
Copyright © 2018 MarkLogic Corporation. All rights reserved.

MarkLogic Server

Node.js Application Developer’s
Guide
1

MarkLogic 9
May, 2017

Last Revised: 9.0-4, January 2018

MarkLogic Server Table of Contents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 2

Table of Contents

Node.js Application Developer’s Guide

1.0 Introduction to the Node.js Client API ..9
1.1 Getting Started ..9
1.2 Required Software ..14
1.3 Security Requirements ..15

1.3.1 Basic Security Requirements ..15
1.3.2 Controlling Document Access ..16
1.3.3 Evaluating Requests Against a Different Database16
1.3.4 Evaluating or Invoking Server-Side Code ..16

1.4 Terms and Definitions ..17
1.5 Key Concepts and Conventions ..18

1.5.1 MarkLogic Namespace ...18
1.5.2 Parameter Passing Conventions ..18
1.5.3 Document Descriptor ..19
1.5.4 Supported Result Handling Techniques ...19
1.5.5 Promise Result Handling Pattern ..20
1.5.6 Stream Result Handling Pattern ..21
1.5.7 Streaming Into the Database ...22
1.5.8 Performing Point-in-Time Operations ..23
1.5.9 Error Handling ..24

1.6 Creating a Database Client ...25
1.7 Authentication and Connection Security ..26

1.7.1 Connecting to MarkLogic with SSL ...26
1.7.2 Using Certificate-Based Authentication ...27

1.7.2.1 Obtaining a Client Certificate ...27
1.7.2.2 Configuring Your App Server ...28
1.7.2.3 Examples: Database Client Configuration28

1.7.3 Using Kerberos Authentication ..29
1.7.3.1 Configuring MarkLogic to Use Kerberos29
1.7.3.2 Configuring Your Client Host for Kerberos29
1.7.3.3 Creating a Database Client That Uses Kerberos30

1.8 Using the Examples in This Guide ...30

2.0 Manipulating Documents ...32
2.1 Introduction to Document Operations ..32
2.2 Loading Documents into the Database ...35

2.2.1 Overview ...35
2.2.2 Input Document Descriptors ...36
2.2.3 Calling Convention ...37

MarkLogic Server Table of Contents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 3

2.2.4 Example: Loading A Single Document ..38
2.2.5 Example: Loading Multiple Documents ...39
2.2.6 Inserting or Updating Metadata for One Document41
2.2.7 Automatically Generating Document URIs ..42
2.2.8 Transforming Content During Ingestion ...42

2.3 Reading Documents from the Database ..43
2.3.1 Retrieving the Contents of a Document By URI44
2.3.2 Retrieving Metadata About a Document ..45
2.3.3 Example: Retrieving Content and Metadata ...47
2.3.4 Transforming Content During Retrieval ...49

2.4 Removing Content from the Database ..50
2.4.1 Removing Documents By URI ...50
2.4.2 Removing Sets of Documents ...51
2.4.3 Removing All Documents ..52

2.5 Managing Collections of Objects and Documents ...53
2.6 Performing a Lightweight Document Check ..55
2.7 Conditional Updates Using Optimistic Locking ...56

2.7.1 Understanding Optimistic Locking ...56
2.7.2 Enable Optimistic Locking ...57
2.7.3 Obtain a Version Id ...58
2.7.4 Apply a Conditional Update ...59

2.8 Working with Binary Documents ...60
2.8.1 Type of Binary Documents ...60
2.8.2 Streaming Binary Content ..61
2.8.3 Retrieving Binary Content with Range Requests61

2.9 Working with Temporal Documents ..62
2.10 Working with Metadata ..63

2.10.1 Metadata Categories ...63
2.10.2 Metadata Format ...64
2.10.3 Working with Document Properties ...66
2.10.4 Disabling Metadata Merging ..67

2.10.4.1 When to Consider Disabling Metadata Merging67
2.10.4.2 How to Disable Metadata Merging ...67

3.0 Patching Document Content or Metadata ..69
3.1 Introduction to Content and Metadata Patching ...69
3.2 Example: Adding a JSON Property ..71
3.3 Patch Reference ..72

3.3.1 insert ..74
3.3.2 replace ...75
3.3.3 replaceInsert ..77
3.3.4 remove ..79
3.3.5 apply ..80
3.3.6 library ..81
3.3.7 pathLanguage ..81
3.3.8 collections ...81

MarkLogic Server Table of Contents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 4

3.3.9 permissions ...82
3.3.10 properties ..82
3.3.11 quality ...82
3.3.12 metadataValues ...82

3.4 Defining the Context for a Patch Operation ...83
3.5 How Position Affects the Insertion Point ...83
3.6 Patch Examples ...85

3.6.1 Preparing to Run the Examples ..85
3.6.2 Example: Insert ...86
3.6.3 Example: Replace ...89
3.6.4 Example: ReplaceInsert ..92
3.6.5 Example: Remove ...95
3.6.6 Example: Patching Metadata ..98

3.7 Creating a Patch Without a Builder ..101
3.8 Patching XML Documents ...102
3.9 Constructing Replacement Data on MarkLogic Server103

3.9.1 Overview of Replacement Constructor Functions104
3.9.2 Using a Builtin Replacement Constructor ..105
3.9.3 Passing Parameters to a Replacement Constructor106
3.9.4 Using a Custom Replacement Constructor ...106
3.9.5 Writing a Custom Replacement Constructor ..107
3.9.6 Installing or Updating a Custom Replace Library108
3.9.7 Uninstalling a Custom Replace Library ..109
3.9.8 Example: Custom Replacement Constructors ..110
3.9.9 Additional Operations ...115

4.0 Querying Documents and Metadata ...116
4.1 Query Interface Overview ..116
4.2 Introduction to Search Concepts ...117

4.2.1 Search Overview ...117
4.2.2 Query Styles ..118
4.2.3 Types of Query ...119
4.2.4 Indexing ..121

4.3 Understanding the queryBuilder Interface ..121
4.4 Searching with String Queries ..124

4.4.1 Introduction to String Query ...124
4.4.2 Example: Basic String Query ...125
4.4.3 Using Constraints in a String Query ...127
4.4.4 Example: Using Constraints in a String Query128
4.4.5 Using a Custom Constraint Parser ..130
4.4.6 Example: Custom Constraint Parser ...131

4.4.6.1 Implementing the Constraint Parser ..131
4.4.6.2 Installing the Constraint Parser ...132
4.4.6.3 Using the Custom Constraint in a String Query132

4.4.7 Additional Information ...134
4.5 Searching with Query By Example ..134

MarkLogic Server Table of Contents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 5

4.5.1 Introduction to QBE ..134
4.5.2 Creating a QBE with queryBuilder ...135
4.5.3 Querying XML Content With QBE ..137
4.5.4 Additional Information ...138

4.6 Searching with Structured Queries ...139
4.6.1 Basic Usage ...139
4.6.2 Example: Using Structured Query ..139
4.6.3 Builder Methods Taxonomy Reference ..141

4.6.3.1 Basic Content Queries ...142
4.6.3.2 Logical Composers ..144
4.6.3.3 Location Qualifiers ..144
4.6.3.4 Document Selectors ...146

4.6.4 Query Parameter Helper Functions ...146
4.6.5 Search Result Refiners ..148

4.7 Searching with Combined Query ..149
4.8 Searching Values Metadata Fields ..151
4.9 Querying Lexicons and Range Indexes ..151

4.9.1 Querying Values in a Lexicon or Range Index152
4.9.2 Finding Value Co-Occurrences in Lexicons ...154
4.9.3 Building an Index Reference ..156
4.9.4 Refining the Results of a Values or Co-Occurrence Query157
4.9.5 Analyzing Lexicons and Range Indexes with Aggregate Functions158

4.9.5.1 Aggregate Function Overview ..158
4.9.5.2 Using Builtin Aggregate Functions ...158
4.9.5.3 Using User-Defined Aggregate Functions159

4.10 Generating Search Facets ..160
4.10.1 Defining a Simple Facet ...160
4.10.2 Naming a Facet ...162
4.10.3 Including Facet Options ..162
4.10.4 Defining Bucket Ranges ...162
4.10.5 Creating and Using Custom Constraint Facets163

4.11 Refining Query Results ...164
4.11.1 Available Refinements ..164
4.11.2 Paginating Query Results ..165
4.11.3 Returning Metadata ...166
4.11.4 Excluding Document Descriptors or Values From Search Results166
4.11.5 Generating Search Snippets ..167
4.11.6 Transforming the Search Results ..168
4.11.7 Extracting a Portion of Each Matching Document169

4.12 Generating Search Term Completion Suggestions ...172
4.12.1 Understanding the Suggestion Interface ...172
4.12.2 Example: Generating Search Term Suggestions175

4.13 Loading the Example Data ...178

5.0 Using the Optic API for Relational Operations ...181
5.1 Introduction to the Optic Interfaces ..181

MarkLogic Server Table of Contents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 6

5.2 Interface Summary ..182
5.3 Preparing to Run the Examples ..182
5.4 Generating a Plan ..183
5.5 Invoking a Plan ...184
5.6 Configuring Row Set Format ..187

5.6.1 Configuration Options ..187
5.6.2 Layout Examples ..187

5.7 Streaming Row Data ...191
5.7.1 Object Mode Streaming ..191
5.7.2 Chunked Mode Streaming ..193
5.7.3 Sequence Mode Streaming ...193

5.8 Passing Parameters into a Plan ...195
5.9 Handling Complex Column Values ..195
5.10 Generating an Execution Plan ...196
5.11 Serializing a Plan ..197

6.0 Working With Semantic Data ..199
6.1 Overview of Common Semantics Tasks ...199
6.2 Loading Triples ...200
6.3 Querying Semantic Triples With SPARQL ..202
6.4 Example: SPARQL Query ..203
6.5 Managing Graphs ..204

6.5.1 Creating or Replacing a Graph ...205
6.5.2 Adding Triples to an Existing Graph ..205
6.5.3 Removing a Graph ..206
6.5.4 Retrieving the Contents, Metadata, or Permissions of a Graph207
6.5.5 Testing for Graph Existence ...208
6.5.6 Retrieving a List of Graphs ...209

6.6 Using SPARQL Update to Manage Graphs and Graph Data209
6.7 Applying Inferencing Rules to a SPARQL Query or Update211

6.7.1 Basic Inference Ruleset Usage ...211
6.7.2 Example: SPARQL Query With Inference Ruleset212
6.7.3 Example: SPARQL Update With Inference Rulesets212
6.7.4 Controlling the Default Database Ruleset ..212

7.0 Managing Transactions ..214
7.1 Transaction Overview ...214
7.2 Creating a Transaction ..215
7.3 Associating a Transaction with an Operation ...216
7.4 Committing a Transaction ..217
7.5 Rolling Back a Transaction ...217
7.6 Example: Using Promises With a Multi-Statement Transaction218
7.7 Checking Transaction Status ..218
7.8 Managing Transactions When Using a Load Balancer218

MarkLogic Server Table of Contents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 7

8.0 Extensions, Transformations, and Server-Side Code Execution221
8.1 Ways to Extend and Customize the API ...221
8.2 Working with Resource Service Extensions ...222

8.2.1 What is a Resource Service Extension? ..222
8.2.2 Creating a Resource Service Extension ..223
8.2.3 Installing a Resource Service Extension ...223
8.2.4 Using a Resource Service Extension ..225
8.2.5 Example: Installing and Using a Resource Service Extension226
8.2.6 Retrieving the Implementation of a Resource Service Extension229
8.2.7 Discovering Resource Service Extensions ...229
8.2.8 Deleting Resource Service Extensions ...230

8.3 Working with Content Transformations ...231
8.3.1 What is a Content Transformation? ..231
8.3.2 Creating a Transformation ..232
8.3.3 Installing a Transformation ...232
8.3.4 Using a Transformation ..233
8.3.5 Example: Read, Write, and Query Transforms235

8.3.5.1 Install the Transforms ..235
8.3.5.2 Use the Write Transform ...236
8.3.5.3 Use the Read Transform ..238
8.3.5.4 Use the Query Transform ..239
8.3.5.5 Read Transform Source Code ...241
8.3.5.6 Write Transform Source Code ..242
8.3.5.7 Query Transform Source Code ...243

8.3.6 Discovering Installed Transforms ...244
8.3.7 Deleting a Transformation ..244

8.4 Error Reporting in Extensions and Transformations ..245
8.4.1 Example: Reporting Errors in JavaScript ...245
8.4.2 Example: Reporting Errors in XQuery ...247

8.5 Evaluating Ad-Hoc Code and Server-Side Modules ..248
8.5.1 Required Privileges ...248
8.5.2 Evaluating a Ad-Hoc Query ...249
8.5.3 Invoking a Module Installed on MarkLogic Server251
8.5.4 Interpreting the Results of Eval or Invoke ..253
8.5.5 Specifying External Variable Values ..254

8.6 Managing Assets in the Modules Database ..255
8.6.1 Overview of Asset Management ...256
8.6.2 Installing or Updating an Asset ..258
8.6.3 Referencing an Asset from Server-Side Code ..258
8.6.4 Removing an Asset ...259
8.6.5 Retrieving an Asset List ..259
8.6.6 Retrieving an Asset ...260

9.0 Administering REST API Instances ..261
9.1 What Is a REST API Instance? ...261

MarkLogic Server Table of Contents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 8

9.2 Creating an Instance ..262
9.3 Configuring Instance Properties ...262
9.4 Retrieving Configuration Information ..264
9.5 Removing an Instance ...264

10.0 Technical Support ..265

11.0 Copyright ...266
11.0 COPYRIGHT ..266

MarkLogic Server Introduction to the Node.js Client API

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 9

1.0 Introduction to the Node.js Client API
31

The Node.js Client API enables you to create Node.js applications that can read, write, and query
documents and semantic data in a MarkLogic database.

• Getting Started

• Required Software

• Security Requirements

• Terms and Definitions

• Key Concepts and Conventions

• Creating a Database Client

• Authentication and Connection Security

• Using the Examples in This Guide

The Node.js API is an open source project maintained on GitHub. To access the sources, report or
review issues, or contribute to the project, go to http://github.com/marklogic/node-client-api.

1.1 Getting Started
This section demonstrates loading documents into the database, querying the documents,
updating a portion of a document, and reading documents from the database. The basic features
demonstrated here have many more capabilities. The end of this section contains pointers to
resources for exploring the Node.js Client API in more detail.

Before you begin, make sure you have installed the software listed in “Required Software” on
page 14. You should also have the node and npm commands on your path.

Note: If you are working on Microsoft Windows, you should use a DOS command shell
rather than a Cygwin shell. Cygwin is not a supported enviroment for node and npm.

The following procedure walks you through installing the Node.js Client API, loading some
simple JSON documents into the database, and then searching and modifying the documents.

1. If you have not already done so, download, install, and start MarkLogic Server from
http://developer.marklogic.com.

2. Create or select a project directory from which to exercise the examples in this walk
through. The rest of the instructions assume you are in this directory.

3. Download and install the latest version of the Node.js Client API from the public npm
repository into your project directory. For example:

npm install marklogic

http://developer.marklogic.com
http://github.com/marklogic/node-client-api

MarkLogic Server Introduction to the Node.js Client API

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 10

4. Configure your MarkLogic connection information: Copy the following code to a file
named my-connection.js. Modify the MarkLogic Server connection information to match
your environment. You must change at least the user and password values. Select a
MarkLogic user that has at least the rest-reader and rest-writer roles or equivalent
privileges; for details, see “Security Requirements” on page 15.

module.exports = {
 connInfo: {
 host: 'localhost',
 port: 8000,
 user: 'user',
 password: 'password'
 }
};

The rest of the examples in this guide assume this connection configuration module exists
with the path ./my-connection.js.

5. Load the example documents into the database: Copy the following script to a file and run
it using the node command. Several JSON documents are inserted into the database using
DatabaseClient.documents.write.

// Load documents into the database.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

// Document descriptors to pass to write().
const documents = [
 { uri: '/gs/aardvark.json',
 content: {
 name: 'aardvark',
 kind: 'mammal',
 desc: 'The aardvark is a medium-sized burrowing, nocturnal mammal.'
 }
 },
 { uri: '/gs/bluebird.json',
 content: {
 name: 'bluebird',
 kind: 'bird',
 desc: 'The bluebird is a medium-sized, mostly insectivorous bird.'
 }
 },
 { uri: '/gs/cobra.json',
 content: {
 name: 'cobra',
 kind: 'mammal',
 desc: 'The cobra is a venomous, hooded snake of the family Elapidae.'
 }
 },
];

MarkLogic Server Introduction to the Node.js Client API

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 11

// Load the example documents into the database
db.documents.write(documents).result(
 function(response) {
 console.log('Loaded the following documents:');
 response.documents.forEach(function(document) {
 console.log(' ' + document.uri);
 });
 },
 function(error) {
 console.log(JSON.stringify(error, null, 2));
 }
);

You should see output similar to the following:

Loaded the following documents:
 /gs/aardvark.json
 /gs/bluebird.json
 /gs/cobra.json

6. Search the database: Copy the following script to a file and run it using the node
command. The script retrieves documents from the database that contain the JSON
property kind with the value 'mammal'.

// Search for documents about mammals, using Query By Example.
// The query returns an array of document descriptors, one per
// matching document. The descriptor includes the URI and the
// contents of each document.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
const qb = marklogic.queryBuilder;

db.documents.query(
 qb.where(qb.byExample({kind: 'mammal'}))
).result(function(documents) {
 console.log('Matches for kind=mammal:')
 documents.forEach(function(document) {
 console.log('\nURI: ' + document.uri);
 console.log('Name: ' + document.content.name);
 });
}, function(error) {

MarkLogic Server Introduction to the Node.js Client API

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 12

 console.log(JSON.stringify(error, null, 2));
});

You should see output similar to the following. Notice that cobra is incorrectly labeled as
a mammal. The next step will correct this error in the content.

