Quick start

https://ckeditor.com/docs/ckeditor5/latest/builds/guides/overview.html

Table of contentsClassic editorExamplelnline editorExampleBalloon editorExampleBalloon block
editorExampleDocument editorExampleNext steps

Creating an editor using a CKEditor 5 build is very simple and can be described in two steps:

1. Load the desired editor viathe <script> tag.
2. Callthe static create () method to create the editor.

There are other installation and integration methods available. For more information check Installation and
Basic APl guides.

Classic editor

In your HTML page add an element that CKEditor should replace:
<div id="editor"></div>
Load the classic editor build (here CDN location is used):

<script src="https://cdn.ckeditor.com/ckeditor5/23.0.0/classic/ckeditor.js">
</script>

Callthe ClassicEditor.create() method.

<script>
ClassicEditor
.create(document.querySelector('#editor'))
.catch(error => {
console.error(error);

}o)s

</script>

https://ckeditor.com/docs/ckeditor5/latest/builds/guides/overview.html
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/quick-start.html%23classic-editor
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/quick-start.html%23example
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/quick-start.html%23inline-editor
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/quick-start.html%23example-2
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/quick-start.html%23balloon-editor
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/quick-start.html%23example-3
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/quick-start.html%23balloon-block-editor
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/quick-start.html%23example-4
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/quick-start.html%23document-editor
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/quick-start.html%23example-5
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/quick-start.html%23next-steps
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/integration/installation.html
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/integration/basic-api.html
https://cdn.ckeditor.com/
https://ckeditor.com/docs/ckeditor5/latest/api/module_editor-classic_classiceditor-ClassicEditor.html%23static-function-create

Example

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>CKEditor 5 — Classic editor</title>
<script src="https://cdn.ckeditor.com/ckeditor5/23.0.0/classic/ckeditor.js">
</script>
</head>
<body>
<hl>Classic editor</hl>
<div id="editor">
<p>This is some sample content.</p>

</div>
<script>
ClassicEditor
.create(document.querySelector('#editor'))
.catch(error => {
console.error(error);
P
</script>
</body>
</html>
Inline editor

In your HTML page add an element that CKEditor should make editable:
<div id="editor"></div>
Load the inline editor build (here CDN location is used):

<script src="https://cdn.ckeditor.com/ckeditor5/23.0.0/inline/ckeditor.js">
</script>

Callthe InlineEditor.create() method.

<script>
InlineEditor
.create(document.querySelector('#editor'))
.catch(error => {
console.error(error);

}o)s

</script>

https://cdn.ckeditor.com/
https://ckeditor.com/docs/ckeditor5/latest/api/module_editor-inline_inlineeditor-InlineEditor.html%23static-function-create

Example

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>CKEditor 5 - Inline editor</title>
<script src="https://cdn.ckeditor.com/ckeditor5/23.0.0/inline/ckeditor.js">
</script>
</head>
<body>
<hl>Inline editor</hl>
<div id="editor">
<p>This is some sample content.</p>

</div>
<script>
InlineEditor
.create(document.querySelector('#editor'))
.catch(error => {
console.error(error);
})i
</script>
</body>
</html>

Balloon editor

In your HTML page add an element that CKEditor should make editable:
<div id="editor"></div>
Load the balloon editor build (here CDN location is used):

<script src="https://cdn.ckeditor.com/ckeditor5/23.0.0/balloon/ckeditor.js">
</script>

Callthe BalloonEditor.create() method.

<script>
BalloonEditor
.create(document.querySelector('#editor'))
.catch(error => {
console.error(error);

}o)s

</script>

https://cdn.ckeditor.com/
https://ckeditor.com/docs/ckeditor5/latest/api/module_editor-balloon_ballooneditor-BalloonEditor.html%23static-function-create

Example

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>CKEditor 5 — Balloon editor</title>
<script src="https://cdn.ckeditor.com/ckeditor5/23.0.0/balloon/ckeditor.js">
</script>
</head>
<body>
<hl>Balloon editor</hl>
<div id="editor">
<p>This is some sample content.</p>

</div>
<script>
BalloonEditor
.create(document.querySelector('#editor'))
.catch(error => {
console.error(error);
})i
</script>
</body>
</html>

Balloon block editor

In your HTML page add an element that CKEditor should make editable:
<div id="editor"></div>
Load the balloon block editor build (here CDN location is used):

<script src="https://cdn.ckeditor.com/ckeditor5/23.0.0/balloon-
block/ckeditor.js"></script>

Callthe BalloonEditor.create() method.

