them. You can add multiple space delimited classes using the className
property, or use it without assignment operators to get the value of the class
on the element.

The other way to modify classes is via the classList property, which
comes with a few helpful methods. These methods are similar to the jQuery
addClass, removeClass, and toggleClass methods.

// Select the second div by class name

const activeDiv = document.querySelector('.active');

activeDiv.classList.add('hidden'); //

Add the hidden class

activeDiv.classList.remove('hidden'); //

Remove the hidden class

activeDiv.classList.toggle('hidden'); //

Switch between hidden true and false

activeDiv.classList.replace('active', 'warning'); //

Replace active class with warning class

After performing the above methods, your web page will look like this:

https://developer.mozilla.org/en-US/docs/Web/API/Element/classList

Final rendering of classes.html

Unlike in the className example, using classList.add() will add a
new class to the list of existing classes. You can also add multiple classes as
comma-separated strings. It is also possible to use setAttribute to
modify the class of an element.

Modifying Styles

The style property repesents the inline styles on an HTML element. Often,
styles will be applied to elements via a stylesheet as we have done previously
in this article, but sometimes we have to add or edit an inline style directly.

We will make a short example to demonstrate editing styles with
JavaScript. Below is a new HTML file with a div that has some inline styles
applied to display a square.

https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/style

styles.html

<!DOCTYPE html>

<html lang="en">

<body>

 <div style="height: 100px;

 width: 100px;

 border: 2px solid black;">Div</div>

</body>

</html>

When opened in a web browser, the styles.html will look something
like this:

First rendering of styles.html

One option to edit the styles is with setAttribute().

// Select div

const div = document.querySelector('div');

// Apply style to div

div.setAttribute('style', 'text-align: center');

However, this will remove all existing inline styles from the element. Since
this is likely not the intended effect, it is better to use the style attribute
directly

div.style.height = '100px';

div.style.width = '100px';

div.style.border = '2px solid black';

CSS properties are written in kebab-case, which is lowercase words
separated by dashes. It is important to note that kebab-case CSS properties
cannot be used on the JavaScript style property. Instead, they will be replaced
with their camelCase equivalent, which is when the first word is lowercase,
and all subsequent words are capitalized. In other words, instead of text-
align we will use textAlign for the JavaScript style property.

// Make div into a circle and vertically center the

text

div.style.borderRadius = '50%';

div.style.display = 'flex';

div.style.justifyContent = 'center';

div.style.alignItems = 'center';

After completing the above style modifications, your final rendering of
styles.html will show a circle:

Final rendering of styles.html

If many stylistic changes are to be applied to an element, the best course of
action is to apply the styles to a class and add a new class. However, there are
some cases in which modifying the inline style attribute will be necessary or
more straightforward.

Conclusion

HTML elements often have additional information assigned to them in the
form of attributes. Attributes may consist of name/value pairs, and a few of
the most common attributes are class and style.

In this tutorial, we learned how to access, modify, and remove attributes on
an HTML element in the DOM using plain JavaScript. We also learned how to
add, remove, toggle, and replace CSS classes on an element, and how to edit

inline CSS styles. For additional reading, check out the documentation on
attributes on the Mozilla Developer Network.

https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes

Understanding Events in JavaScript

Written by Tania Rascia
In the Understanding the DOM series, we have discussed the DOM tree

and how to access, traverse, add and remove, and modify nodes and
elements using the Developer Tools Console.

Although at this point we can now make almost any change we want to
the DOM, from a user perspective it is not very helpful because we have
only manually triggered changes. By learning about events, we will
understand how to tie everything together to make interactive websites.

Events are actions that take place in the browser that can be initiated by
either the user or the browser itself. Below are a few examples of common
events that can happen on a website:

The page finishes loading
The user clicks a button
The user hovers over a dropdown
The user submits a form
The user presses a key on their keyboard

By coding JavaScript responses that execute upon an event, developers
can display messages to users, validate data, react to a button click, and
many other actions.