Matches for kind=mammal:

URI: /gs/cobra.json
Name: cobra

URI: /gs/aardvark.json
Name: aardvark

7. Patch a document: Recall from the previous step that cobra is incorrectly labeled as a
mammal. This step changes the kind property for /gs/cobra.json from 'mammal' to
'reptile'. Copy the following script to a file and run it using the node command.

// Use the patch feature to update just a portion of a document,
// rather than replacing the entire contents.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
const pb = marklogic.patchBuilder;

db.documents.patch(
 '/gs/cobra.json',
 pb.replace('/kind', 'reptile')
).result(function(response) {
 console.log('Patched ' + response.uri);
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

You should see output similar to the following:

Patched /gs/cobra.json

8. Confirm the change by re-running the search or retrieving the document by URI. To
retrieve /gs/cobra.json by URI, copy the following script to a file and run it using the
node command.

// Read documents from the database by URI.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);

db.documents.read(

MarkLogic Server Introduction to the Node.js Client API

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 13

 '/gs/cobra.json'
).result(function(documents) {
 documents.forEach(function(document) {
 console.log(JSON.stringify(document, null, 2) + '\n');
 });
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

You should see output similar to the following:

{
 "uri": "/gs/cobra.json",
 "category": "content",
 "format": "json",
 "contentType": "application/json",
 "contentLength": "106",
 "content": {
 "name": "cobra",
 "kind": "reptile",
 "desc": "The cobra is a venomous, hooded snake of the family Elapidae."
 }
}

9. Optionally, delete the example documents: Copy the following script to a file and run it
using the node command. To confirm deletion of the documents, you can re-run the script
from Step 8.

// Remove the example documents from the database.
// This example removes all the documents in the directory
// /gs/. You can also remove documents by document URI.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);

db.documents.removeAll(
 {directory: '/gs/'}
).result(function(response) {
 console.log(response);
});

You should see output similar to the following:

{ exists: false, directory: '/gs/' }

Document removal is an idempotent operation. Running the script again produces the
same output.

To explore the API further, see the following resources:

MarkLogic Server Introduction to the Node.js Client API

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 14

1.2 Required Software
To use the Node.js Client API, you must have the following software:

• MarkLogic 8 or later. Features in version 2.0.x of the Node.js Client API can only be used
with MarkLogic 9 or later.

• Node.js, version 6.3.1 or later. Node.js is available from http://nodejs.org.

• The Node.js Package Manager tool, npm. The latest version compatible with a supported
Node.js version is recommended.

• If you plan to use Kerberos for authentication, you must have the MIT Kerberos software.
For details, see “Using Kerberos Authentication” on page 29.

The examples in this guide assume you have the node and npm commands on your path.

If You Want To Then See

Explore more examples The examples and tests that are distributed with the
API. Sources are available from
http://github.com/marklogic/node-client-api or in your
node_modules/marklogic directory after you install
the API.

Learn about reading and writing
documents and metadata

“Manipulating Documents” on page 32.

Learn about searching documents and
querying lexicons and indexes

“Querying Documents and Metadata” on page 116.

The Search Developer’s Guide

Learn about extension points such as
content transformations and resource
service extensions

“Extensions, Transformations, and Server-Side
Code Execution” on page 221

Explore the low level API
documentation.

The Node.js API Reference.

You can also generate a local copy of the API
reference. For details, see the project page on
GitHub: http://github.com/marklogic/node-client-api

http://github.com/marklogic/node-client-api
http://github.com/marklogic/node-client-api
http://nodejs.org
/jsdoc/index.html

MarkLogic Server Introduction to the Node.js Client API

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 15

1.3 Security Requirements
This describes the basic security model used by the Node.js Client API, and some common
situations in which you might need to change or extend it. The following topics are covered:

• Basic Security Requirements

• Controlling Document Access

• Evaluating Requests Against a Different Database

• Evaluating or Invoking Server-Side Code

1.3.1 Basic Security Requirements
The user you specify when creating a DatabaseClient object must have appropriate URI
privileges for the content accessed by the operations performed, such as permission to read or
update documents in the target database.

The Node.js Client uses the MarkLogic REST Client API to communicate with MarkLogic
Server, so it uses the same security model. In addition to proper URI privileges, the user must
have one of the pre-defined roles listed below, or the equivalent privleges. The capabilities of
each role in the table is subsumed in the roles below it.

Some operations require additional privileges, such as using a database other than the default
database associated with the REST instance and using eval or invoke methods of DatabaseClient.
These requirements are detailed below.

Role Description

rest-extension-user Enables access to resource service extension methods. This role is
implicit in the other pre-defined REST API roles, but you may need to
explicitly include it when defining custom roles.

rest-reader Enables read operations, such as retrieving documents and metadata.
This role does not grant any other privileges, so the user might still
require additional privileges to read content.

rest-writer Enables write operations, such as creating documents, metadata, or
configuration information. This role does not grant any other
privileges, so the user might still require additional privileges to write
content.

rest-admin Enables administrative operations, such as creating an instance and
managing instance configuration. This role does not grant any other
privileges, so the user might still require additional privileges.

MarkLogic Server Introduction to the Node.js Client API

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 16

1.3.2 Controlling Document Access
Documents you create using the Node.js Client API default roles have a read permission for the
rest-reader role and an update permission for the rest-writer role. By default, users with the
rest-reader role can read all documents created as rest-reader and users with the rest-writer
role can write all documents created as rest-writer. You can override this behavior using
document permissions and/or custom roles.

To restrict access to particular users, create custom roles rather than assigning users to the default
rest-* roles. For example, you can use a custom role to restrict users in one group from seeing
documents created by another.

For details, see Controlling Access to Documents and Other Artifacts in the REST Application
Developer’s Guide.

1.3.3 Evaluating Requests Against a Different Database
When you connect to a MarkLogic Server instance by creating a DatabaseClient, the REST
instance you connect to has a default content database associated with it. You can specify an
alternative database when you create the DatabaseClient, but to perform operations against an
alternative database requires the http://marklogic.com/xdmp/privileges/xdmp-eval-in privilege
or equivalent.

To enable your application to use a different database:

1. Create a role with the xdmp:eval-in execution privilege, in addition to appropriate mix of
rest-* roles. (You can also add the privileges to an existing role.)

2. Assign the role from Step 1 to a user.

3. Create a DatabaseClient with the user from Step 2.

One simple way to achieve this is to inherit from one of the predefined rest-* roles and then
addin the eval-in privileges.

For details about roles and privileges, see the Security Guide. To learn more about managing
REST API instances, see “Administering REST API Instances” on page 261.

1.3.4 Evaluating or Invoking Server-Side Code
You can use the DatabaseClient.eval and DatabaseClient.invoke operations to evaluate arbitrary
code on MarkLogic Server. These operations require special privileges instead of (or in addition
to) the normal REST API roles like rest-reader and rest-writer.

For details, see “Required Privileges” on page 248.

MarkLogic Server Introduction to the Node.js Client API

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 17

1.4 Terms and Definitions
This guide uses the following terms and definitions:

Term Definition

REST Client API A MarkLogic API for developing applications that communicate with
MarkLogic using RESTful HTTP requests. The Node.js Client API is
built on top of the REST Client API.

REST API instance A MarkLogic HTTP App Server specially configured to service
REST Client API requests. The Node.js Client API requires a REST
API instance. One is available on port 8000 as soon as you install
MarkLogic. For details, see “What Is a REST API Instance?” on
page 261.

npm The Node.js package manager. Use npm to download and install the
Node.js Client API and its dependencies.

builder An interface in the Node.js Client API that exposes functions for
building potentially complex data structures such as queries
(marklogic.queryBuilder) and document patches
(marklogic.patchBuilder).

Promise A Promise is a JavaScript interface for interacting with the outcome of
an asynchronous event. For details, see “Promise Result Handling
Pattern” on page 20.

MarkLogic module The module that encapsulates the Node.js Client API. Include the
module in your application using require(). For details, see
“MarkLogic Namespace” on page 18.

document descriptor An object that encapsulates document content and metadata as named
JavaScript object properties. For details, see “Document Descriptor”
on page 19.

database client A special object that encapsulates your connection to MarkLogic
Server through a REST API instance. Almost all Node.js Client API
operations take place through a database client object. For details, see
“Creating a Database Client” on page 25.

git A source control management system. You will need a git client if you
want to checkout and use the Node.js Client API sources.

GitHub The open source project repository that hosts the Node.js Client API
project. For details, see http://github.com/.

http://github.com/

MarkLogic Server Introduction to the Node.js Client API

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 18

1.5 Key Concepts and Conventions
• MarkLogic Namespace

• Parameter Passing Conventions

• Document Descriptor

• Supported Result Handling Techniques

• Promise Result Handling Pattern

• Stream Result Handling Pattern

• Streaming Into the Database

• Performing Point-in-Time Operations

• Error Handling

1.5.1 MarkLogic Namespace
The Node.js Client API library exports a namespace that provides a database client factory
method and access to builders such as queryBuilder (search), valuesBuilder (values queries), and
patchBuilder (partial document updates).

To include the MarkLogic module in your code, use require() and bind the result to a variable.
For example, you can include it by the name “marklogic” if you have installed in the module
under your own Node.js project:

const ml = require('marklogic');

You can use any variable name, but the examples in this guide assume ml.

1.5.2 Parameter Passing Conventions
Node.js Client API functions that require many input parameter values accept these values as
named properties of a call object. For example, you can specify a hostname, port, database name,
and several other connection properties when calling the createDatabaseClient() method. Do so
by encapsulating these values in a single object, such as the following:

ml.createDatabaseClient({host: 'some-host', port: 8003, ...});

Where a parameter value can have one or more values, the value of the property can be either a
single value or an array of values. Some functions support either an array or a list. For example:

db.documents.write(docDescriptor)
db.documents.write([docDescriptor1, docDescriptor2, ...])
db.documents.write(docDescriptor1, docDescriptor2, ...)

MarkLogic Server Introduction to the Node.js Client API

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 19

Where a function has a parameter that is frequently used without other parameters, you can pass
the parameter directly as a convenient alternative to encapsulating it in a call object. For example,
DatabaseClient.documents.remove accepts either a call object that can have several properties, or
a single URI string:

db.documents.remove('/my/doc.json')
db.documents.remove({uri: '/my/doc.json', txid: ...})

For details on a particular operation, see the Node.js API Reference.

1.5.3 Document Descriptor
A document descriptor is an object that encapsulates document content and metadata as named
JavaScript object properties. Node.js Client API document operations such as
DatabaseClient.documents.read and DatabaseClient.documents.write accept and return
document descriptors.

A document descriptor usually includes at least the database URI and properties representing
document content, document metadata, or both. For example, the following is a document
descriptor for a document with URI /doc/example.json. Since the document is a JSON document,
its contents can be expressed as a JavaScript object.

{ uri : 'example.json', content : {some : 'data'} }

Not all properties are always present. For example if you read just the contents of a document,
there will be no metadata-related properties in the resulting document descriptor. Similarly, if you
insert just content and the collections metadata property, the input descriptor will not include
permissions or quality properties.

{ uri : 'example.json',
 content : {some : 'data'},
 collections : ['my-collection']
}

The content property can be an object, string, Buffer, or ReadableStream.

See DocumentDescriptor in the Node.js API Reference for a complete list of property names.

1.5.4 Supported Result Handling Techniques
Most functions in the Node.js Client API support the following ways of processing results
returned by MarkLogic Server:

• Callback: Call the result function, passing in a success and/or error callback function.
Use this pattern when you don’t need to synchronize results. For example:

db.documents.read(...).result(function(response) {...})

/jsdoc/index.html
/jsdoc/index.html

MarkLogic Server Introduction to the Node.js Client API

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 20

• Promise: Call the result function and process the results through a Promise. Use Promises
to chain interactions together, such as writing documents to the database, followed by a
search. Your success callback is not invoked until all the requested data has been returned
by MarkLogic Server. For example:

db.documents.read(...).result().then(function(response) {...})...

For details, see “Promise Result Handling Pattern” on page 20.

• Object Mode Streaming: Call the stream function and process the results through a
Readable stream. Your code gets control each time a document or other discrete part is
received in full. If you’re reading a JSON document, it is converted to a JavaScript object
before invoking your callback. For example:

db.documents.read(...).stream().pipe(...)

For details, see “Stream Result Handling Pattern” on page 21.

• Chunked Mode Streaming: Call the stream function with a 'chunked' argument and
process the results through a Readable stream. Your code gets control each time a
sufficient number of bytes are accumulated, and the input to your callback is a byte
stream.

db.documents.read(...).stream('chunked').pipe(...)

For details, see “Stream Result Handling Pattern” on page 21.

When you use the classic callback or promise pattern, your code does not get control until all
results are returned by MarkLogic. This is suitable for operations that do not return a large amount
of data, such as a read operation that returns a small number of documents or a write. Streaming is
better suited to handling large files or a large number documents because it allows you to process
results incrementally.

Note: Errors in the user code of a success callback are handled in the next error callback.
Therefore, you should include a catch clause to handle such errors. For details, see
“Error Handling” on page 24.

1.5.5 Promise Result Handling Pattern
Node.js Client API functions return an object with a result() method that returns a Promise
object. A Promise is a JavaScript interface for interacting with the outcome of an asynchronous
event. A Promise has then, catch, and finally methods. For details, see http://promisesaplus.com/.
Promises can be chained together to synchronize multiple operations.

The success callback you pass to the Promise then method is not invoked until your interaction
with MarkLogic completes and all results are received. The Promise pattern is well suited to
synchronizing operations.

http://promisesaplus.com/

MarkLogic Server Introduction to the Node.js Client API

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 21

For example, you can use a sequence such as the following to insert documents into the database,
query them after the insertion completes, and then work with the query results.

db.documents.write(...).result().then(
 function(response) {
 // search the documents after insertion
 return db.documents.query(...).result();
 }).then(function(documents) {
 // work with the documents matched by the query
 });

For a more complete example, see “Example: Using Promises With a Multi-Statement
Transaction” on page 218.

Note: You should include a catch clause in your promise chain to handle errors raised in
user code in your success callbacks. For details, see “Error Handling” on page 24.

The Node.js Client API also supports a stream pattern for processing results. A stream is better
suited to handling very large amounts of data than a Promise. For details, see “Stream Result
Handling Pattern” on page 21.

1.5.6 Stream Result Handling Pattern
Node.js Client API functions return an object with a stream method that returns a Readable stream
on the results from MarkLogic. Streams enable you to process results incrementally. Consider
using streaming if you’re reading a large number of documents or if your documents are large.

Streams can provide better throughput at lower memory overhead than the Promises when you’re
working with large amounts of data because result data can be processed as it is received from
MarkLogic Server.

Two stream modes are supported:

• Object Mode: Your code gets control each time a complete document or other discrete
part is received. A Document Descriptor is the unit of interaction. For a JSON document, the
content in the descriptor is converted into JavaScript object for ease of use. Object mode is
the default streaming mode.

• Chunked mode: Your code gets control each time a certain number of bytes is received.
An opaque byte stream is the unit of interaction. Enable chunked mode by passing the
value 'chunked' to the stream method.

Object mode is best when you need to handle each portion of the result as a document or object.
For example, if you persist a collection of domain objects in the database as JSON documents and
then want to restore them as JavaScript objects in your application. Chunked mode is best for
handling large amounts of data opaquely, such as reading a large binary file from the database and
saving it out to file.

MarkLogic Server Introduction to the Node.js Client API

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 22

The following code snippet uses a stream in object mode to process multiple documents as they
are fetched from the database. Each time a complete document is received, the stream on('data')
callback is invoked with a document descriptor. When all documents are received, the on('end')
callback is called.

db.documents.read(uri1, uri2, uriN).stream()
 .on('data', function(document) {
 // process one document
 }).on('end', function() {
 //wrap it up
 }).on('error', function(error) {
 // handle errors
 });

The following code snippet uses a stream in chunked mode to stream a large binary file from the
database into a file using pipe.

const fs = require('fs');
const ostrm = fs.createWriteStream(outFilePath);

db.document.read(largeFileUri).stream('chunked').pipe(ostrm);

The Promise pattern is usually more convenient if you are not processing a large amount of data.
For details, see “Promise Result Handling Pattern” on page 20.

1.5.7 Streaming Into the Database
Most Node.js methods that deal with potentially large input datasets support using a
ReadableStream to pass in the data. For example , the content property of a document descriptor
passed to DatabaseClient.documents.write can be an object, a string, a Buffer, or a Readable
stream. If you’re simply streaming data from a source such as a file, this interface is all you need.

For example, the following call uses a Readable stream to stream an image from a file into the
database:

db.documents.write({
 uri: '/my/image.png',
 contentType: 'image/png',
 content: fs.createReadStream(pathToImage)
})

If you are assembling the stream on the fly, or otherwise need to have fine grained control, you
can use the createWriteStream method of the documents and graphs interfaces. For example, if
you use DatabaseClient.documents.createWriteStream instead of
DatabaseClient.documents.write, you can control the calls to write so you can assemble the
documents yourself, as shown below:

const ws = db.documents.createWriteStream({
 uri: '/my/data.json',
 contentType: 'application/json',

MarkLogic Server Introduction to the Node.js Client API

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 23

});
// Resulting doc contains {"key":"value"}
ws.write('"{key"', 'utf8');
ws.write(': "value"}', 'utf8');
ws.end();

You can use the writeable stream interface to load documents and semantic graphs. For details,
see documents.createWriteStream and graphs.createWriteStream in the Node.js API Reference.

1.5.8 Performing Point-in-Time Operations
If you need to perform read-only operations spanning multiple requests that must all return results
based on a consistent snapshot of the database, you can use the “point-in-time query” feature of
the Node.js Client API. In this context, “query” means a read-only operation, such as a search or
document read.

Most read-only operations accept an optional Timestamp object, created by calling
DatabaseClient.createTimestamp. If no explicit timestamp value is set on the object, then the
timestamp is set during execution of the read-only operation.