<script>
BalloonEditor
.create(document.querySelector('#editor'))
.catch(error => {
console.error(error);

}o)s

</script>

Note: You can configure the block toolbar items using the config.blockToolbar option.

https://cdn.ckeditor.com/
https://ckeditor.com/docs/ckeditor5/latest/api/module_editor-balloon_ballooneditor-BalloonEditor.html%23static-function-create
https://ckeditor.com/docs/ckeditor5/latest/api/module_core_editor_editorconfig-EditorConfig.html%23member-blockToolbar

Example

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">

<title>CKEditor 5 — Balloon block editor</title>
<script src="https://cdn.ckeditor.com/ckeditor5/23.0.0/balloon-

block/ckeditor.js"></script>
</head>
<body>
<hl>Balloon editor</hl>
<div id="editor">
<p>This is some sample content.</p>
</div>
<script>
BalloonEditor
.create(document.querySelector(
.catch(error => {
console.error(error);
})i
</script>
</body>
</html>

Document editor

Load the document editor build (here CDN location is used):

'#editor'))

<script src="https://cdn.ckeditor.com/ckeditor5/23.0.0/decoupled-

document/ckeditor.js"></script>

Callthe DecoupledEditor.create () method. The decoupled editor requires you to inject the
toolbar into the DOM and the best place to do that is somewhere in the promise chain (e.g. one of the then (

() => { ... }) blocks).

The following snippet will run the document editor but to make the most of it check out the comprehensive
tutorial which explains step—by—step how to configure and style the application for the best editing

experience.

https://cdn.ckeditor.com/
https://ckeditor.com/docs/ckeditor5/latest/api/module_editor-decoupled_decouplededitor-DecoupledEditor.html%23static-function-create
https://ckeditor.com/docs/ckeditor5/latest/framework/guides/deep-dive/ui/document-editor.html

<script>
DecoupledEditor
.create(document.querySelector('#editor'))
.then(editor => {
const toolbarContainer = document.querySelector('#toolbar-container'

toolbarContainer.appendChild(editor.ui.view.toolbar.element);
})
.catch(error => {

console.error(error);

Yo

</script>

Example

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>CKEditor 5 — Document editor</title>
<script src="https://cdn.ckeditor.com/ckeditor5/23.0.0/decoupled-
document/ckeditor.js"></script>
</head>
<body>
<hl>Document editor</hl>

<!-- The toolbar will be rendered in this container. -->
<div id="toolbar-container"></div>

<!—-- This container will become the editable. -->
<div id="editor">
<p>This is the initial editor content.</p>

</div>
<script>
DecoupledEditor
.create(document.querySelector('#editor'))
.then(editor => {
const toolbarContainer = document.querySelector('#toolbar-
container');
toolbarContainer.appendChild(editor.ui.view.toolbar.element);
})
.catch(error => {
console.error(error);
})i
</script>
</body>

</html>

Next steps

Check the Configuration guide to learn how to configure the editor — for example, change the default toolbar.

Overview

Table of contentsAvailable buildsClassic editorlnline editorBalloon editorBalloon block editorDocument
editorBuild customizationAdditional informationHow builds were designedUse casesWhen NOT to use builds?

CKEditor 5 Builds are a set of ready-to-use rich text editors. Every “build” provides a single type of editor with
a set of features and a default configuration. They provide convenient solutions that can be installed with no
effort and that satisfy the most common editing use cases.

Available builds

The following CKEditor 5 Builds are currently available:

e C(Classic editor

e |Inline editor

e Balloon editor

e Balloon block editor
e Document editor

Classic editor

Classic editor is what most users traditionally learnt to associate with a rich text editor — a toolbar with an
editing area placed in a specific position on the page, usually as a part of a form that you use to submit some
content to the server.

During its initialization the editor hides the used editable element on the page and renders “instead” of it.
This is why it is usually used to replace <textarea> elements.