In this article, we will go over event handlers, event listeners, and event
objects. We’ll also go over three different ways to write code to handle

https://www.digitalocean.com/community/tutorials/understanding-events-in-javascript
https://www.digitalocean.com/community/tutorial_series/understanding-the-dom-document-object-model
https://www.digitalocean.com/community/tutorials/understanding-the-dom-tree-and-nodes
https://www.digitalocean.com/community/tutorials/how-to-access-elements-in-the-dom
https://www.digitalocean.com/community/tutorials/how-to-traverse-the-dom
https://www.digitalocean.com/community/tutorials/how-to-make-changes-to-the-dom
https://www.digitalocean.com/community/tutorials/how-to-modify-attributes-classes-and-styles-in-the-dom
https://www.digitalocean.com/community/tutorials/how-to-use-the-javascript-developer-console

events, and a few of the most common events. By learning about events,
you’ll be able to make a more interactive web experience for end users.

Event Handlers and Event Listeners

When a user clicks a button or presses a key, an event is fired. These are
called a click event or a keypress event, respectively.

An event handler is a JavaScript function that runs when an event fires.
An event listener attaches a responsive interface to an element, which

allows that particular element to wait and “listen” for the given event to
fire.

There are three ways to assign events to elements: - Inline event
handlers - Event handler properties - Event listeners

We will go over all three methods to ensure that you are familiar with
each way an event can be triggered, then discuss the pros and cons of each
method.

Inline Event Handler Attributes

To begin learning about event handlers, we’ll first consider the inline
event handler. Let’s start with a very basic example that consists of a
button element and a p element. We want the user to click the button
to change the text content of the p.

Let’s begin with an HTML page with a button in the body. We’ll be
referencing a JavaScript file that we’ll add code to in a bit.

events.html

<!DOCTYPE html>

<html lang="en-US">

<head>

 <title>Events</title>

</head>

<body>

 <!-- Add button -->

 <button>Click me</button>

 <p>Try to change me.</p>

</body>

<!-- Reference JavaScript file -->

<script src="js/events.js"></script>

</html>

Directly on the button, we will add an attribute called onclick. The
attribute value will be a function we create called changeText().

events.html

<!DOCTYPE html>

<html lang="en-US">

<head>

 <title>Events</title>

</head>

<body>

 <button onclick="changeText()">Click

me</button>

 <p>Try to change me.</p>

</body>

<script src="js/events.js"></script>

</html>

Let’s create our events.js file, which we placed in the js/ directory
here. Within it, we will create the changeText() function, which will
modify the textContent of the p element.

js/events.js

// Function to modify the text content of the

paragraph

const changeText = () => {

 const p = document.querySelector('p');

 p.textContent = "I changed because of an

inline event handler.";

}

When you first load the events.html, you’ll see a page that looks
like this:

First rendering of events.html

However, when either you or another user clicks on the button, the text
of the p tag will change from Try to change me. to I changed
because of an inline event handler.:

First response to event on events.html rendering

Inline event handlers are a straightforward way to begin understanding
events, but they generally should not be used beyond testing and
educational purposes.

You can compare inline event handlers to inline CSS styles on an HTML
element. It is much more practical to maintain a separate stylesheet of
classes than create inline styles on every element, just as it is more
feasible to maintain JavaScript that is handled entirely through a separate
script file than add handlers to every element.

Event Handler Properties

The next step up from an inline event handler is the event handler
property. This works very similarly to an inline handler, except we’re
setting the property of an element in JavaScript instead of the attribute in
the HTML.

The setup will be the same here, except we no longer include the
onclick="changeText()" in the markup:

events.html

...

<body>

 <button>Click me</button>

 <p>I will change.</p>

</body>

...

Our function will remain similar as well, except now we need to access
the button element in the JavaScript. We can simply access onclick
just as we would access style or id or any other element property, then
assign the function reference.

js/events.js

// Function to modify the text content of the

paragraph

const changeText = () => {

 const p = document.querySelector('p');

 p.textContent = "I changed because of an event

handler property.";

}

// Add event handler as a property of the button

element

const button = document.querySelector('button');

button.onclick = changeText;

Note: Event handlers do not follow the camelCase convention that most
JavaScript code adheres to. Notice that the code is onclick, not
onClick.

When you first load the page, the browser will display the following:

Initial load of events.html with events handler

Now when you click the button, it will have a similar effect as before:

Response with events handler of events.html

Note that when passing a function reference to the onclick property,
we do not include parentheses, as we are not invoking the function in that
moment, but only passing a reference to it.