Alternatively, you can supply an explicit timestamp when creating a timestamp. This must be a
timestamp generated by MarkLogic, not an arbitrary value you create. To learn more about
point-in-time queries (reads) and timestamps, see Point-In-Time Queries in the Application
Developer’s Guide.

When you pass a Timestamp object whose timestamp is set to subsequent supporting operations,
these operations see the same snapshot of the database.

For example, suppose you are incrementally fetching search results in a context in which the
database is changing and consistency of results is important. If you pass a Timestamp object on the
search, then the effective query timestamp is captured in the Timestamp object and you can pass
the object in to subsequent searches.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
const qb = marklogic.queryBuilder;
let timestamp = db.createTimestamp();

// First search sets the timestamp value
db.documents.query(
 qb.where(qb.parsedFrom('cat AND dog')).slice(0,5),
 timestamp
).result().then(function(results) {
 console.log(JSON.stringify(results, null, 2));
});

// ...perform subsequent searches, re-using the same timestamp object

/jsdoc/index.html

MarkLogic Server Introduction to the Node.js Client API

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 24

Another example use case is reading a large number of documents from the database by URI (or
search query) in batches. If you need a consistent snapshot of the documents, use the
point-in-time feature.

You can use this feature across different kinds of operations. For example you might get the initial
timestamp from a search, and then use it to perform a SPARQL query at the same point-in-time.

This capability is supported on any operation that accepts a timestamp parameter, including the
following:

• Document read: DatabaseClient.documents.read

• Document search: DatabaseClient.documents.query

• Values Query: DatabaseClient.values.read

• Semantic Search: DatabaseClient.graphs.sparql

• Semantic Update: DatabaseClient.graphs.sparqlUpdate

• Semantic Graph Access: DatabaseClient.graphs.read and DatabaseClient.graphs.list

• Rows Query: DatabaseClient.rows.query

For more details, see the Node.js Client API Reference.

1.5.9 Error Handling
When using the callback or promise pattern, errors in your success callback are handled in the
next error callback. If you want to trap such errors, you should include a catch clause at the end of
your promise chain (or after your result handler, in the case of the callback pattern). Simply
wrapping a try-catch block around your call(s) will not trap such errors.

For example, in the case of the classic callback pattern, if you made a call to
DatabaseClient.documents.write, you should end with a catch similar to the following. The
onError function executes if the onSuccess callback throws an exception.

db.documents.write(...)
 .result(function onSuccess(response) {...})
 .catch(function onError(err) {...});

Similarly if you’re chaining requests together using thePromise pattern, then you should terminate
the chain with a similar handler:

db.documents.write(...).result()
 .then(function onSuccess1(response) {...})
 .then(function onSuccess2(response) {...})
 .catch(function onError(err) {...});

MarkLogic Server Introduction to the Node.js Client API

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 25

1.6 Creating a Database Client
All the interactions of your application with MarkLogic Server are through a
marklogic.DatabaseClient object. Each database client manages a connection by one user to a
REST API instance and a particular database. Your application can create multiple database
clients for connecting to different REST API instances, connecting to different databases, or
connecting as different users.

Note: If you use multi-statement transactions and multiple databases, note that the
database context in which you perform an operation as part of a multi-statement
transaction must be the same as the database context in which the transaction was
created. The same restriction applies to commiting or rolling back a
multi-statement transaction.

To create a database client, call marklogic.createDatabaseClient with a parameter that describes
the connection details. For example, the following code creates a database client attached to the
REST API instance listening on the default host and port (localhost:8000), using the default
database associated with the instance, and digest authentication. The connection authenticates as
user “me” with password “mypwd”.

const ml = require('marklogic');
const db = ml.createDatabaseClient({user:'me', password:'mypwd'});

The connection details must include a username and password if you are not using certificate
based authentication or Kerberos. You can include additional properties. The following table lists
key properties you can include in the connection object passed to createDatabaseClient.

Property
Name DefaultValue Description

host localhost A MarkLogic Server host with a configured
REST API instance.

port 8000 The port on which the REST API instance
listens.

database the default database associated
with the REST instance

The database against which document operations
and queries are performed. Specifying a
database other than the REST API instance
default requires the xdmp-eval-in privilege. For
details, see “Evaluating Requests Against a
Different Database” on page 16.

MarkLogic Server Introduction to the Node.js Client API

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 26

For details, see marklogic.createDatabaseClient in the Node.js API Reference and “Administering
REST API Instances” on page 261.

1.7 Authentication and Connection Security
This section provides an overview of how to configure authentication and SSL when creating a
database client and establishing a connection to MarkLogic. This section covers the following
topics:

• Connecting to MarkLogic with SSL

• Using Certificate-Based Authentication

• Using Kerberos Authentication

1.7.1 Connecting to MarkLogic with SSL
You can combine an ssl property with any of the authentication methods so that your database
client object uses a secure connection to MarkLogic. For example:

ml.createDatabaseClient({
 user: 'me',
 password: 'mypassword',
 authType: 'digest',
 ssl: true
})

authType digest The authentication method to use in establishing
the connection. Allowed values: basic, digest,
digestbasic, application-level, or
kerberos-ticket. This must match the
authentication method configured on the REST
API instance. For details, see the Security Guide.

ssl false Whether or not to establish an SSL connection.
For details, see Configuring SSL on App Servers in
the Security Guide. When set to true, you can
include additional SSL properties on the
connection object. These are passed through to
the agent. For a list of these properties, see
http://nodejs.org/api/https.html#https_https_request_
options_callback

agent max of 10 free sockets; total of
50 sockets kept alive for 60
seconds

A connection pooling agent.

Property
Name DefaultValue Description

http://nodejs.org/api/https.html#https_https_request_options_callback
/jsdoc/index.html

MarkLogic Server Introduction to the Node.js Client API

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 27

Your App Server must be SSL-enabled. For details, see Configuring SSL on App Servers in the
Security Guide.

The Node.js Client API must be able to verify that MarkLogic is sending a legitimate certificate
when first establishing the connection. If the certificate is signed by an authority other than one of
the established authorities like VeriSign, then you must include a certificate from the certification
authority in your database client configuration. Use the ca property to specify a certificate
authority. For example:

ml.createDatabaseClient({
 authType: 'certificate',
 ssl: true
 ca: fs.readFileSync('ca.crt')
})

For more details, see Procedures for Obtaining a Signed Certificate in the Security Guide.

1.7.2 Using Certificate-Based Authentication
When using certificate-based authentication, your client application obtains a certificate signed by
a certificate authority, along with the certificate’s private key. The certificate contains a public key
and other information required to establish a connection.

See the following topics for details:

• Obtaining a Client Certificate

• Configuring Your App Server

• Examples: Database Client Configuration

Note: You can only use certificate-based authentication with the Node.js Client API
when you connect to MarkLogic using SSL. For details, see “Connecting to
MarkLogic with SSL” on page 26.

1.7.2.1 Obtaining a Client Certificate
You can use either a client certificate signed by an established certificate authority or a
self-signed certificate. Choose one of the following options:

• Obtain a client certificate from an established certificate authority such as Verisign.

• Create a self-signed certificate.

To obtain a client certificate signed by an established certificate authority, create a certificate
signing request (CSR) using OpenSSL software or a similar tool, then send the CSR to the
certificate authority. For details, see http://openssl.org and man page for the openssl req command.

http://openssl.org

MarkLogic Server Introduction to the Node.js Client API

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 28

To create a self-signed certificate, install your own certificate authority in MarkLogic, and then
use that certificate authority to self-sign your client certificate. For details, see Creating a Certificate
Authority in the Security Guide.

To obtain a client certificate and the associated key by self-signing, use the
xdmp.x509CertificateGenerate Server-Side JavaScript function or the
xdmp:x509-certificate-generate XQuery function. Set the private-key parameter to null, and
set the credentialId option to correspond to your certificate authority. For example:

const x509Config = ...;
const cert = xdmp.x509CertificateGenerate(
 x509Config, null, {credentialId: xdmp.credentialId('ca-cred')});

1.7.2.2 Configuring Your App Server
Your App Server must also be configured for certificate-based authentication and SSL. For more
details, see Configuring an App Server for External Authentication and Procedures for Enabling SSL on
App Servers in the Security Guide. When configuring the App Server for SSL, include the
following steps; for more details, see Enabling SSL for an App Server in the Security Guide.

1. Set “ssl require client certificate” to true.

2. Click Show under “SSL Client Certificate Authorities”, and then select the certificate
authorities that can be used to sign client certificates for the server

1.7.2.3 Examples: Database Client Configuration
For example, if you have a certificate in a file named “client.crt” and a private key in a file named
“clientpriv.pem”, you can use them in your database client configuration as follows,:

ml.createDatabaseClient({
 authType: 'certificate',
 cert: fs.readFileSync('client.crt'),
 key: fs.readFileSync('clientpriv.pem'),
 ssl: true
})

For enhanced security, the client certificate and private key can also be combined into a single
PKCS12 file that can be protected with a passphrase. For details, see http://openssl.org and the man
page for the “openssl pkcs12” command.

For example, if you have a PKCS12 file named “credentials.pfx”, then you can use the file and
your passphrase in your database client configuration as follows:

ml.createDatabaseClient({
 authType: 'certificate',
 pfx: fs.readFileSync('credentials.pfx'),
 key: 'yourPassphrase',

http://openssl.org

MarkLogic Server Introduction to the Node.js Client API

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 29

 ssl: true
})

You can also use a certificate with basic or digest authentication to enhance the security of these
methods. For example, the following code uses a certificate with digest authentication:

ml.createDatabaseClient({
 user: 'me',
 password: 'mypassword',
 authType: 'digest',
 cert: fs.readFileSync('client.crt'),
 key: fs.readFileSync('clientpriv.pem'),
 ssl: true
})

1.7.3 Using Kerberos Authentication
Use the following steps to configure your MarkLogic installation and client application
environment for Kerberos authentication:

• Configuring MarkLogic to Use Kerberos

• Configuring Your Client Host for Kerberos

• Creating a Database Client That Uses Kerberos

1.7.3.1 Configuring MarkLogic to Use Kerberos
Before you can use Kerberos authentication, you must configure MarkLogic to use external
security. If your installation is not already configured for Kerberos, you must perform at least the
following steps:

1. Create a Kerberos external security configuration object. For details, see Creating an
External Authentication Configuration Object in the Security Guide.

2. Create a Kerberos keytab file and install it in your MarkLogic installation. For details, see
Creating a Kerberos keytab File in the Security Guide.

3. Create one or more users associated with an external name. For details, see Assigning an
External Name to a User in the Security Guide.

4. Configure your App Server to use “kerberos-ticket” authentication. For details, see
Configuring an App Server for External Authentication in the Security Guide.

For more details, see External Security in the Security Guide.

1.7.3.2 Configuring Your Client Host for Kerberos
On the client, the Node.js Client API must be able to access a Ticket-Granting Ticket (TGT) from
the Kerberos Key Distribution Center. The API uses the TGT to obtain a Kerberos service ticket.

MarkLogic Server Introduction to the Node.js Client API

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 30

Follow these steps to make a TGT available to the client application:

1. Install MIT Kerberos in your client environment if it is not already installed. You can
download this software from http://www.kerberos.org/software/index.html.

2. If this is a new installation of MIT Kerberos, configure your installation by editing the
krb5.conf file. On Linux, this file is located in /etc/ by default. For details, see
https://web.mit.edu/kerberos/krb5-1.15/doc/admin/conf_files/krb5_conf.html.

3. Use kinit on your client host to create and cache a TGT with the Kerberos Key
Distribution Center. The principal supplied to kinit must be one you associated with a
MarkLogic user when performing the steps in Configuring MarkLogic to Use Kerberos.

For more details, see the following topics:

• https://web.mit.edu/kerberos/krb5-1.15/doc/user/user_commands/kinit.html

• http://web.mit.edu/kerberos/krb5-current/doc/user/tkt_mgmt.html#obtaining-tickets-with-kinit

1.7.3.3 Creating a Database Client That Uses Kerberos
In your client application, set the authType property to 'kerberos' when creating a database client.

For example, assuming you’re connecting to localhost on port 8000 and therefore don’t need to
explicitly specify host and port, then the following call creates a database client object that
connects to localhost:8000 using kerberos authentication:

ml.createDatabaseClient({authType: 'kerberos'});

1.8 Using the Examples in This Guide
All requests to MarkLogic Server using the Node.js Client API go through a DatabaseClient
object. Therefore, all the examples begin by creating such an object. Creating a DatabaseClient
requires you to specify MarkLogic Server connection information such as host, port, user, and
password.

Most of the examples in this guide abstract away the connection details by require’ing a module
named my-connection.js that exports a connection object suitable for use with
marklogic.createDatabaseClient. This encapsulation is only done for convenience. You are not
required to do likewise in your application.

For example, the following statements appear near the top of each example in this guide:

const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

http://www.kerberos.org/software/index.html
http://web.mit.edu/kerberos/krb5-current/doc/user/tkt_mgmt.html#obtaining-tickets-with-kinit
https://web.mit.edu/kerberos/krb5-1.15/doc/admin/conf_files/krb5_conf.html
https://web.mit.edu/kerberos/krb5-1.15/doc/user/user_commands/kinit.html

MarkLogic Server Introduction to the Node.js Client API

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 31

To use the examples you should first create a file named my-connection.js with the following
contents. This file should be co-located with any scripts you create by copying the examples in
this guide.

module.exports = {
 connInfo: {
 host: 'localhost',
 port: 8000,
 user: your-ml-username,
 password: your-ml-user-password
 }
};

Modify the connection details to match your environment. You must modify at least the user and
password properties. Most examples require a user with the rest-reader and/or rest-writer role
or equivalent, but some operations require additional privileges. For details, see “Security
Requirements” on page 15.

If you do not create my-connection.js, modify the calls to marklogic.createDatabaseClient in
the examples to provide connection details in another way.

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 32

2.0 Manipulating Documents
68

This chapter discusses the following topics related to using the Node.js Client API to create, read,
update and delete documents and metadata:

• Introduction to Document Operations

• Loading Documents into the Database

• Reading Documents from the Database

• Removing Content from the Database

• Managing Collections of Objects and Documents

• Performing a Lightweight Document Check

• Conditional Updates Using Optimistic Locking

• Working with Binary Documents

• Working with Temporal Documents

• Working with Metadata

2.1 Introduction to Document Operations
The Node.js Client API exposes functions for creating, reading, updating and deleting documents
and document metadata.

Most document manipulation functions are provided through the DatabaseClient.documents
interface. For example, the following code snippet reads a document by creating a database client
object and invoking its documents.read() method:

const ml = require('marklogic');
const db = ml.createDatabaseClient({'user':'me','password':'mypwd'});

db.documents.read('/doc/example.json'). ...;

The DatabaseClient interface includes read and write operations for binding JavaScript objects to
Database documents, such as DatabaseClient.read and DatabaseClient.createCollection.
Generally, these operations provide a simpler but less powerful capability than the equivalent
method of DatabaseClient.documents. For example, you cannot specify a transaction id or read
document metadata using DatabaseClient.read.

Several of the DatabaseClient.documents interfaces accept or return document descriptors that
encapsulate data such as the URI and document content. For details, see “Input Document
Descriptors” on page 36 and “Document Descriptor” on page 19.

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 33

When loading data into the database, the DatabaseClient.documents.write method provides the
most control and richest feature set. However, if you do not need that level control, one of the
other interfaces may be simpler to use. For example, if you just want to save JavaScript domain
objects in the database, DatabaseClient.createCollection enables you to do so without creating
document descriptors or constructing document URIs.

By default, each Node.js Client API call that interacts with the database represents a complete
transactional operation. For example, if you use a single call to DatabaseClient.Documents.write
to update multiple documents, then all the updates are applied as part of the same transaction, and
the transaction is committed when the operation completes on the server. You can use
multi-statement transactions to have multiple client-side operations span a single transaction. For
details, see “Managing Transactions” on page 214.

The following table lists some common tasks related to writing to the databaes, along with the
method best suited for the completing the task. For a complete list of interfaces, see the Node.js
API Reference.

If you want to Then use

Save a collection of JavaScript objects in the
database as JSON documents.

DatabaseClient.createCollection

For details, see “Managing Collections of
Objects and Documents” on page 53.

Update a collection of JavaScript objects
created using
DatabaseClient.createCollection.

DatabaseClient.writeCollection

For details, see “Managing Collections of
Objects and Documents” on page 53.

Insert or update a collection of documents by
URI.

DatabaseClient.writeCollection

For details, see “Managing Collections of
Objects and Documents” on page 53.

Insert or update document metadata, with or
without accompanying content.

DatabaseClient.documents.write

For details, see “Inserting or Updating
Metadata for One Document” on page 41.

Insert or update documents and/or metadata in
the context of a multi-statement transaction.

DatabaseClient.documents.write

For details, see “Loading Documents into the
Database” on page 35.

/jsdoc/index.html
/jsdoc/index.html

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 34

The following table lists some common tasks related to reading data from the database, along with
the functions best suited for each task. For a complete list of interfaces, see the Node.js API
Reference.

Apply a content transformation while loading
documents.

DatabaseClient.documents.write

For details, see “Loading Documents into the
Database” on page 35 and “Transforming
Content During Ingestion” on page 42.

Update a portion of a document or its
metadata, rather than replacing the entire
document.

DatabaseClient.documents.patch

For details, see “Patching Document Content
or Metadata” on page 69.

If you want to Then use

Read the contents of one or more documents
by URI.

DatabaseClient.read

Restore a collection of JavaScript objects
previously saved in the in database using
DatabaseClient.createCollection.

DatabaseClient.documents.query

For details, see “Querying Documents and
Metadata” on page 116 and “Managing
Collections of Objects and Documents” on
page 53.

Read one or more documents and/or metadata
by URI.

DatabaseClient.documents.read

For details, see “Reading Documents from the
Database” on page 43.

Read the contents of one or more documents
and/or metadata by URI and apply a read
transformation.

DatabaseClient.documents.read

For details, see “Reading Documents from the
Database” on page 43 and “Transforming
Content During Retrieval” on page 49.