In CKEditor 5 the concept of the “boxed” editor was reinvented:

e Thetoolbaris now always visible when the user scrolls the page down.

e The editor content is now placed inline in the page (without the surrounding <iframe> element) —
it is now much easier to style it.

e By default the editor now grows automatically with the content.

https://ckeditor.com/docs/ckeditor5/latest/builds/guides/integration/configuration.html
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/overview.html%23available-builds
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/overview.html%23classic-editor
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/overview.html%23inline-editor
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/overview.html%23balloon-editor
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/overview.html%23balloon-block-editor
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/overview.html%23document-editor
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/overview.html%23build-customization
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/overview.html%23additional-information
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/overview.html%23how-builds-were-designed
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/overview.html%23use-cases
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/overview.html%23when-not-to-use-builds
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/overview.html%23classic-editor
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/overview.html%23inline-editor
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/overview.html%23balloon-editor
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/overview.html%23balloon-block-editor
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/overview.html%23document-editor

Heading 1 v B I @ Z Z @& e« By v © &

The three greatest things you learn from traveling|

Like all the great things on earth traveling teaches us by example. Here are some of the most precious lessons
I've learned over the years of traveling.

Appreciation of diversity

Getting used to an entirely different culture can be
challenging. While it’s also nice to learn about
cultures online or from books, nothing comes close
to experiencing cultural diversity in person. You

learn to appreciate each and every single one of the

differences while you become more culturally fluid Leaving your comfort zone might lead you to such beautiful sceneries
' like this one.

The real voyage of discovery consists not in
seeking new landscapes, but having new eyes.

Marcel Proust

To try it out online, check the classic editor example. Jump to Quick start to start using it.

Inline editor

Inline editor comes with a floating toolbar that becomes visible when the editor is focused (e.g. by clicking it).
Unlike classic editor, inline editor does not render instead of the given element, it simply makes it editable. As
a consequence the styles of the edited content will be exactly the same before and after the editor is created.

A common scenario for using inline editor is offering users the possibility to edit content in its real location on
a web page instead of doing it in a separate administration section.

Heading 1 v B I @

Gone traveling

Monthly travel news and inspiration

To try it out online, check the inline editor example. Jump to Quick start to start using it.

https://ckeditor.com/docs/ckeditor5/latest/examples/builds/classic-editor.html
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/quick-start.html%23classic-editor
https://ckeditor.com/docs/ckeditor5/latest/examples/builds/inline-editor.html
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/quick-start.html%23inline-editor

Balloon editor

Balloon editor is very similar to inline editor. The difference between them is that the toolbar appears in a
balloon next to the selection (when the selection is not empty):

Walking the capitals of Europe: Warsaw

If you enjoyed my previous articles in which we

discussed wandering around Copenhagen and Vilnius,

Heading 2 v B I @ Z ;2 @ e« B

Time to put comfy sandals on!

Best time to visit the city is July and August, when it’s :
cool enough to not break a sweat and hot enough to Medieval Old Town square, destroyed in 1944 & rebuilt after WWII.
enjoy summer. The city which has quite a combination

of both old and modern textures is located by the river of Vistula.

The historic Old Town, which was reconstructed after the World War II, with its late 18th century characteristics, is a

must-see. You can start your walk from the Nowy Swiat Street which will take you straight to the Old Town.

To try it out online, check the balloon editor example. Jump to Quick start to start using it.

Balloon block editor

Balloon block is essentially the balloon editor with an extra block toolbar which can be accessed using the
button attached to the editable content area and following the selection in the document. The toolbar gives
an access to additional, block-level editing features.

Time to put comfy sandals on!

9 Best time to visit the city is July and August, when it’s cool enough to not break a sweat and hot enough to enjoy

cummar Tha cituhich hac auita a camhbinatinn of hoth old and modern textures is located by the river of Vistula.