The event handler property is slightly more maintainable than the inline
handler, but it still suffers from some of the same hurdles. For example,
trying to set multiple, separate onclick properties will cause all but the
last one to be overwritten, as demonstrated below.

js/events.js

const p = document.querySelector('p');

const button = document.querySelector('button');

const changeText = () => {

 p.textContent = "Will I change?";

}

const alertText = () => {

 alert('Will I alert?');

}

// Events can be overwritten

button.onclick = changeText;

button.onclick = alertText;

In the above example, the button click would only display an alert,
and not change the p text, since the alert() code was the last one added
to the property.

Final response via events handler of events.html

With an understanding of both inline event handlers and event handler
properties, let’s move onto event listeners.

Event Listeners

The latest addition to JavaScript event handlers are event listeners. An
event listener watches for an event on an element. Instead of assigning the
event directly to a property on the element, we will use the
addEventListener() method to listen for the event.
addEventListener() takes two mandatory parameters — the event

it is to be listening for, and the listener callback function.
The HTML for our event listener will be the same as the previous

example.

events.html

...

 <button>Click me</button>

 <p>I will change.</p>

...

We will still be using the same changeText() function as before.
We’ll attach the addEventListener() method to the button.

js/events.js

// Function to modify the text content of the

paragraph

const changeText = () => {

 const p = document.querySelector('p');

 p.textContent = "I changed because of an event

listener.";

}

// Listen for click event

const button = document.querySelector('button');

button.addEventListener('click', changeText);

Notice that with the first two methods, a click event was referred to as
onclick, but with event listeners it is referred to as click. Every event
listener drops the on from the word. In the next section, we will look at
more examples of other types of events.

When you reload the page with the JavaScript code above, you’ll
receive the following output:

Event listener response of events.html

At first look, event listeners seem very similar to event handler
properties, but they have a few advantages. We can set multiple event
listeners on the same element, as demonstrated in the example below.

js/events.js

const p = document.querySelector('p');

const button = document.querySelector('button');

const changeText = () => {

 p.textContent = "Will I change?";

}

const alertText = () => {

 alert('Will I alert?');

}

// Multiple listeners can be added to the same

event and element

button.addEventListener('click', changeText);

button.addEventListener('click', alertText);

In this example, both events will fire, providing the user with both an
alert and modified text once clicking out of the alert.

Often, anonymous functions will be used instead of a function reference
on an event listener. Anonymous functions are functions that are not
named.

// An anonymous function on an event listener

button.addEventListener('click', () => {

 p.textContent = "Will I change?";

});

It is also possible to use the removeEventListener() function to
remove one or all events from an element.

// Remove alert function from button element

button.removeEventListener('click', alertText);

Furthermore, you can use addEventListener() on the document
and window object.

Event listeners are currently the most common and preferred way to
handle events in JavaScript.

Common Events

We have learned about inline event handlers, event handler properties, and
event listeners using the click event, but there are many more events in
JavaScript. We will go over a few of the most common events below.

Mouse Events

Mouse events are among the most frequently used events. They refer to
events that involve clicking buttons on the mouse or hovering and moving
the mouse pointer. These events also correspond to the equivalent action
on a touch device.

E���� D����������

click Fires when the mouse is pressed and released on an element

dblclick Fires when an element is clicked twice

mouseenter Fires when a pointer enters an element

mouseleave Fires when a pointer leaves an element

mousemove Fires every time a pointer moves inside an element

A click is a compound event that is comprised of combined
mousedown and mouseup events, which fire when the mouse button is
pressed down or lifted, respectively.

Using mouseenter and mouseleave in tandem recreates a hover
effect that lasts as long as a mouse pointer is on the element.

Form Events

Form events are actions that pertain to forms, such as input elements
being selected or unselected, and forms being submitted.

E���� D����������

submit Fires when a form is submitted

focus Fires when an element (such as an input) receives focus

blur Fires when an element loses focus

Focus is achieved when an element is selected, for example, through a
mouse click or navigating to it via the TAB key.

JavaScript is often used to submit forms and send the values through to
a backend language. The advantage of using JavaScript to send forms is
that it does not require a page reload to submit the form, and JavaScript
can be used to validate required input fields.

Keyboard Events

Keyboard events are used for handling keyboard actions, such as pressing
a key, lifting a key, and holding down a key.

E���� D����������

keydown Fires once when a key is pressed

keyup Fires once when a key is released

keypress Fires continuously while a key is pressed

Although they look similar, keydown and keypress events do not
access all the exact same keys. While keydown will acknowledge every
key that is pressed, keypress will omit keys that do not produce a
character, such as SHIFT, ALT, or DELETE.