Read one or more documents and/or metadata
by URI in the context of a multi-statement
transaction.

DatabaseClient.documents.read

For details, see “Reading Documents from the
Database” on page 43.

If you want to Then use

/jsdoc/index.html
/jsdoc/index.html

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 35

2.2 Loading Documents into the Database
Use the DatabaseClient.documents.write or DatabaseClient.documents.createWriteStream
methods to insert document content and metadata into the database. The stream interface is
primarily intended for writing large documents such as binaries.

• Overview

• Input Document Descriptors

• Calling Convention

• Example: Loading A Single Document

• Example: Loading Multiple Documents

• Inserting or Updating Metadata for One Document

• Automatically Generating Document URIs

• Transforming Content During Ingestion

2.2.1 Overview
Use DatabaseClient.documents.write to insert or update whole documents and/or metadata. To
update only a portion of a document or its metadata, use DatabaseClient.documents.patch; for
details, see “Patching Document Content or Metadata” on page 69.

The primary input to the write function is one or more document descriptors. Each descriptor
encapsulates a document URI with the content and/or metadata to be written. For details, see
“Input Document Descriptors” on page 36.

For example, the following call writes a single document with the URI /doc/example.json:

const db = marklogic.createDatabaseClient(...);
db.documents.write(
 { uri: '/doc/example.json',

Read documents and/or metadata that match a
query.

DatabaseClient.documents.query

For details, see “Querying Documents and
Metadata” on page 116.

Query and analyze values in lexicons and
range indexes. For details, see “Querying
Lexicons and Range Indexes” on page 151.

DatabaseClient.values.read

Read a semantic graph from the database. For
details, see Node.js API Reference.

DatabaseClient.graphs.read

If you want to Then use

/jsdoc/index.html

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 36

 contentType: 'application/json',
 content: { some: 'data' }
 }
);

Write multiple documents by passing in multiple desriptors. For example, the following call
writes 2 documents:

db.documents.write(
 { uri: '/doc/example1.json',
 contentType: 'application/json',
 content: { data: 'one' }
 },
 { uri: '/doc/example2.json',
 contentType: 'application/json',
 content: { data: 'two' }
 },
);

Descriptors can be passed as individual parameters, in an array, or in an encapsulating call object.
For details, see “Calling Convention” on page 37.

You can take action based on the success or failure of a write operation by calling the result()
function on the return value. For details, see “Supported Result Handling Techniques” on page 19.

For example, the following code snippet prints an error message to the console if the write fails:

db.documents.write(
 { uri: '/doc/example.json',
 contentType: 'application/json',
 content: { some: 'data' }
 }
).result(null, function(error) {
 console.log(
})

2.2.2 Input Document Descriptors
Each document to be written is described by a document descriptor. The document descriptor
must include a URI and either content, metadata, or both content and metadata. For details, see
“Document Descriptor” on page 19.

For example, the following is a document descriptor for a document with URI
/doc/example.json. The document contents are expressed as a JavaScript object containing a
single property.

{ uri: '/doc/example.json', content: {'key': 'value'} }

The content property in a document descriptor can be an object, a string, a Buffer, or a
ReadableStream.

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 37

Metadata is expressed as properties of a document descriptor when it applies to a specific
document. Metadata is expressed as properties of a call object when it applies to multiple
documents; for details, see “Inserting or Updating Metadata for One Document” on page 41.

For example, the following document descriptor includes collection and document quality
metadata for the document with URI /doc/example.json:

{ uri: '/doc/example.json’,
 content: {'key': 'value'},
 collections: ['collection1', 'collection2'],
 quality: 2
}

2.2.3 Calling Convention
You must pass at least one document descriptor to DatabaseClient.documents.write. You can
also include additional properties such as a transform name or a transaction id. The parameters
passed to documents.write can take one of the following forms:

• One or more document descriptors: db.documents.write(desc1, desc2,...).

• An array of one or more document descriptors: db.documents.write([desc1, desc2,
...]).

• A call object that encapsulates a document descriptor array and additional optional
properties: db.documents.write({documents: [desc1, desc2, ...], txid: ..., ...}).

The following calls are equivalent:

// passing document descriptors as parameters
db.documents.write(
 {uri: '/doc/example1.json', content: {...}},
 {uri: '/doc/example2.json', content: {...}}
);

// passing document descriptors in an array
db.documents.write([
 {uri: '/doc/example1.json', content: {...}},
 {uri: '/doc/example1.json', content: {...}}
]);

// passing document descriptors in a call object
db.documents.write({
 documents: [
 {uri: '/doc/example1.json', content: {...}},
 {uri: '/doc/example2.json', content: {...}}
],
 additional optional properties
});

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 38

The additional optional properties can include a transform specification, transaction id, or
temporal collection name; for details, see the Node.js API Reference. You can always specify such
properties as properties of a call object.

For example, the following call includes a transaction id (txid) as an additional property of the
call object:

// passing a transaction id as a call object property
db.documents.write({
 documents: [
 {uri: '/doc/example1.json', content: {...}},
 {uri: '/doc/example2.json', content: {...}}
],
 txid: '1234567890'
});

For convenience, if and only if there is a single document descriptor, the additional optional
properties can be passed as properties of the document descriptors, as an alternative to using a call
object. For example, the following call includes a transaction id inside the single document
descriptor:

// passing a transaction id as a document descriptor property
db.documents.write(
 { uri: '/doc/example1.json',
 content: {...},
 txid: '1234567890'
 }
);

2.2.4 Example: Loading A Single Document
This example inserts a single document into the database using DatabaseClient.documents.write.

The document to load is identified by a document descriptor. The following document descriptor
describes a JSON document with the URI /doc/example.json. The document content is expressed
as a JavaScript object here, but it can also be a string, Buffer, or ReadableStream.

{ uri: '/doc/example.json',
 contentType: 'application/json',
 content: { some: 'data' }
})

The code below creates a database client and calls DatabaseClient.documents.write to load the
document. The example checks for a write failure by calling the result function and passing in an
error handler. In this example, no action is taken if the write succeeds, so null is passed as the first
parameter to result().

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

/jsdoc/index.html

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 39

db.documents.write(
 { uri: '/doc/example.json',
 contentType: 'application/json',
 content: { some: 'data' }
 })
 .result(null, function(error) {
 console.log(JSON.stringify(error));
 });

For additional examples, see examples/before-load.js and examples/write-remove.js in the
node-client-api source directory.

To include metadata, add metadata properties to the document descriptor. For example, to add the
document to a collection, you can add a collections property to the descriptor:

db.documents.write(
 { uri: '/doc/example.json',
 contentType: 'application/json',
 content: { some: 'data' },
 collections: ['collection1', 'collection2']
 })

You can include optional additional parameters such as a transaction id or a write transform by
using a call object. For details, see “Calling Convention” on page 37.

2.2.5 Example: Loading Multiple Documents
This example builds on “Example: Loading A Single Document” on page 38 to insert multiple
documents into the database using DatabaseClient.documents.write.

To insert or update multiple documents in a single request to MarkLogic Server, pass multiple
document descriptors to DatabaseClient.documents.write.

The following code inserts 2 documents into the database with URIs /doc/example1.json and
/doc/example2.json:

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.documents.write(
 { uri: '/doc/example1.json',
 contentType: 'application/json',
 content: { data: 'one' }
 },
 { uri: '/doc/example2.json',
 contentType: 'application/json',
 content: { data: 'two' }
 }
).result(null, function(error) {

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 40

 console.log(JSON.stringify(error));
});

A multi-document write returns an object that contains a descriptor for each document written.
The descriptor includes the URI, the MIME type the contents were interpreted as, and whether the
write updated content, metadata, or both.

For example, the return value of the above call is as follows:

{ documents: [
 { uri: '/doc/example1.json',
 mime-type: 'application/json',
 category: ['metadata','content']
 },{
 uri: '/doc/example2.json',
 mime-type: 'application/json',
 category: ['metadata','content']
 }
]}

Note that the category property indicates both content and metadata were updated even though no
metadata was explicitly specified. This is because system default metadata values were implicitly
assigned to the documents.

To include metadata for a document when you load multiple documents, include
document-specific metadata in the descriptor for that document. To specify metadata that applies
to multiple documents include a metadata descriptor in the parameter list or documents property.

For example, to add the two documents to the collection “examples”, add a metadata descriptor
before the document descriptors, as shown below. The order of the descriptors matters as the set
of descriptors is processed in the order it appears. A metadata descriptor only affects document
descriptors that appear after it in the parameter list or documents array.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.documents.write({
 documents: [
 { contentType: 'application/json',
 collections: ['examples']
 },
 { uri: '/doc/example1.json',
 contentType: 'application/json',
 content: { data: 'one' }
 },
 { uri: '/doc/example2.json',
 contentType: 'application/json',
 content: { data: 'two' }
 }
]

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 41

}).result(null, function(error) {
 console.log(JSON.stringify(error));
});

2.2.6 Inserting or Updating Metadata for One Document
To insert or update metadata for a specific document, include one or more metadata properties in
the document descriptor passed to DatabaseClient.documents.write. To insert or update the same
metadata for multiple documents, you can include a metadata descriptor in a multi-document
write; for details, see “Working with Metadata” on page 63.

Note: When setting permissions, at least one update permission must be included.

Metadata is replaced on update, not merged. For example, if your document descriptor includes a
collections property, then calling DatabaseClient.documents.write replaces all existing
collection associations for the document.

The following example inserts a document with URI /doc/example.json and adds it to the
collections “examples” and “metadata-examples”. If the document already exists and is part of
other collections, it is removed from those collections.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.documents.write(
 { uri: '/doc/example.json',
 collections: ['examples', 'metadata-examples'],
 contentType: 'application/json',
 content: { some: 'data' }
 })
 .result(null, function(error) {
 console.log(JSON.stringify(error));
 });

To insert or update just metadata for a document, omit the content property. For example, the
following code sets the quality to 2 and the collections to “some-collection”, without changing the
document contents:

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.documents.write(
 { uri: '/doc/example.json',
 collections: ['some-collection'],
 quality: 2,
 })
 .result(null, function(error) {
 console.log(JSON.stringify(error));
 });

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 42

2.2.7 Automatically Generating Document URIs
You can have document URIs automatically generated during insertion by replacing the uri
property in your document descriptor with an extension property, as described below.

Note: You can only use this feature to create new documents. To update an existing
document, you must know its URI.

To use this feature, construct a document descriptor with the following characteristics:

• Omit the uri property.

• Include an extension property that specifies the generated URI extension, such as “xml”
or “json”. Do not include a “dot” (.) prefix. That is, specify “json”, not “.json”.

• Optionally, include a directory property that specifies a database directory prefix for the
generated URI. The directory prefix must end in a forward slash (/).

The following example inserts a document into the database with a URI of the form
/my/directory/auto-generated.json.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.documents.write(
 { extension: 'json',
 directory: '/my/directory/',
 content: { some: 'data' },
 contentType: 'application/json'
 }
).result(
 function(response) {
 console.log('Loaded ' + response.documents[0].uri);
 },
 function(error) {
 console.log(JSON.stringify(error));
 }
);

Running the above script results in output similar to the following upon success:

Loaded /my/directory/16764526972136717799.json

2.2.8 Transforming Content During Ingestion
You can transform content during ingestion by applying a custom write transform. A transform is
server-side XQuery, JavaScript, or XSLT that you install in the modules database associated with
your REST API instance. You can install transfoms using the config.transforms functions. This
topic describes how to apply a transform during ingestion. For more details and examples, see
“Working with Content Transformations” on page 231.

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 43

To apply a transform when creating or updating documents, call documents.write with a call
object that includes the transform property. The transform property encapsulates the transform
name and any parameters expected by the transform. The transform property has the following
form:

transform: [transformName, {param1: value, param2: value, ...}]

For example, the following code snippet applies a transform installed under the name
my-transform and passes in values for 2 parameters:

db.documents.write({
 documents: [
 {uri: '/doc/example1.json', content: {...}},
 {uri: '/doc/example2.json', content: {...}}
],
 transform: [
 'my-transform',
 { my-first-param: 'value',
 my-second-param: 42
 }
]
});

As a convenience, you can embed the transform property in the document descriptor when
inserting or updating just one document. For example:

db.documents.write({
 uri: '/doc/example1.json',
 content: {...}},
 transform: [
 'my-transform',
 { my-first-param: 'value',
 my-second-param: 42
 }
]
});

2.3 Reading Documents from the Database
Use DatabaseClient.documents.read to read one or more documents and/or metadata from the
database. This section covers the following topics:

• Retrieving the Contents of a Document By URI

• Retrieving Metadata About a Document

• Example: Retrieving Content and Metadata

• Transforming Content During Retrieval

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 44

2.3.1 Retrieving the Contents of a Document By URI
To retrieve the contents of a document from the database using its URI, use
DatabaseClient.documents.read or DatabaseClient.read. You can also retrieve the contents and
metadata of documents that match a query; for details, see “Querying Documents and Metadata”
on page 116.

DatabaseClient.read and DatabaseClient.Documents.read both enable you to read documents by
URI, but they differ in power and complexity. If you need to read metadata, use a multi-statement
transaction, apply a read transformation, or access information such as the content-type, use
DatabaseClient.Documents.read. DatabaseClient.read accepts only a list of URIs as input and
returns just the contents of the requested documents.

The two functions return different output. DatabaseClient.Documents.read returns an array of
document descriptors, instead of just the content. DatabaseClient.read returns an array
containing only the content of each document, in the same order as the input URI list. You can
process the output of both functions using a callback, Promise, or Stream; for details, see
“Supported Result Handling Techniques” on page 19.

For example, the following code uses DatabaseClient.Documents.read to read the document with
URI /doc/example1.json and processes the output using the Promise returned by the result
method.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.documents.read('/doc/example1.json')
 .result(function(documents) {
 documents.forEach(function(document) {
 console.log(JSON.stringify(document));
 });
 }, function(error) {
 console.log(JSON.stringify(error, null, 2));
 });

The complete descriptor returned by result looks like the following. The returned array contains
a document descriptor item for each document returned. In this case, there is only a single
document.

{
 "partType":"attachment",
 "uri":"/doc/example1.json",
 "category":"content",
 "format":"json",
 "contentType":"application/json",
 "contentLength":"14",
 "content":{"data":"one"}
}

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 45

If you read the same document using DatabaseClient.read, you get the output shown below.
Notice that it is just the content, not a descriptor.

db.read('/doc/example1.json').result(...);
==>
{"data":"one"}

You can read multiple documents by passing in multiple URIs. The following example reads two
documents and uses the Stream pattern to process the results. The data handler receives a
document descriptor as input.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.documents.read('/doc/example1.json', '/doc/example2.json')
 .stream().on('data', function(document) {
 console.log('Read ' + document.uri);
 }).
 on('end', function() {
 console.log('finished');
 }).
 on('error', function(error) {
 console.log(JSON.stringify(error));
 done();
 });

You can request metadata by passing a call object parameter to Documents.read and including a
categories property that specifies which document parts to return. For details, see “Retrieving
Metadata About a Document” on page 45.

When calling Documents.read, you can use a read transform to apply server-side transformations
to the content before the response is constructed. For details, see “Transforming Content During
Retrieval” on page 49.

To perform reads across multiple operations with a consistent view of the database state, pass a
Timestamp object to Documents.read. For more details, see “Performing Point-in-Time
Operations” on page 23.

2.3.2 Retrieving Metadata About a Document
To retrieve metadata when reading documents by URI, pass a call object to
DatabaseClient.documents.read that includes a categories property. You can retrieve all
metadata (category value 'metadata') or a subset of metadata (category values 'collections',
'permissions', 'properties', 'metadataValues', and 'quality'). To retrieve both content and
metadata, include the category value 'content'.

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 46

Note: The metadataValues metadata category represents simple key-value metadata,
sometimes called metadata fields. For more details, see Metadata Fields in the
Administrator’s Guide.

For example, the following code retrieves all metadata about the document /doc/example.json,
but not the contents.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.documents.read({
 uris: ['/doc/example.json'],
 categories: ['metadata']
}).result(
 function(documents) {
 for (const i in documents)
 console.log('Read metadata for ' + documents[i].uri);
 },
 function(error) {
 console.log(JSON.stringify(error));
 }
);

The result is a document descriptor that includes all metadata properties for the requested
document, as shown below. For details on metadata categories and formats, see “Working with
Metadata” on page 63.

[{
 "partType":"attachment",
 "uri":"/doc/example.json",
 "category":"metadata",
 "format":"json",
 "contentType":"application/json",
 "contentLength":"168",
 "collections":[],
 "permissions":[
 {"role-name":"rest-writer","capabilities":["update"]},
 {"role-name":"rest-reader","capabilities":["read"]}
],
 "properties":{},
 "quality":0
}]

The following example retrieves content and collections metadata about 2 JSON documents:

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.documents.read({
 uris: ['/doc/example1.json', '/doc/example2.json'],

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 47

 categories: ['collections', 'content']
}).stream().
 on('data', function(document) {
 console.log('Collections for ' + document.uri + ': '
 + JSON.stringify(document.collections));
 }).
 on('end', function() {
 console.log('finished');
 }).
 on('error', function(error) {
 console.log(JSON.stringify(error));
 });

The result is a document descriptor for each document that includes a collections and a content
property:

{
 "partType" : "attachment",
 "uri" : "/doc/example2.json",
 "category" : "content",
 "format" : "json",
 "contentType" : "application/json",
 "contentLength" : "14",
 "collections" : ["collection1", "collection2"],
 "content" : {"data":"two"}
}

2.3.3 Example: Retrieving Content and Metadata
The example demonstrates reading content and metadata for a document.

The script below first writes an example document to the database that is in the “examples”
collection and has document quality 2. Then, the document and metadata are read back in a single
operation by including both 'content' and 'metadata' in the categories property of the read
document descriptor. You can also specify specific metadata properties, such as 'collections' or
'permissions'.