Paragraph v 22 @ e« By BEv

TIIS THSWUTIC WU TUWIT, WIS was 1 o 7 rdd War 1, with its late 18th century Chal’acteristics, isa
I . . .
must-see. You can start your walk fi OO0 t which will take you straight to the Old Town.
CoDooD
Then you can go to the Powisle are ewly renovated promenade on the riverfront. There are
also lots of cafes, bars and restaura ff the exhaustion of the day. On Sundays, there are
many parks where you can enjoy ni ‘om around the world playing Chopin.
4x6

To try it out online, check the balloon block editor example. Jump to Quick start to start using it.

https://ckeditor.com/docs/ckeditor5/latest/examples/builds/balloon-editor.html
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/quick-start.html%23balloon-editor
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/overview.html%23balloon-editor
https://ckeditor.com/docs/ckeditor5/latest/examples/builds/balloon-block-editor.html
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/quick-start.html%23balloon-block-editor

Document editor

The document editor is focused on rich text editing experience similar to the native word processors. It works
best for creating documents which are usually later printed or exported to PDF files.

Heading 1 v A v AIV Av .v B I U &

1l
<
=
|
i

— D = = 2 e @ By By o o

The Flavorful Tuscany Meetup

Welcome letter

Dear Guest,

We are delighted to welcome you to the annual Flavorful Tuscany Meetup
and hope you will enjoy the programme as well as your stay at the
Bilancino Hotel.

Please find below the full schedule of the event.

Saturday, July 14

To try it out online, check the document editor example. Jump to Quick start to start using it.

Build customization

Every build comes with a default set of features and their default configuration. Although the builds try to fit
many use cases, they may still need to be adjusted in some integrations. The following modifications are
possible:

e You can override the default configuration of features (e.g. define different image styles or heading
levels).

e You can change the default toolbar configuration (e.g. remove undo/redo buttons).

e You can also remove features (plugins).

Read more in the Configuration guide.

If a build does not provide all the necessary features or you want to create a highly optimized build of the
editor which will contain only the features that you require, you need to customize the build or create a brand
new one. Check Custom builds for details on how to change the default builds to match your preferences.

Additional information

https://ckeditor.com/docs/ckeditor5/latest/examples/builds/document-editor.html
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/quick-start.html%23document-editor
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/integration/configuration.html
https://ckeditor.com/docs/ckeditor5/latest/builds/guides/development/custom-builds.html

How builds were designed

Each build was designed to satisfy as many use cases as possible. They differ in their Ul, UX and features, and
are based on the following approach:

e Include the set of features proposed by the Editor Recommendations project.
e Include features that contribute to creating quality content.
e Provide setups as generic as possible, based on research and community feedback.

Use cases

Each of the builds fits several different use cases. Just think about any possible use for writing rich text in
applications.

The following are some common use cases:

e |n content management systems:
o Forms for writing articles or website content.
o Inline writing in a frontend-like editing page.
o Comments.
e In marketing and sales automation applications:
o Composing email campaigns.
o Creating templates.
e Inforum applications:
o Creating topics and their replies.
e Inteam collaboration applications:
o Creating shared documents.
e Otheruses:
o User profile editing pages.
o Book writing applications.
Social messaging and content sharing.
Creation of ads in recruitment software.

(o}

(o}

When NOT to use builds?

CKEditor 5 Framework should be used, instead of builds, in the following cases:

e When you want to create your own text editor and have full control over its every aspect, from Ul to
features.
e When the solution proposed by the builds does not fit your specific use case.

In the following cases CKEditor 4 should be used instead:

e When compatibility with old browsers is a requirement.

o |f CKEditor 4 contains features that are essential for you, which are not available in CKEditor 5 yet.

o |f CKEditor 4 is already in use in your application and you are still not ready to replace it with CKEditor
5.

In the following cases Letters may be used instead:

https://ckeditor.github.io/editor-recommendations/
https://ckeditor.com/docs/ckeditor5/latest/framework/index.html
https://ckeditor.com/ckeditor-4/
https://ckeditor.com/letters/

e When you want an easy way to enable, as part of your application, the creation of articles and
documents that feature:
o Real-time collaborative writing.
o Inline comments and discussion in the content.
o Advanced writing features.

	Quick start
	Classic editor
	Example

	Inline editor
	Example

	Balloon editor
	Example

	Balloon block editor
	Example

	Document editor
	Example

	Next steps

	Overview
	Available builds
	Classic editor
	Inline editor
	Balloon editor
	Balloon block editor
	Document editor

	Build customization
	Additional information
	How builds were designed
	Use cases
	When NOT to use builds?