Keyboard events have specific properties for accessing individual keys.
If a parameter, known as an event object, is passed through to the

event listener, we can access more information about the action that took
place. Three properties that pertain to keyboard objects include keyCode,
key, and code.

For example, if the user presses the letter a key on their keyboard, the
following properties pertaining to that key will surface:

P������� D���������� E������

keyCode A number pertaining to the key 65

key Represents the character name a

code Represents the physical key being pressed KeyA

To show how to gather that information via the JavaScript Console, we
can write the following lines of code.

// Test the keyCode, key, and code properties

document.addEventListener('keydown', event => {

 console.log('key: ' + event.keyCode);

 console.log('key: ' + event.key);

 console.log('code: ' + event.code);

});

Once we press ENTER on the Console, we can now press a key on the
keyboard, in this example, we’ll press a.

Output

keyCode: 65

key: a

code: KeyA

The keyCode property is a number that pertains to the key that has
been pressed. The key property is the name of the character, which can

change — for example, pressing a with SHIFT would result in a key of
A. The code property represents the physical key on the keyboard.

Note that keyCode is in the process of being deprecated and it is
preferable to use code in new projects.

To learn more, you can view the complete list of events on the Mozilla
Developer Network.

Event Objects

The Event object consists of properties and methods that all events can
access. In addition to the generic Event object, each type of event has its
own extensions, such as KeyboardEvent and MouseEvent.

The Event object is passed through a listener function as a parameter.
It is usually written as event or e. We can access the code property of
the keydown event to replicate the keyboard controls of a PC game.

To try it out, create a basic HTML file with <p> tags and load it into a
browser.

https://developer.mozilla.org/en-US/docs/Web/Events

event-test-p.html

<!DOCTYPE html>

<html lang="en-US">

<head>

 <title>Events</title>

</head>

<body>

 <p></p>

</body>

</html>

Then, type the following JavaScript code into your browser’s Developer
Console.

https://www.digitalocean.com/community/tutorials/how-to-use-the-javascript-developer-console

// Pass an event through to a listener

document.addEventListener('keydown', event => {

 var element = document.querySelector('p');

 // Set variables for keydown codes

 var a = 'KeyA';

 var s = 'KeyS';

 var d = 'KeyD';

 var w = 'KeyW';

 // Set a direction for each code

 switch (event.code) {

 case a:

 element.textContent = 'Left';

 break;

 case s:

 element.textContent = 'Down';

 break;

 case d:

 element.textContent = 'Right';

 break;

 case w:

 element.textContent = 'Up';

 break;

 }

});

When you press one of the keys — a, s, d, or w — you’ll see output
similar to the following:

First event object example

From here, you can continue to develop how the browser will respond
and to the user pressing those keys, and can create a more dynamic
website.

Next, we’ll go over one of the most frequently used event properties:
the target property. In the following example, we have three div
elements inside one section.

event-test-div.html

<!DOCTYPE html>

<html lang="en-US">

<head>

 <title>Events</title>

</head>

<body>

 <section>

 <div id="one">One</div>

 <div id="two">Two</div>

 <div id="three">Three</div>

 </section>

</body>

</html>

Using event.target with JavaScript in our browser’s Developer
Console, we can place one event listener on the outer section element
and get the most deeply nested element.

const section = document.querySelector('section');

// Print the selected target

section.addEventListener('click', event => {

 console.log(event.target);

});

Clicking on any one of those elements will return output of the relevant
specific element to the Console using event.target. This is extremely
useful, as it allows you to place only one event listener that can be used to
access many nested elements.

Second event object example

With the Event object, we can set up responses related to all events,
including generic events and more specific extensions.

Conclusion

Events are actions that take place on a website, such as clicking, hovering,
submitting a form, loading a page, or pressing a key on the keyboard.
JavaScript becomes truly interactive and dynamic when we are able to
make websites respond to actions the user has taken.

In this tutorial, we learned what events are, examples of common
events, the difference between event handlers and event listeners, and how
to access the Event object. Using this knowledge, you will be able to
begin making dynamic websites and applications.

	About DigitalOcean
	Introduction
	Introduction to the DOM
	Understanding the DOM Tree and Nodes
	How To Access Elements in the DOM
	How To Traverse the DOM
	How To Make Changes to the DOM
	How To Modify Attributes, Classes, and Styles in the DOM
	Understanding Events in JavaScript