To run the example, copy the script below to a file and run it using the node command.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);

// (1) Seed the database with an example document that has custom
metadata
db.documents.write({
 uri: '/read/example.json',
 contentType: 'application/json',
 collections: ['examples'],
 metadataValues: {key1: 'val1', key2: 2},
 quality: 2,

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 48

 content: { some: 'data' }
}).result().then(function(response) {
 // (2) Read back the content and metadata
 return db.documents.read({
 uris: [response.documents[0].uri],
 categories: ['content', 'metadata']
 }).result();
}).then(function(documents) {
 // Emit the read results
 console.log('CONTENT: ' +
 JSON.stringify(documents[0].content));
 console.log('COLLECTIONS: ' +
 JSON.stringify(documents[0].collections));
 console.log('PERMISSIONS: ' +
 JSON.stringify(documents[0].permissions, null, 2));
 console.log('PROPERTIES: ' +
 JSON.stringify(documents[0].properties, null, 2));
 console.log('QUALITY: ' +
 JSON.stringify(documents[0].quality, null, 2));
 console.log("METADATAVALUES: " +
 JSON.stringify(documents[0].metadataValues, null, 2));

});

The script produces output similar to the following:

CONTENT: {"some": "data"}
COLLECTIONS: ["examples"]
PERMISSIONS: [
 {
 "role-name": "rest-writer",
 "capabilities": [
 "update"
]
 },
 {
 "role-name": "rest-reader",
 "capabilities": [
 "read"
]
 }
]
PROPERTIES: {}
QUALITY: 2
METADATAVALUES: {
 "key2": 2,
 "key1": "val1"
}

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 49

2.3.4 Transforming Content During Retrieval
You can apply custom server-side transforms to a document before returning the content to the
requestor. A transform is a JavaScript module, XQuery module, or XSLT stylesheet that you
install in your REST API instance using the DatabaseClient.config.transforms.write function.
For details, see “Working with Content Transformations” on page 231.

You can configure a default read transform that is automatically applied whenever a document is
retrieved. You can also specify a per-request transform by including a transform property in the
call object passed to most read operations. If there is both a default transform and a per-request
transform, the transforms are chained together, with the default transform running first. Thus, the
output of the default transform is the input to the per-request transform, as shown in the following
diagram:

To configure a default transform, set the document-transform-out configuration parameter of the
REST API instance. Instance-wide configuration parameters are set using the
DatabaseClient.config.serverprops.write function. For details, see “Configuring Instance
Properties” on page 262.

To specify a per-request transform, use the call object form of a read operation such as
DatabaseClient.documents.read and include a transform property. The value of the transform
property is an array where the first item is the transform name and the optional additional items
specify the name and value of parameters expected by the transform. That is, the transform
property has the following form:

transform: [transformName, {param1: value, param2: value, ...}]

The following example applies a transform installed under the name “example” that expects a
single parameter named “reviewer”. For a complete example, see “Example: Read, Write, and
Query Transforms” on page 235.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.documents.read({
 uris: ['/doc/example.json'],
 transform: ['example', {reviewer: 'me'}]
 }).result(
 function(documents) {
 for (const i in documents)
 console.log('Document ' + documents[i].uri + ': ');
 console.log(JSON.stringify(documents[i].content));

original content
intermediate

result final output
default

transform transform

per-request

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 50

 }
);

2.4 Removing Content from the Database
You can use the Node.js Client API to remove documents by URI, collection or directory.

• Removing Documents By URI

• Removing Sets of Documents

• Removing All Documents

2.4.1 Removing Documents By URI
To remove one or more documents by URI, use DatabaseClient.remove or
DatabaseClient.documents.remove. Both functions enable you to remove documents by URI, but
DatabaseClient.remove offers a simpler, more limited, interface. You can also remove multiple
documents by collection or directory; for details, see “Removing Sets of Documents” on page 51.

Removing a document also removes the associated metadata. Removing a binary document with
extracted metadata stored in a separate XHTML document also deletes the properties document;
for details, see “Working with Binary Documents” on page 60.

The following example removes the documents /doc/example1.json and /docs/example2.json.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.documents.remove('/doc/example1.json','/doc/example2.json').result(
 function(response) {
 console.log(JSON.stringify(response));
 }
);

The response contains the document URIs and a success indicator. For example, the above
program produces the following output:

{ "uris":["/doc/example1.json", "/doc/example2.json"],
 "removed":true }

When you remove documents with DatabaseClient.remove, the response only includes the URIs.
For example:

db.remove('/doc/example1.json')
==> ['/doc/example1.json']

db.remove('/doc/example1.json','/doc/example2.json')
==> ['/doc/example1.json','/doc/example2.json']

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 51

For additional examples, see the examples and tests in the node-client-api sources available on
GitHub at http://github.com/marklogic/node-client-api.

Attempting to remove a document that does not exist produces the same output as successfully
removing a document that exists.

When removing multiple documents, you can specify the URIs as individual parameters (if the
call has no other parameters), an array of URIs, or an object with a uris property whose value is
the URIs. When removing multiple documents, the whole batch fails if there is an error removing
any one of the documents.

You can supply additional parameters to DatabaseClient.documents.remove, such as a transaction
id and temporal collection information. For details, see the Node.js API Reference.

2.4.2 Removing Sets of Documents
You can use DatabaseClient.documents.removeAll to remove all documents in a collection or all
documents in a database directory.

To remove documents by collection, use the following form:

db.documents.removeAll({collection:..., other-properties...}

To remove documents by directory, use the following form:

db.documents.removeAll({directory:..., other-properties...}

The optional other-properties can include a transaction id. For details, see the Node.js API
Reference.

Removing all documents in a collection or directory requires the rest-writer role or equivalent
privileges.

Note: When removing documents by directory, the directory name must include a
trailing slash (“/”).

The following example removes all documents in the collection “/countries”:

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.documents.removeAll({collection: '/countries'}).result(
 function(response) {
 console.log(JSON.stringify(response));
 }
);

==> {"exists":false,"collection":"/countries"}

http://github.com/marklogic/node-client-api
/jsdoc/index.html
/jsdoc/index.html
/jsdoc/index.html

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 52

The following example removes all documents in the directory “/doc/”:

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.documents.removeAll({directory: '/doc/'}).result(
 function(response) {
 console.log(JSON.stringify(response));
 }
);

==> {"exists":false,"directory":"/doc/"}

You can also include a txid property in the call object passed to
DatabaseClient.documents.removeAll to specify a transaction in which to perform the deletion.
For example:

db.documents.removeAll({directory: '/doc/', txid: '1234567890'})

For additional examples, see the examples and tests in the node-client-api sources available on
GitHub at http://github.com/marklogic/node-client-api.

2.4.3 Removing All Documents
To remove all documents in the database, call DatabaseClient.documents.removeAll and include
an all property with value true in the call object. For example:

db.documents.removeAll({all: true})

Removing all documents in the database requires the rest-admin or equivalent privileges.

There is no confirmation or other safety net when you clear the database in this way. Creating a
backup is recommended.

The following example removes all documents in the database:

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.documents.removeAll({all: true}).result(
 function(response) {
 console.log(JSON.stringify(response));
 }
);

==> {"exists":false,"allDocuments":true}

http://github.com/marklogic/node-client-api

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 53

You can also include a txid property in the call object passed to
DatabaseClient.documents.removeAll to specify a transaction in which to perform the deletion.
For example:

db.documents.removeAll({all: true, txid: '1234567890'})

2.5 Managing Collections of Objects and Documents
You can easily manage a collection of JavaScript objects in the database using the following
operations. The objects must be serializable as JSON.

• DatabaseClient.createCollection: Store a collection of JavaScript objects in the database
as JSON documents with auto-generated URIs. The objects must be serializable as JSON.

• DatabaseClient.read: Read one or more JavaScript objects from the database by URI.
Unlike DatabaseClient.documents.read, this method does not return document
descriptors. Rather, it returns just the document content. Documents are returned in the
same order as the input URIs.

• DatabaseClient.documents.query: Restore objects by finding all documents in the
collection, or search your collection.

• DatabaseClient.writeCollection: Update objects or other documents by URI and
collection name. Use this method rather than creatCollection to update objects in the
collection because createCollection always creates a new document for each object.

• DatabaseClient.removeCollection: Remove objects or other documents by collection
name.

Calling createCollection is additive. That is, documents (objects) already in the collection
remain in the collection if you call createCollection multiple times on the same collection.
However, note that createCollection generates a new document for each object every time you
call it, so calling it twice on the same object creates a new object rather than overwriting the
previous one. To update objects/documents in the collection, use
DatabaseClient.writeCollection.

If you need more control over your documents, use DatabaseClient.documents.write. For
example, when you use createCollection you cannot exercise any control over the document
URIs, include metadata such as permissions or document properties, or specify a transaction id.

To learn more about searching documents with DatabaseClient.documents.query, see “Querying
Documents and Metadata” on page 116.

The example script below does the following:

• Create a collection from a set of objects.

• Read all the objects back.

• Find the just the objects where kind='cat'.

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 54

• Remove the collection.

To try the example, copy the following script to a file and run it with the node command. The
database connection information is encapsulated in my-connection.js, as described in “Using the
Examples in This Guide” on page 30.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
const qb = marklogic.queryBuilder;

// The collection of objects to persist
const pets = [
 { name: 'fluffy', kind: 'cat' },
 { name: 'fido', kind: 'dog' },
 { name: 'flipper', kind: 'fish' },
 { name: 'flo', kind: 'rodent' }
];
const collName = 'pets';

// (1) Write the objects to the database
db.createCollection(collName, pets).result()
 .then(function(uris) {
 console.log('Saved ' + uris.length + ' objects with URIs:');
 console.log(uris);

 // (2) Read back all objects in the collection
 return db.documents.query(
 qb.where(qb.collection(collName))
).result();
 }, function(error) {
 console.log(JSON.stringify(error));
 }).then(function(documents) {
 console.log('\nFound ' + documents.length + ' documents:');
 documents.forEach(function(document) {
 console.log(document.content);
 });

 // (3) Find the cats in the collection
 return db.documents.query(
 qb.where(qb.collection(collName), qb.value('kind', 'cat'))
).result();
 }).then(function(documents) {
 console.log('\nFound the following cats:');
 documents.forEach(function(document) {
 console.log(' ' + document.content.name);
 });

 // (4) Remove the collection from the database
 db.removeCollection(collName);
 });

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 55

Running the script produces output similar to the following:

Saved 4 objects with URIs:
['/717293155828968327.json',
 '/5648624202818659648.json',
 '/4552049485172923004.json',
 '/16796864305170577329.json']

Found 4 documents:
{ name: 'fido', kind: 'dog' }
{ name: 'flipper', kind: 'fish' }
{ name: 'flo', kind: 'rodent' }
{ name: 'fluffy', kind: 'cat' }

Found the following cats:
 fluffy

2.6 Performing a Lightweight Document Check
Use DatabaseClient.documents.probe or DatabaseClient.probe to test for the existence of a
document in the database or retrieve a document identifier without fetching the document (when
content versioning is enabled).

The following example probes for the existence of the document /doc/example.json:

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.documents.probe('/doc/example.json').result(
 function(response) {
 if (response.exists) {
 console.log(response.uri + ' exists');
 } else {
 console.log(response.uri + 'does not exist');
 }
 }
);

The return value is a document descriptor that includes a boolean-valued exists property. If
content versioning is enabled on the REST instance, then the response also includes a versionId
property. For example, with content versioning enabled, the above example produces the
following output:

{
 contentType: "application/json",
 versionId: "14115045710437450",
 format: "json",
 uri: "/doc/example.json",
 exists: true
}

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 56

For more information about content versioning, see “Conditional Updates Using Optimistic
Locking” on page 56.

2.7 Conditional Updates Using Optimistic Locking
An application using optimistic locking creates a document only when the document does not
exist and updates or deletes a document only when the document has not changed since this
application last changed it. However, optimistic locking does not actually involve placing a lock
on document.

Optimistic locking is useful in environments where integrity is important, but contention is rare
enough that it is useful to minimize server load by avoiding unnecessary multi-statement
transactions.

This section covers the following topics:

• Understanding Optimistic Locking

• Enable Optimistic Locking

• Obtain a Version Id

• Apply a Conditional Update

2.7.1 Understanding Optimistic Locking
Consider an application that reads a document, makes modifications, and then updates the
document in the database with the changes. The traditional approach to ensuring document
integrity is to perform the read, modification, and update in a multi-statement transaction. This
holds a lock on the document from the point when the document is read until the update is
committed. However, this pessimistic locking blocks access to the document and incurs more
overhead on the App Server.

With optimistic locking, the application does not hold a lock on a document between read and
update. Instead, the application saves the document state on read, and then checks for changes at
the time of update. The update fails if the document has changed between read and update. This is
a conditional update.

Optimistic locking is useful in environments where integrity is important, but contention is rare
enough that it is useful to minimize server load by avoiding unnecessary multi-statement
transactions.

The Node.js Client API uses content versioning to implement optimistic locking. When content
versioning is enabled on your REST API instance, MarkLogic Server associates an opaque
version id with each document when it is created or updated. The version id changes each time
you update the document. The version id is returned when you read a document, and you can pass
it back in an update or delete operation to test for changes prior to commit.

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 57

Note: Enabling content versioning does not implement document versioning. MarkLogic
Server does not keep multiple versions of a document or track what changes occur.
The version id can only be used to detect that a change occurred.

Using optimistic locking in your application requires the following steps:

1. Enable Optimistic Locking in the REST API instance.

2. Obtain a Version Id for documents you wish to conditionally update.

3. Apply a Conditional Update by including the version in your update operations.

You enable optimistic locking by setting the update-policy REST API instance property; for
details. You send and receive version ids via the versionId property in a document descriptor.

2.7.2 Enable Optimistic Locking
To enable optimistic locking, call DatabaseClient.config.serverprops.write and set the
update-policy property to version-required or version-optional. For example, the following
code sets update-policy to version-optional:

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.config.serverprops.write({'update-policy': 'version-optional'})
 .result(function(response) {
 console.log(JSON.stringify(response));
 });

Set the property to version-required if you want every document update or delete operation to
use optimistic locking. Set the property to version-optional to allow selective use of optimistic
locking.

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 58

The table below describes how each setting for this property affects document operations.

2.7.3 Obtain a Version Id
When optimistic locking is enabled, a version id is included in the response when you read
documents. You can only obtain a version id if optimistic locking is enabled by setting
update-policy; for details, see “Enable Optimistic Locking” on page 57.

You can obtain a version id for use in conditional updates in the following ways:

• Call DatabaseClient.documents.read. The version id is available through the versionId
property of the returned document descriptor(s).

• Call DatabaseClient.documents.probe. No documents are fetched, but the version id is
available through the versionId property of the returned document descriptor(s).

You can mix and match these methods of obtaining a version id.

The following example returns the version for multiple documents:

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.documents.read('/doc/example1.json', '/doc/example2.json').

Setting Effect

merge-metadata This is the default setting. If you insert, update, or delete a document
that does not exist, the operation succeeds. If a version id is provided, it
is ignored.

version-optional If you insert, update or delete a document that does not exist, the oper-
ation succeeds. If a version id is provided, the operation fails if the doc-
ument exists and the current version id does not match the supplied
version id.

version-required If you update or delete a document without supplying a version id and
the document does not exist, then the operation succeeds; if the docu-
ment exists, the operation fails. If a version id is provided, the opera-
tion fails if the document exists and the current version id does not
match the version in the header.

overwrite-metadata The behavior is the same as merge-metadata, except that metadata in
the request overwrites any pre-existing metadata, rather than being
merged into it. This setting disables optimistic locking.

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 59

 .stream().on('data', function(document) {
 console.log('Read ' + document.uri +
 ' with version ' + document.versionId);
 }).on('end', function() {
 console.log('finished');
 });

2.7.4 Apply a Conditional Update
To apply a conditional update, include a versionId property in the document descriptor passed to
an update or delete operation. The version id is ignored if optimistic locking is not enabled; for
details, see “Enable Optimistic Locking” on page 57.

When a document descriptor passed to an update or delete operation includes a version id,
MarkLogic Server server checks for a version id match before committing the update or delete. If
the input version id does not match a document’s current version id, the operation fails. In a
multi-document update, the entire batch of updates is rejected if the conditional update of any
document in the batch fails.

The following example performs a conditional update of two documents by including the
versionId property in each input document descriptor.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.documents.write({
 documents: [
 { uri: '/doc/example1.json',
 contentType: 'application/json',
 content: { data: 1 },
 versionId: 14115098125553360
 },
 { uri: '/doc/example2.json',
 contentType: 'application/json',
 content: { data: 2 },
 versionId: 14115098125553350
 }
]
}).result(
 function(success) {
 console.log('Loaded the following documents:');
 for (const i in success.documents)
 console.log(success.documents[i].uri);
 }
);

Similarly, the following example removes the document /doc/example.json only if the current
version id of the document in the database matches the version id in the input document
descriptor:

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 60

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.documents.remove({
 uris: ['/doc/example.json'],
 versionId: 14115105931044000}).
result(
 function(response) {
 console.log(JSON.stringify(response));
});

Note: You cannot use conditional delete when removing multiple documents in a single
operation.

If a conditional update or delete fails due to a version id mismatch, MarkLogic Server responds
with an error similar to the following. (The object contents have been reformatted for readability.)

{message: "remove document: response with invalid 412
 status (on /doc/example1.json)",
 statusCode:412,
 body:{
 error: {
 status-code: "412",
 status: "Precondition Failed",
 message-code: "RESTAPI-CONTENTWRONGVERSION",
 message: "RESTAPI-CONTENTWRONGVERSION: (err:FOER0000)
 Content version mismatch: uri /doc/example.json
 doesn't match if-match: 14115105931044000"
}}}

2.8 Working with Binary Documents
This section provides a brief overview of how to use the Node.js API to manipulate binary
document data in MarkLogic Server. The following topics are covered:

• Type of Binary Documents

• Streaming Binary Content

• Retrieving Binary Content with Range Requests

2.8.1 Type of Binary Documents
This section provides a brief summary of binary document types. For details, see Working With
Binary Documents in the Application Developer’s Guide.

MarkLogic Server can store binary documents in three representations:

• Small binary documents are stored entirely in the database.

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 61

• Large binary documents are stored on disk with a small reference fragment in the
database. The on-disk content is managed by MarkLogic Server.

• External binary documents are stored on disk with a small reference fragment in the
database. However, the on-disk content is not managed by MarkLogic Server.

MarkLogic automatically determines whether a binary document is a small or large binary
document when you insert or update the document, based on the document size and the database
configuration.

Though external binary documents cannot be created using the Node.js Client API, you can
retrieve them, just like any other document.

2.8.2 Streaming Binary Content
By using streaming techniques to access binary content, you can avoid loading potentially large
documents into memory on MarkLogic Server and in your client application.

You can stream binary and other data into MarkLogic using by using a stream as the input source.
For details, see “Streaming Into the Database” on page 22.

When you retrieve a large or external binary document from a database, MarkLogic Server
automatically streams the content out of the database under the following conditions:

• Your request is for a single document, rather than being a bulk read.

• The size of the binary content returned is over the large binary size threshold. For details,
see Working With Binary Documents in the Application Developer’s Guide.

• The request is for content only. That is, no metadata is requested.

• The MIME type of the content is determinable from the Accept header or the document
URI file extension.

• No content transformation is applied.

You can also use range requests to incrementally retrieve pieces of a binary document that meets
the above constraints. For details, see “Retrieving Binary Content with Range Requests” on
page 61.

You can avoid loading the entire document into memory in your client application by using a
streaming result handler, such as the chunked stream pattern described in “Stream Result
Handling Pattern” on page 21.

2.8.3 Retrieving Binary Content with Range Requests
When you just use db.documents.read to retrieve a binary document, the goal is to eventually
retrieve the entire document, even if your application code processes it in chunks. By contrast,
using range requests to retrieve parts of a binary document enables retryable, random access to
parts of a binary document.

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 62

To use range requests, your retrieval operation must meet the conditions described in “Streaming
Binary Content” on page 61. Specify the range of bytes to retrieve by including a “range”
property in the call object passed to DatabaseClient.documents.read.

The following example requests the first 500K of the binary document with URI
/binary/song.m4a:

db.documents.read({
 uris: '/binary/song.m4a',
 range: [0,511999]
 })

The document descriptor returned by such a call is similar to the following. The contentLength
property indicates how many bytes were returned. This value will be smaller than the size of the
requested range if you request a range that extends past the end of the source document.

result: [{
 content: {
 type': 'Buffer',
 data': [theData]
 },
 uri: '/binary/song.m4a',
 category: ['content'],
 format: 'binary',
 contentLength: '10',
 contentType: 'audio/mp4'
}]

2.9 Working with Temporal Documents
Most document write operations enable you to work with temporal documents. Temporal-aware
document inserts and updates are enabled through the following parameters (or document
descriptor properties) on operations such as documents.create, documents.write,
documents.patch, and documents.remove:

• temporalCollection: The URI of the temporal collection into which the new document
should be inserted, or the name of the temporal collection that contains the document
being updated.

• temporalDocument: The “logical” URI of the document in the temporal collection; the
temporal collection document URI. This is equivalent to the first parameter of the
temporal:statement-set-document-version-uri XQuery function or of the
temporal.statementSetDocumentVersionUri Server-Side JavaScript function.

• sourceDocument: The temporal collection document URI of the document being operated
on. Only applicable when updating existing documents. This parameter facilitates
working with documents with user-maintained version URIs.

• systemTime: The system start time for an update or insert.

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 63

During an update operation, if you do not specify a sourceDocument or temporalDocument, then the
uri descriptor property indicates the source document. If you specify temporalDocument, but do
not specify sourceDocument, then temporalDocument identifies the source document.

The uri property always refers to the output document URI. When the MarkLogic manages the
version URIs, the document URI and temporal document collection URI have the same value.
When the user manages version URIs, they can be different.

Use documents.protect to protect a temporal document from operations such as update, delete,
and wipe for a specified period of time. This method is equivalent to calling the
temporal:document-protect XQuery function or the temporal.documentProtect Server-Side
JavaScript function.

Use documents.advanceLsqt to advance LSQT on a temporal collection. This method is equivalen
to calling the temporal:advance-lsqt XQuery function or the temporal.advanceLsqt Server-Side
JavaScript function.

For more details, see the Temporal Developer’s Guide and the Node.js Client API JSDoc.

2.10 Working with Metadata
The Node.js Client API enables you to insert, update, retrieve, and query metadata. Metadata is
the properties, collections, permissions, and quality of a document. Metadata can be manipulated
as either JSON or XML.

This section covers the following topics:

• Metadata Categories

• Metadata Format

• Working with Document Properties

• Disabling Metadata Merging

2.10.1 Metadata Categories
When working with documents and their metadata, metadata is usually expressed as properties of
a document descriptor. For example, the following descriptor includes collections metadata for
the document /doc/example.json, whether the descriptor is input output:

{ uri: '/doc/example.json',
 collections: ['collection1','collection2']

Some operations support a categories property for indicating what parts of a document and its
metadata you want to read or write. For example, you can read just the collections and quality
associated with /doc/example.json by calling DatabaseClient.documents.read similar to the
following:

/jsdoc/documents.html

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 64

db.documents.read({
 uris: ['/doc/example.json'],
 categories: ['collections', 'quality']
})

The following categories are supported:

• collections

• permissions

• properties

• quality

• metadataValues

• metadata

• content

The metadataValues category represents simple key-value metadata property, sometimes called
“metadata fields”. This category can contain both system-managed metadata, such as certain
properties of a temporal document, and user-defined metadata. The value of a property in
metadataValues is always stored as a string in MarkLogic. For more details, see Metadata Fields in
the Administrator’s Guide.

The metadata category is shorthand for collections, permissions, properties, and quality. Some
operations, such as DatabaseClient.documents.read, also support the content category as a
convenience for retrieving or updating content and metadata together.

2.10.2 Metadata Format
Metadata takes the following form in a document descriptor. You do not need to specify all
categories of metadata when including it in a write or query operation. This structure applies to
both input and output metadata.

{
 "collections" : [string],
 "permissions" : [
 {
 "role-name" : string,
 "capabilities" : [string]
 }
],
 "properties" : {
 property-name : property-value
 },
 "quality" : integer,
 "metadataValues": { key: value, key: value, ... }
}

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 65

The following example is an output document descriptor from reading the metadata for the
document with URI /doc/example.json. The document is in two collections and has two
permissions, two document properties, and two metadataValues key-value pairs:

{
 "partType": "attachment",
 "uri": "/doc/example.json",
 "category": "metadata",
 "format": "json",
 "contentType": "application/json",
 "collections": ["collection1", "collection2"],
 "permissions": [
 {
 "role-name": "rest-writer",
 "capabilities": ["update"]
 },
 {
 "role-name": "rest-reader",
 "capabilities": ["read"]
 }
],
 "properties": {
 "prop1": "this is my prop",
 "prop2": "this is my other prop"
 },
 "metadataValues": {
 "key1": "value1",
 "key2": 2
 },
 "quality": 0
}

The following example shows metadata as XML. All elements are in the namespace
http://marklogic.com/rest-api. You can have 0 or more <collection/>, <permission/> or
property elements. There can be only one <quality/> element. The element name and contents of
each property element depends on the property.

<metadata xmlns="http://marklogic.com/rest-api">
 <collections>
 <collection>collection-name</collection>
 </collections>
 <permissions>
 <permission>
 <role-name>name</role-name>
 <capability>capability</capability>
 </permission>
 </permissions>
 <properties>
 <property-element/>
 </properties>
 <quality>integer</quality>
 <metadata-values>

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 66

 <metadata-value key="key1">value1</metadata-value>
 <metadata-value key="key2">2</metadata-value>
 <metadata-values>
</metadata>

2.10.3 Working with Document Properties
Document properties are a kind of metadata. You can use document properties to add queryable
user-defined data to a document without changing the document contents. For details, see
Properties Documents and Directories in the Application Developer’s Guide.

In most cases, your application should work with document properties in a consistent format. That
is, if you insert or update properties as JSON, then you should retrieve and query them as JSON.
If you insert or update properties as XML, you should retrieve them as XML. If you mix and
match XML and JSON formats, you can encounter namespace inconsistencies.

Document properties are always stored in the database as XML. A document property inserted as
JSON is converted internally into an XML element in the namespace
http://marklogic.com/xdmp/json/basic, with an XML localname that matches the JSON
property name. For example, a document property expressed in JSON as { myProperty : 'value'
} has the following XML representation:

<rapi:metadata uri="/doc/example.json" ...>
 <prop:properties xmlns:prop="http://marklogic.com/xdmp/property">
 <myProperty type="string"
 xmlns="http://marklogic.com/xdmp/json/basic">
 value
 </myProperty>
 </prop:properties>
</rapi:metadata>

As long as you consistently use a JSON representation for document properties on input and
output, this internal representation is transparent to you. However, if you query or read document
properties using XML, you must be aware of the namespace and the internal representation.
Similarly, you can use XML to insert document properties in no namespace or in your own
namespace, but the namespace cannot be reflected in the JSON representation of the property.
Therefore, it is best to be consistent in how you work with properties.

The one exception is in code that works with properties on the server, such as resource service
extensions and transformations. Such code always accesses document properties as XML.

If you configure an index based on a user-defined document property inserted using JSON, you
should use the http://marklogic.com/xdmp/json/basic namespace in your configuration.

Protected system properties such as last-updated cannot be modified by your application. The
JSON representation of such properties wraps them in an object with the key $ml.prop. For
example:

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 67

{ "properties": {
 "$ml.prop": {
 "last-updated": "2013-11-06T10:01:11-08:00"
 }
} }

2.10.4 Disabling Metadata Merging
If you use the REST Client API to ingest a large number of documents at one time and you find
the performance unacceptable, you might see a small performance improvement by disabling
metadata merging. This topic explains the tradeoff and how to disable metadata merging.

• When to Consider Disabling Metadata Merging

• How to Disable Metadata Merging

2.10.4.1 When to Consider Disabling Metadata Merging
The performance gain from disabling metadata merging is modest, so you are unlikely to see
significant performance improvement from it unless you ingest a large number of documents.
You might see a performance gain under one of the following circumstances:

• Ingesting a large number of documents, one at a time.

• Updating a large number of documents that share the same metadata or that use the default
metadata.

You cannot disable metadata merging in conjunction with update policies version-optional or
version-required.

Metadata merging is disabled by default for multi-document write requests, as long as the request
includes content for a given document. For details, see Understanding When Metadata is Preserved
or Replaced in the REST Application Developer’s Guide.

To learn more about the impact of disabling metadata merging, see Understanding Metadata Merging
in the REST Application Developer’s Guide.

2.10.4.2 How to Disable Metadata Merging
Metadata merging is controlled by the update-policy instance configuration property. The
default value is merge-metadata.

To disable metadata merging, set update-policy to overwrite-metadata using the procedure
described in “Configuring Instance Properties” on page 262. For example:

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.config.serverprops.write({'update-policy': 'overwrite-metadata'})

MarkLogic Server Manipulating Documents

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 68

 .result(function(response) {
 console.log(JSON.stringify(response));
 });

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 69

3.0 Patching Document Content or Metadata
115

This chapter covers the following topics related to updating selected portions of the content or
metadata of a document using the db.documents.patch function.

• Introduction to Content and Metadata Patching

• Example: Adding a JSON Property

• Patch Reference

• Defining the Context for a Patch Operation

• How Position Affects the Insertion Point

• Patch Examples

• Creating a Patch Without a Builder

• Patching XML Documents

• Constructing Replacement Data on MarkLogic Server

3.1 Introduction to Content and Metadata Patching
A partial update is an update you apply to a portion of a document or metadata, rather than
replacing an entire document or all of its metadata. For example, inserting a JSON property or
XML element, or changing the value of a JSON property. You can only apply partial content
updates to JSON and XML documents. You can apply partial metadata updates to any document
type.

A patch is a partial update descriptor, expressed in JSON or XML. A patch tells MarkLogic
Server what update to apply and where to apply it. Four operations are available in a patch: insert,
replace, replace-insert, and delete. (A replace-insert operation functions as a replace if there is at
least one match for the target content; if there are no matches, then the operation functions as an
insert.)

Use the partial update feature for the following operations:

• Add or delete a JSON property, property value, or array item in an existing document.

• Add, replace, or delete the value of an array item or JSON property.

• Add, replace, or delete a subset of the metadata of an existing document. For example,
modify a permission or insert a document property.

• Dynamically generate replacement content or metadata on MarkLogic Server using builtin
or custom, user-supplied functions. For details, see “Constructing Replacement Data on
MarkLogic Server” on page 103.

You can apply multiple updates in a single patch, and you can update both content and metadata
in the same patch.

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 70

Patch operations can target JSON properties, XML elements and attributes, and data values such
as JSON array items and the data in an XML element or attribute. You identify the target of an
operation using XPath or JSONPath expressions. When inserting new content or metadata, the
insertion point is further defined by specifying the position; for details, see How Position Affects the
Insertion Point in the REST Application Developer’s Guide.

When applying a patch to document content, the patch format must match the document format:
An XML patch for an XML document, a JSON patch for a JSON document. You cannot patch the
content of other document types. You can patch metadata for all document types. A metadata-only
patch can be in either XML or JSON. A patch that modifies both content and metadata must
match the document content type.

The Node.js Client API provides the following interfaces for building and applying patches:

• marklogic.patchBuilder

• DatabaseClient.documents.patch

Apply a patch by calling DatabaseClient.documents.patch with a URI and one or more patch
operations. Build patch operations using marklogic.patchBuilder.

The following example patches the JSON document /patch/example.json by inserting a property
named child3 in the “last child” position under the property named theTop. For a complete
example, see “Example: Adding a JSON Property” on page 71.

const pb = marklogic.patchBuilder;
db.documents.patch('/patch/example.json',
 pb.insert('/object-node("theTop")', 'last-child',
 {child3: 'INSERTED'})
);

For additional examples of building patch operations, see “Patch Examples” on page 85.

If a patch contains multiple operations, they are applied independently to the target document.
That is, within the same patch, one operation does not affect the context path or select path results
or the content changes of another. Each operation in a patch is applied independently to every
matched node. If any operation in a patch fails with an error, the entire patch fails.

Content transformations are not directly supported in a partial update. However, you can
implement a custom replacement content generation function to achieve the same effect. For
details, see “Constructing Replacement Data on MarkLogic Server” on page 103.

Before patching JSON documents, you should familiarize yourself with the restrictions outlined
in Limitations of JSON Path Expressions in the REST Application Developer’s Guide.

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 71

3.2 Example: Adding a JSON Property
The following example inserts a new property into a JSON document using the
DatabaseClient.documents.patch function and a patch builder. The example program does the
following:

1. Insert the example document into the database with the URI /patch/example.json.

2. Patch the example document by inserting a new property under theTop named child3 in
the “last child” position. The parent node is identified using an XPath expression.

3. Read the patched document from the database and display it on the console.

The db.documents.patch function accepts a document URI and one or more operations. In this
case, we pass only one operation: A property insertion constructed by calling the patch builder
insert method.

pb.insert('/object-node("theTop")', // path to parent node
 'last-child', // insertion position
 {child3: 'INSERTED'}) // content to insert

The promise pattern is used to chain together the write, patch, and read operations. For details, see
“Promise Result Handling Pattern” on page 20.

The example script is shown below. The initial write operation is included in the example only to
encapsulate the example document and ensure consistent behavior across runs. Usually, the
document targeted by a patch would have been loaded into the database separately.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

// (1) Insert the base document into the database
db.documents.write({
 uri: '/patch/example.json',
 contentType: 'application/json',
 content: {
 theTop: {
 child1: { grandchild: 'gc-value' },
 child2: 'c2-value'
 } }
}).result().then(function(response) {
 // (2) Patch the document
 const pb = marklogic.patchBuilder;
 return db.documents.patch(response.documents[0].uri,
 pb.insert('/object-node("theTop")', 'last-child',
 {child3: 'INSERTED'})
).result();
}).then(function(response) {
 // (3) Read the patched document
 return db.documents.read(response.uri).result();

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 72

}).then(function(response) {
 console.log(response[0].content);
});

The example program results in the following document transformation:

On success, DatabaseClient.documents.patch returns the URI of the patched document. For
example, the result of the db.documents.patch call above is:

{ uri: '/patch/example.json' }

For more examples, see “Patch Examples” on page 85.

3.3 Patch Reference
You can include one or more of the following operations in a call to
DatabaseClient.documents.patch: insert, replace, replace-insert, remove. These operations can
occur multiple times in a given patch call. Use the marklogic.patchBuilder interface to construct
each operation. For example:

db.documents.patch(uri,
 pb.insert(path, position, newContent)
)

The patch builder includes special purposes interfaces for constructing patch operations that target
metadata: patchBuilder.collections, patchBuilder.permissions, patchBuilder.properties,
patchBuilder.quality, and patchBuilder.metadataValues. These interfaces enable you to patch
collections, permissions, quality, document properties, and values metadata without knowing the
internal representation of metadata. For an example of how to use these interfaces, see “Example:
Patching Metadata” on page 98.

In addition, you can include patch configuration directives, such as patchBuilder.library and
patchbuilder.pathLanguage. You can only include one library directive, and it is only needed if
you use custom functions to generate replacement content; for details, see “Constructing
Replacement Data on MarkLogic Server” on page 103.

Before Patching After Patching

{"theTop" : {
 "child1" : {
 "grandchild" : "gc-value"
 },
 "child2" : "c2-value"
}}

{"theTop" : {
 "child1" : {
 "grandchild" : "gc-value"
 },
 "child2" : "c2-value",
 "child3" : "INSERTED"
}}

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 73

The table below summarizes the patch builder methods for constructing operations on content:

The following table summarizes the patch builder interfaces for constructing operations on
metadata.

Builder Method Descriptions

insert Insert a new property or array item.

replace Replace an existing property or array item.

replaceInsert Replace a JSON property or array item; if there are no existing matching
properties, perform an insertion instead.

remove Remove a JSON property or array item.

library Identify a server-side XQuery library module that contains custom replace-
ment content generation functions that can be used in the apply operation
that is part of a replace or replaceInsert operation.

apply Specify a server-side replacement content generation function. The patch
operation must include a library operation, and the named function must
be in that module.

pathLanguage Configure a patch to parse select and context expressions as either XPath
(default) or JSONPath expressions.

Builder Method Descriptions

collections Construct patch operations for modifying collections metadata.

permissions Construct patch operations for modifying permissions metadata.

properties Construct patch operations for modifying document properties metadata.

quality Construct patch operations for modifying quality metadata.

metadataValues Construct patch operations for modifying values metadata.

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 74

The following table summarizes the patch builder methods for constructing cofiguration
directives:

3.3.1 insert
Use patchbuild.insert to create an operation that inserts a new JSON property or array item.
Build an insert operation with a call of the following form:

marklogic.patchBuilder.insert(
 context,
 position,
 content,
 cardinality)

Builder Method Descriptions

library Identify a server-side XQuery library module that contains custom replace-
ment content generation functions that can be used in the apply operation
that is part of a replace or replaceInsert operation.

apply Specify a server-side replacement content generation function. The patch
operation must include a library operation, and the named function must
be in that module.

pathLanguage Configure a patch to parse select and context expressions as either XPath
(default) or JSONPath expressions.

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 75

The following table summarizes the parameters of the patchBuilder.insert function.

3.3.2 replace
Use patchBuilder.replace to create an operation that replaces an existing JSON property value or
array item. If no matching JSON property or array item exists, the operation is silently ignored.
Build a replace operation with a call of the following form:

marklogic.patchBuilder.replace(
 select,
 content,

Parameter Req’d Description

context Y An XPath or JSONPath expression that selects an existing JSON
property or array element on which to operate. The expression can
select multiple items.

If no matches are found for the context expression, the operation is
silently ignored.

The path expression is restricted to the subset of XPath for which
cts:valid-document-patch-path (XQuery) or
cts.validDocumentPatchPath (JavaScript) returns true. For details, see
Path Expressions Usable in Patch Operations in the REST Application
Developer’s Guide.

position Y Where to insert the content, relative to the JSON property or value
selected by context. The pos-selector must be one of "before",
"after", or "last-child". For details, see “How Position Affects the
Insertion Point” on page 83.

content Y The new content to be inserted, expressed as a JSON object, array, or
atomic value.

cardinality N The required occurrence of matches to position. If the number of
matches does not meet the expectation, the operation fails and an error
is returned. Allowed values:

• Zero or one matches required: "?" (question mark)

• Exactly one match required: "." (period)

• Zero or more matches required: "*" (asterisk)

• One or more matches required: "+" (plus)

Default: "*" (The occurrence requirement is always met).

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 76

 cardinality,
 apply)

You can use apply to specify a content generation builtin or custom function for generating
dynamic content. For details, see “Constructing Replacement Data on MarkLogic Server” on
page 103.

The following table summarizes the parameters of the patchBuilder.replace function.

Parameter Req’d Description

select Y An XPath or JSONPath expression that selects the JSON property or
array element to replace. If no matches are found for the select
expression, the operation is silently ignored.

The path expression is restricted to the subset of XPath for which
cts:valid-document-patch-path (XQuery) or
cts.validDocumentPatchPath (JavaScript) returns true. For details,
see Path Expressions Usable in Patch Operations in the REST
Application Developer’s Guide.

The selected item(s) cannot be the target of any other operation in the
patch. The ancestor of the selected item may not be modified by a
delete, replace, or replace-insert operation in the same patch.

content N The replacement value. If you omit this parameter, you must specify
a content generation function in the apply parameter.

If select targets a property and content is an object, the operation
replaces the entire target property. Otherwise, the operation replaces
just the value.

cardinality N The required occurrence of matches to select. If the number of
matches does not meet the expectation, the operation fails and an
error is returned. Allowed values:

• Zero or one matches required: "?" (question mark)

• Exactly one match required: "." (period)

• Zero or more matches required: "*" (asterisk)

• One or more matches required: "+" (plus)

Default: "*" (The occurrence requirement is always met).

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 77

3.3.3 replaceInsert
Use patchBuilder.replaceInsert to create an operation that replaces a property value or array
item if it exists, or insert a property or array item if does not. Build a replace-insert operation
with a call of the following form:

replaceInsert(
 select,
 context,
 position,
 content,
 cardinality,
 apply)

You can omit content if you use apply to specify a content generation builtin or custom function
for generating dynamic content. For details, see “Constructing Replacement Data on MarkLogic
Server” on page 103.

apply N The localname of a replacement content generation function. If you
do not specify a function, the operation must include a content
parameter.

If you name a custom function, the patch must include a
replace-library operation that describes the XQuery library module
containing the function implementation. To construct such an
operation, use the patchBuilder.library function.

For details, see “Constructing Replacement Data on MarkLogic
Server” on page 103.

Parameter Req’d Description

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 78

The following table summarizes the parts of a replace-insert operation.

Parameter Req’d Description

select Y An XPath or JSONPath expression that selects the JSON property or
array item to replace. If no matches are found for the select
expression, context and position are used to attempt an insert. If no
match is found for context, the operation does nothing.

The path expression is restricted to the subset of XPath for which
cts:valid-document-patch-path (XQuery) or
cts.validDocumentPatchPath (JavaScript) returns true.. For details,
see Path Expressions Usable in Patch Operations in the REST
Application Developer’s Guide.

The selected item(s) cannot be the target of any other operation in the
patch. The ancestor of the selected item may not be modified by a
delete, replace, or replace-insert operation in the same patch.

content N The content with which to replace the selected value. If there is no
content, you must specify a content generation function using apply.

If select targets a property and content is an object, the operation
replaces the entire target property. Otherwise, the operation replaces
just the value.

context Y An XPath or JSONPath expression that selects an existing property or
array element on which to operate. The expression can select multiple
items.

If no matches are found for the either the select or context
expression, the operation is silently ignored.

The path expression is restricted to the subset of XPath for which
cts:valid-document-patch-path (XQuery) or
cts.validDocumentPatchPath (JavaScript) returns true. For details,
see Path Expressions Usable in Patch Operations in the REST
Application Developer’s Guide.

The ancestor of the selected node may not be modified by a delete,
replace, or replace-insert operation in the same patch.

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 79

3.3.4 remove
Use patchBuilder.remove to create an operation that removes a JSON property or array element.
A call to the patchBuilder.remove function has the following form:

marklogic.patchBuilder.remove(
 select,
 cardinality)

position N If select does not match anything, where to insert the content,
relative to the key-value pair or value selected by context. The
pos-selector must be one of "before", "after", or "last-child". For
details, see “How Position Affects the Insertion Point” on page 83.

Default: last-child.

cardinality N The required occurrence of matches to position. If the number of
matches does not meet the expectation, the operation fails and an
error is returned. Allowed values:

• Zero or one matches required: "?" (question mark)

• Exactly one match required: "." (period)

• Zero or more matches required: "*" (asterisk)

• One or more matches required: "+" (plus)

Default: * (The occurrence requirement is always met).

apply N The localname of a replacement content generation function. If you
do not specify a function, the operation must include a content
parameter.

If you name a custom function, the patch must include a
replace-library operation that describes the XQuery library module
containing the function implementation. Create such an operation
using the patchBuilder.library function.

For details, see “Constructing Replacement Data on MarkLogic
Server” on page 103.

Parameter Req’d Description

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 80

The following table summarizes the parameters of patchBuilder.remove.

3.3.5 apply
Use patchBuilder.apply to create a configuration directive that specifies a server-side function
with which to generate replacement conent for a replace or replaceInsert operation. The named
function must be in a server-side module identified by a library directive included in the same
call to db.documents.patch.

A call to the patchBuilder.apply function has the following form:

marklogic.patchBuilder.apply(functionName)

For details, see “Constructing Replacement Data on MarkLogic Server” on page 103.

Component Req’d Description

select Y An XPath or JSONPath expression that selects the JSON property or
array element to remove. If no matches are found for the select
expression, the operation is silently ignored.

The path expression is restricted to the subset of XPath for which
cts:valid-document-patch-path (XQuery) or
cts.validDocumentPatchPath (JavaScript) returns true. For details,
see Path Expressions Usable in Patch Operations in the REST
Application Developer’s Guide..

The selected item(s) cannot be the target of any other operation in the
patch. The ancestor of the selected item may not be modified by a
delete, replace, or replace-insert operation in the same patch.

cardinality N The required occurrence of matches to select. If the number of
matches does not meet the expectation, the operation fails and an
error is returned. Allowed values:

• Zero or one matches required: "?" (question mark)

• Exactly one match required: "." (period)

• Zero or more matches required: "*" (asterisk)

• One or more matches required: "+" (plus)

Default: "*" (The occurrence requirement is always met).

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 81

3.3.6 library
Use patchBuilder.library to create a configuration directive that identifies a server-side library
module containing one or more functions for generating replacement content. The module must
conform to the conventions described in “Writing a Custom Replacement Constructor” on
page 107. To make use of the functions in your library, include the generated library directive in
your call to db.documents.patch, and include the output from patchBuilder.apply when calling
the replace or replaceInsert builder functions.

A call to the patchBuilder.library function has the following form:

marklogic.patchBuilder.library(moduleName)

For details, see “Constructing Replacement Data on MarkLogic Server” on page 103.

3.3.7 pathLanguage
By default, all path expressions in patches are expressed using XPath. JSONPath is also supported
for compatibility with previous releases, but it is deprecated. You do not need to use a
pathLanguage directive unless you use JSONPath.

Use patchBuilder.pathLanguage to create a configuration directive that specifies the path
language in which you express context and select expressions in your patch operations. A call to
the patchBuilder.pathLanguage function must have one of the following forms:

marklogic.patchBuilder.pathLanguage('xpath')

marklogic.patchBuilder.pathLanguage('jsonpath')

Include the resulting directive in your call to db.documents.patch.

You must use the same path language for all operations in a DatabaseClient.documents.patch
call.

3.3.8 collections
Use the patchBuilderCollections methods to construct a patch operation for collections
metadata. Use patchBuiler.collections to access these methods. You can add or remove a
collection, using the following methods:

marklogic.patchBuilder.collections.add(collName)

marklogic.patchBuilder.collections.remove(collName)

For an example, see “Example: Patching Metadata” on page 98.

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 82

3.3.9 permissions
Use patchBuilderPermissions methods to construct a patch operation for permissions metadata.
Use patchBuilder.permissions to access these methods. You can add or remove a permission or
replace the capabilities of a role using this interface.

marklogic.patchBuilder.permissions.add(role, capabilities)

marklogic.patchBuilder.permissions.remove(role)

marklogic.patchBuilder.permissions.replace(role, capabilities)

Where role is a string that contains the role name, and capabilities is either a single string or an
array of strings with the following possible values: “read”, “insert”, “update”, “execute”.

Note that replace replaces all the capabilities associated with a role. You cannot use it to
selectively replace a single capability. Rather, you must operate on a role and the associated
capabilities as a single unit.

For an example, see “Example: Patching Metadata” on page 98.

3.3.10 properties
Use patchBuilderProperties methods to construct a patch operation for document properties
metadata. Use patchBuilder.properties to access these methods. You can add or remove a
property, or replace the value of a property.

marklogic.patchBuilder.properties.add(name, value)

marklogic.patchBuilder.properties.remove(name)

marklogic.patchBuilder.properties.replace(name, value)

For an example, see “Example: Patching Metadata” on page 98.

3.3.11 quality
Use patchBuilderQuality methods to construct a patch operation that sets the value of quality
metadata. Use patchBuilder.quality to access these methods.

marklogic.patchBuilder.quality.set(value)

For an example, see “Example: Patching Metadata” on page 98.

3.3.12 metadataValues
Use patchBuilderMetadataValues methods to construct a patch operation on values metadata. Use
patchBuilder.metdataValues to access these methods. You can add or remove a key-value pair, or
replace the value of an existing key.

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 83

marklogic.patchBuilder.metadataValues.add(name, value)

marklogic.patchBuilder.metadataValues.remove(name)

marklogic.patchBuilder.metadataValues.replace(name, value)

For an example, see “Example: Patching Metadata” on page 98.

3.4 Defining the Context for a Patch Operation
When you insert, replace, or delete content or metadata, the patch definition must include enough
context to tell MarkLogic Server what JSON or XML components to operate on. For example,
which json property or XML element to delete, where to insert a new property or element, or
which JSON property, XML element, or value to replace.

When you create a patch using a builder, you specify the context through the contextPath and
selectPath parameters of builder methods such as DocumentPatchBuilder.insertFragment() or
DocumentPatchBuilder.replaceValue(). When you create a patch from raw XML or JSON, you
specify the operation context through the context and select XML attributes or JSON property.

Use XPath expressions to define the operation context. For security and performance reasons,
your XPath expressions are restricted to the subset of XPath for which
cts:valid-document-patch-path (XQuery) or cts.validDocumentPatchPath (JavaScript) returns
true. For details, see Patch Feature of the Client APIs in the XQuery and XSLT Reference Guide.

Insertion operations have an additional position parameter/property that defines where to insert
new content relative to the context, such as before or after the selected node. For more details,
see“How Position Affects the Insertion Point” on page 83.

3.5 How Position Affects the Insertion Point
The insert and replace-insert patch operations include a position parameter that defines the
point of insertion when coupled with a context expression. This section describes the details of
how position affects the insertion point.

This topic focuses on patching JSON documents. For details on XML, see Specifying Position in
XML in the REST Application Developer’s Guide.

The position parameter to a PatchBuilder operation (or the position property of a raw patch)
specifies where to insert new content relative to the item selected by the context XPath
expression. Position can be one of the following values:

• before: Insert before the item selected by context.

• after: Insert after the item selected by context.

• last-child: Insert into the value of the target property or array, in the position of last
child. The value selected by context must be an object or array node.

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 84

The same usage applies whether inserting on behalf of an insert operation or a replace-insert
operation.

The following table shows example combinations of context and position and the resulting
insertion point for new content. The insertion point is indicated by ***.

Context Position Example Insertion Point

/theTop/node("child1")

a property

after {"theTop" : {
 "child1" : ["val1", "val2"],

 "child2" : [
 {"one": "val1"},
 {"two": "val2"}
]
} }

/theTop/child1[1]

an array item

before {"theTop" : {
 "child1" : [*** "val1", "val2"],
 "child2" : [
 {"one": "val1"},
 {"two": "val2"}
]
} }

/theTop/array-node("child1")

an array

last-child {"theTop" : {
 "child1" : ["val1", "val2" ***],
 "child2" : [
 {"one": "val1"},
 {"two": "val2"}
]
} }

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 85

For more information about XPath over JSON, see Traversing JSON Documents Using XPath in the
Application Developer’s Guide.

3.6 Patch Examples
This section contains examples of constructing and applying patches to metadata and JSON
documents. The following topics are covered:

• Preparing to Run the Examples

• Example: Insert

• Example: Replace

• Example: ReplaceInsert

• Example: Remove

• Example: Patching Metadata

To patch XML documents, you must construct a raw patch. For details, see “Patching XML
Documents” on page 102 and “Creating a Patch Without a Builder” on page 101.

3.6.1 Preparing to Run the Examples
The examples are self-contained, except for the database connection information. Each example
assumes your connection information is encapsulated in a module named my-connection.js that
is co-located with the example script.

/node("theTop")

an object

last-child {"theTop" : {
 "child1" : ["val1", "val2"],
 "child2" : [
 {"one": "val1"},
 {"two": "val2"}
]

} }

/theTop/child1

a value

last-child Error because the selected value is not an
object or array. For example, an error results if
the target document has the following
contents:

{"theTop" : {
 "child1" : "val1",
 "child2" : [...]
} }

Context Position Example Insertion Point

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 86

This module is expected contain contents similar to the following:

module.exports = {
 connInfo: {
 host: 'localhost',
 port: 8000,
 user: your-ml-username,
 password: your-ml-user-password
 }
};

For details, see “Using the Examples in This Guide” on page 30.

3.6.2 Example: Insert
This example demonstrates the insert operation by making the following changes to the base
JSON document:

• Insert a new property of the unnamed root object (INSERTED1).

• Insert a new property in a sub-object, relative to a sibling property (INSERTED2).

• Insert a new array item relative to an item with a specific value (INSERTED3).

• Insert a new array item relative to a specific position in the array (INSERTED4).

• Insert a new item at the end of an array (INSERTED5).

• Insert a new property in the “last child” position (INSERTED6).

The example first inserts the base document into the database, then builds and applies a patch.
Finally, the modified document is retrieved from the database and displayed on the console. The
example uses a Promise pattern to sequence these operations; for details, see “Promise Result
Handling Pattern” on page 20.

To run the example, copy the following code into a file, then supply it to the node command. For
example: node insert.js.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

// (1) Insert the base document into the database
db.documents.write({
 uri: '/patch/insert.json',
 contentType: 'application/json',
 content: {
 theTop: {
 child1: { grandchild: 'gcv' },
 child2: ['c2v1', 'c2v2'],
 child3: [{c3k1: 'c3v1'}, {c3k2: 'c3v2'}]
 } }
}).result().then(function(response) {

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 87

 // (2) Patch the document
 const pb = marklogic.patchBuilder;
 return db.documents.patch(response.documents[0].uri,
 // insert a sibling of theTop
 pb.insert('/theTop', 'before',
 {INSERTED1: ['i1v1', 'i1v2']}),

 // insert a property in child1's value
 pb.insert('/theTop/child1/grandchild', 'before',
 {INSERTED2: 'i2v'}),

 // insert an array item in child2 by value
 pb.insert('/theTop/child2[. = "c2v1"]', 'after',
 'INSERTED3'),

 // insert an array item in child2 by position
 pb.insert('/theTop/child2[2]', 'after',
 'INSERTED4'),

 // insert an object in child3
 pb.insert('/theTop/array-node("child3")', 'last-child',
 {INSERTED5 : 'i5v'}),

 // insert a new child of theTop
 pb.insert('/theTop', 'last-child',
 {INSERTED6: 'i6v'})
).result();
}).then(function(response) {
 // (3) Emit the resulting document
 return db.documents.read(response.uri).result();
}).then(function(documents) {
 console.log(JSON.stringify(documents[0].content));
});

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 88

The following table shows how applying the patch changes the target document.

Note that when you insert something using last-child for the position, the insertion context
XPath expression must refer to the containing object or array. When you construct an XPath
expression such as /a/b, the expression references a value (or sequence of values), rather than the
container. To reference the container, use the node() and array-node() operators. This is why the
operation that creates INSERTED5 under child3 uses array-node("child3"), as shown below:

pb.insert('/theTop/array-node("child3")', 'last-child',
 {INSERTED5 : 'i5v'})

If you change the insertion context expression to /theTop/child3, you’re referencing the sequence
of values in the array, not the array object to which you want to add a child.

To insert a property if and only if it does not already exist, use a predicate in the context path
expression to test for existence. For example, the following patch will insert a property named
TARGET only if the object does not already contain such a property:

pb.insert('/theTop[fn:empty(TARGET)]', 'last-child',
 {TARGET: 'INSERTED'})

This patch must use the last-child position because the context selects the node that will contain
the new property.

For more information about XPath over JSON, see Traversing JSON Documents Using XPath in the
Application Developer’s Guide.

Before Update After Update

{"theTop": {
 "child1": {"grandchild": "gcv"},
 "child2": ["c2v1", "c2v2"],
 "child3": [
 {"c3k1": "c3v1"},
 {"c3k2": "c3v2"}
]
} }

{ "INSERTED1": ["i1v1", "i1v2"],
 "theTop": {
 "child1": {
 "INSERTED2": "i2v",
 "grandchild": "gcv"
 },
 "child2": [
 "c2v1",
 "INSERTED3",
 "c2v2",
 "INSERTED4"
],
 "child3": [
 { "c3k1": "c3v1" },
 { "c3k2": "c3v2" }
 { "INSERTED5": "i5v" }
],
 "INSERTED6": "i6v"
} }

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 89

3.6.3 Example: Replace
This example demonstrates the replace operation by making the following changes to a JSON
document:

• Replace the value of a property with a simple value (child1), object value (child2), or
array value (child3).

• Replace the value of an array item by position or value (child4).

• Replace the value of all items in an array with the same value (child5).

• Replace the value of an object in an array by property name (child6).

• Replace an array item that is an object by property name (child6).

• Replace the value of an array item that is a nested array (child7).

• Replace the value of an item in a nested array (child8).

The example first inserts the base document into the database, then builds and applies a patch.
Finally, the modified document is retrieved from the database and displayed on the console. The
example uses a Promise pattern to sequence these operations; for details, see “Promise Result
Handling Pattern” on page 20.

To run the example, copy the following code into a file, then supply it to the node command. For
example: node replace.js.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

// (1) Insert the base document into the database
db.documents.write({
 uri: '/patch/replace.json',
 contentType: 'application/json',
 content: {
 theTop: {
 child1: 'c1v',
 child2: { gc: 'gcv' },
 child3: ['c3v1', 'c3v2'],
 child4: ['c4v1', 'c4v2'],
 child5: ['c5v1', 'c5v2'],
 child6: [{gc1: 'gc1v'}, {gc2:'gc2v'}],
 child7: ['av1', ['nav1', 'nav2'], 'av2'],
 child8: ['av1', ['nav1', 'nav2'], 'av2']
 } }
}).result().then(function(response) {
 // (2) Patch the document
 const pb = marklogic.patchBuilder;
 return db.documents.patch(response.documents[0].uri,
 // replace the simple value of a property
 pb.replace('/theTop/child1', 'REPLACED1'),

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 90

 // replace a property value that is an object
 pb.replace('/theTop/child2', {REPLACE2: 'gc2'}),

 // replace the value of a property that is an array
 pb.replace('/theTop/array-node("child3")',
 ['REPLACED3a', 'REPLACED3b']),

 // replace an array item by position
 pb.replace('/theTop/child4[1]', 'REPLACED4a'),

 // replace an array item by value
 pb.replace('/theTop/child4[.="c4v2"]', 'REPLACED4b'),

 // replace the value of all items in an array with the same value
 pb.replace('/theTop/child5', 'REPLACED5'),

 // replace the value of a property in an array item
 pb.replace('/theTop/child6/gc1', 'REPLACED6a'),

 // replace an object-valued array item by property name
 pb.replace('/theTop/child6[gc2]', {REPLACED6b: '6bv'}),

 // replace the value of an array item that is a nested array
 pb.replace('/theTop/array-node("child7")/node()[2]',
 ['REPLACED7a', 'REPLACED7b']),

 // replace the value of item in a nested array
 pb.replace('/theTop/child8[2]', 'REPLACED8')
).result();
}).then(function(response) {
 // (3) Emit the resulting document
 return db.documents.read(response.uri).result();
}).then(function(documents) {
 console.log(JSON.stringify(documents[0].content, null, 2));
});

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 91

The following table shows how applying the patch changes the target document.

You should understand the difference between selecting a container and selecting its contents. For
example, consider the two replacement operations applied to child5. The XPath expression
/theTop/child6/gc1 addresses the value of property with name gc1. Therefore, the replacement
operation results in the following change:

pb.replace('/theTop/child6/gc1', 'REPLACED6a')

{"gc1" : "gc1v"} ==> {"gc1" : "REPLACED6a"}

By contrast the XPath expression /theTop/child6[gc2] selects object nodes that contain a
property named gc2. Therefore, the replacement operation replaces the entire object with a new
value, resulting in the following change:

pb.replace('/theTop/child6[gc2]', {REPLACED6b: '6bv'})

{"gc2" : "gc2v"} ==> {"REPLACED6b": "6bv"}

Similarly, consider the replacement operation on child3. The XPath expression
/theTop/array-node("child3") selects the array node named child3, so the operation replaces the
entire array with a new value. For example:

pb.replace('/theTop/array-node("child3")',
 ['REPLACED3a', 'REPLACED3b'])

Before Update After Update

{"theTop": {
 "child1": "c1v",
 "child2": { "gc": "gcv" },
 "child3": ["c3v1", "c3v2"],
 "child4": ["c4v1", "c4v2"],
 "child5": ["c5v1", "c5v2"],
 "child6": [
 {"gc1": "gc1v"},
 {"gc2":"gc2v"}
],
 "child7": [
 "av1",
 ["nav1", "nav2"],
 "av2"
],
 "child8": [
 "av1",
 ["nav1", "nav2"],
 "av2"
]
} }

{"theTop":{
 "child1": "REPLACED1",
 "child2": { "REPLACE2": "gc2" },
 "child3": ["REPLACED3a", "REPLACED3b"],
 "child4": ["REPLACED4a", "REPLACED4b"],
 "child5": ["REPLACED5", "REPLACED5"],
 "child6": [
 { "gc1": "REPLACED6a" },
 { "REPLACED6b": "6bv" }
],
 "child7": [
 "av1",
 ["REPLACED7a", "REPLACED7b"],
 "av2"
],
 "child8": [
 "av1",
 ["REPLACED8", "nav2"],
 "av2"
]
} }

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 92

"child3": ["c3v1", "c3v2"] ==> "child3": ["REPLACED3a", "REPLACED3b"]

By contrast, an XPath expression such as /theTop/child5 selects the values in the array ('c5v1',
'c5v2'), so a replacement operation with this select expression replaces each of the array values
with the same content. For example:

pb.replace('/theTop/child5', 'REPLACED5')

"child5": ["c5v1", "c5v2"] ==> "child5": ["REPLACED5", "REPLACED5"]

For more information on XPath over JSON, see Traversing JSON Documents Using XPath in the
Application Developer’s Guide.

3.6.4 Example: ReplaceInsert
This example demonstrates the replace-insert patch operation. The example performs the
following update operations:

• Replace or insert an array item by position (child1).

• Replace or insert an array item by value (child2).

• Replace or insert an object-valued array item by contained property name (child3).

The example first inserts the base document into the database, then builds and applies a patch.
Finally, the modified document is retrieved from the database and displayed on the console. The
example uses a Promise pattern to sequence these operations; for details, see “Promise Result
Handling Pattern” on page 20.

To run the example, copy the following code into a file, then supply it to the node command. For
example: node replace-insert.js.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

// (1) Insert the base document into the database
db.documents.write({
 uri: '/patch/replace-insert.json',
 contentType: 'application/json',
 content: {
 theTop: {
 child1: ['c1v1', 'c1v2'],
 child2: ['c2v1', 'c2v2'],
 child3: [{ c3a: 'c3v1' }, { c3b: 'c3v2' }]
 } }
}).result().then(function(response) {
 // (2) Patch the document
 const pb = marklogic.patchBuilder;
 return db.documents.patch(response.documents[0].uri,
 // Replace the value of an array item by position, or
 // insert a new one in the target position.

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 93

 pb.replaceInsert('/theTop/child1[1]',
 '/theTop/array-node("child1")', 'last-child',
 'REPLACED1'),
 pb.replaceInsert('/theTop/child1[3]', '/theTop/child1[2]',
'after',
 'INSERTED1'),

 // Replace an array item that has a specific value, or
 // insert a new item with that value at the end of the array
 pb.replaceInsert('/theTop/child2[. = "c2v1"]',
 '/theTop/node("child2")', 'last-child',
 'REPLACED2'),
 pb.replaceInsert('/theTop/child2[. = "INSERTED2"]',
 '/theTop/array-node("child2")', 'last-child',
 'INSERTED2'),

 // Replace the value of an object that is an array item, or
 // insert an equivalent object at the end of the array
 pb.replaceInsert('/theTop/child3[c3a]',
 '/theTop/node("child3")', 'last-child',
 { REPLACED3: 'c3rv'}),
 pb.replaceInsert('/theTop/child3[INSERTED3]',
 '/theTop/node("child3")', 'last-child',
 { INSERTED3: 'c3iv'})
).result();
}).then(function(response) {
 // (3) Emit the resulting document
 return db.documents.read(response.uri).result();
}).then(function(documents) {
 console.log(JSON.stringify(documents[0].content, null, 2));
}, function(error) { console.log(error); throw error; }
);

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 94

The following table shows how applying the patch changes the target document.

Recall that the select path identifies the content to replace. When working with an array item, an
absolute path is usually required. For example, consider the following patch operation:

pb.replaceInsert('/theTop/child1[1]',
 '/theTop/array-node("child1")', 'last-child',
 'REPLACED1')

The goal is to replace the value of the first item in the array value of /theTop/child1 if it exists.
If the array is empty, insert the new value. That is, one of these two transformations takes place:

{"theTop": {"child1": ["c1v1", "c1v2"], ... }
 ==> {"theTop": {"child1": ["REPLACED1", "c1v2"], ... }

{"theTop": {"child1": [], ... }
 ==> {"theTop": {"child1": ["REPLACED1"], ... }

The select expression, /theTop/child1[1], must target an array item value, while the context
expression must target the containing array node by referencing /theTop/array-node("child1").
You cannot make the select expression relative to the context expression in this case.

Note that while you can target an entire array item value with replace-insert, you cannot target
just the value of a property. For example, consider the following array in JSON:

"child3": [
 { "c3a": "c3v1" },
 { "c3b": "c3v2" }
]

Before Update After Update

{"theTop": {
 "child1": ["c1v1", "c1v2"],
 "child2": ["c2v1", "c2v2"],
 "child3": [
 { "c3a": "c3v1" },
 { "c3b": "c3v2" }
]
} }

{ "theTop": {
 "child1": [
 "REPLACED1",
 "c1v2",
 "INSERTED1"
],
 "child2": [
 "REPLACED2",
 "c2v2",
 "INSERTED2"
],
 "child3": [
 { "REPLACED3": "c3rv" },
 { "c3b": "c3v2" },
 { "INSERTED3": "c3iv" }
]
} }

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 95

You can use replace-insert on the entire object-valued item { "c3a": "c3v1" }, as is done in
the example. However, you cannot construct an operation that targets just the value of the
property in the object ("c3v1"). The replacement of the property value is fundamentally different
from inserting a new object in the array. A property (as opposed to the containing object) can only
be replaced by deleting it and then inserting a new value.

You cannot use a replaceInsert operation to conditionally insert or replace a property because
the insertion content and the replacement content requirements differ. However, you can use
separate insert and replace operations within the same patch to achieve the same effect.

For example, the following patch inserts a new property named TARGET if it does not already
exists, and replaces its value if it does already exist:

db.documents.patch('/patch/replace-insert.json',
 pb.insert('/theTop[fn:empty(TARGET)]', 'last-child',
 { TARGET: 'INSERTED' }),
 pb.replace('/theTop/TARGET', 'REPLACED')
)

The following table illustrates the effect of applying the patch:

For more details on the JSON document model and traversing JSON documents with XPath, see
Working With JSON in the Application Developer’s Guide.

3.6.5 Example: Remove
This example demonstrates how to use the patch remove (delete) operation to make the following
changes to a JSON document:

• Remove a property based on type.

• Remove an array item by position, value, or property name.

• Remove all items in an array.

Before Update After Update

{"parent": {
 "child": "some_value"
}}

{"parent":{
 "child": "some_value",
 "TARGET": "INSERTED"
}}

{"parent": {
 "child": "some_value",
 "TARGET": "INSERTED"
}}

{"parent": {
 "child": "some_value",
 "TARGET": "REPLACED"
}}

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 96

To run the example, copy the following code into a file, then supply it to the node command. For
example: node remove.js.

const marklogic = require('marklogic');
const my = require('../my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

// (1) Insert the base document into the database
db.documents.write({
 uri: '/patch/remove.json',
 contentType: 'application/json',
 content: {
 props: {
 anyType: [1, 2],
 objOrLiteral: 'anything',
 arrayVal: [3, 4]
 },
 arrayItems: {
 byPos: ['DELETE', 'PRESERVE'],
 byVal: ['DELETE', 'PRESERVE'],
 byPropName: [{DELETE: 5}, {PRESERVE: 6}],
 all: ['DELETE1', 'DELETE2']
 }
 }
}).result().then(function(response) {
 // (2) Patch the document
 const pb = marklogic.patchBuilder;
 return db.documents.patch(response.documents[0].uri,
 // Remove a property with any value type
 pb.remove('/props/node("anyType")'),

 // Remove a property with atomic or object value type
 pb.remove('/props/objOrLiteral'),

 // Remove a property with array value type
 pb.remove('/props/array-node("arrayVal")'),

 // Remove all items in an array
 pb.remove('/arrayItems/all'),

 // Remove an array item by position
 pb.remove('/arrayItems/byPos[1]'),

 // Remove an array item by value
 pb.remove('/arrayItems/byVal[. = "DELETE"]'),

 // Remove an object-valued array item by property name
 pb.remove('/arrayItems/byPropName["DELETE"]')
).result();
}).then(function(response) {
 // (3) Read the patched document
 return db.documents.read(response.uri).result();
}).then(function(documents) {

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 97

 console.log(JSON.stringify(documents[0].content, null, 2));
}, function(error) {
 console.log(error); throw error;
});

The following table shows how applying the patch changes the target document.

Note that when removing properties, you must either use a named node step to identify the target
property or be aware of the value type. Consider these 3 operations from the example program:

pb.remove('/props/node("anyType")'),
pb.remove('/props/objOrLiteral'),
pb.remove('/props/array-node("arrayVal")')

The first operation uses a type agnostic XPath expression, /props/node("anyType"). This
expression selects any nodes named anyType, regardless of the type of value. The second
operation uses the XPath expression /props/objOrLiteral, which selects the array item values,
rather than the containing array node. That is, this operation applied to the original document will
delete the contents of the array, not the arrayVal property:

pb.remove('/props/arrayVal')
==> "arrayVal": []

The third form, /props/array-node("arrayVal"), deletes the arrayVal property, but it will
only work on properties with array type. Therefore, if you need to delete a property by name
without regard to its type, use an XPath expression of the form
/path/to/parent/node("propName").

For more details on the JSON document model and traversing JSON documents with XPath, see
Working With JSON in the Application Developer’s Guide.

Before Update After Update

{ "props": {
 "anyType": [1, 2],
 "objOrLiteral": "anything",
 "arrayVal": [3, 4]
 },
 "arrayItems": {
 "byPos": ["DELETE", "PRESERVE"],
 "byVal": ["DELETE", "PRESERVE"],
 "byPropName": [
 {"DELETE": 5},
 {"PRESERVE": 6}
],
 "all": ["DELETE1", "DELETE2"]
 }
}

{ "props": { },
 "arrayItems": {
 "byPos": ["PRESERVE"],
 "byVal": ["PRESERVE"],
 "byPropName": [
 { "PRESERVE": 6 }
],
 "all": []
 }
}

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 98

3.6.6 Example: Patching Metadata
This example demonstrates patching document metadata. The examples performs the following
patch operations:

• Add a document to a collection.

• Remove a document from a collection.

• Modify a permission.

• Add a metadata property.

• Set the quality.

• Add a new values metdata key-value pair.

• Remove a values metadata key-value pair.

• Replace the value of a values metadata key-value pair.

This example uses the metadata patching helper interfaces on patchBuilder:
patchBuilderCollections, patchBuilderPermissions, patchBuilderProperties,
patchBuilderQuality, and patchBuilder.metadataValues. You can also patch metadata directly,
but using the helper interfaces frees you from understanding the layout details of how MarkLogic
stores metadata internally.

To run the example, copy the following code into a file, then supply it to the node command. For
example: node metadata.js. Note that the parameter passed to db.docments.patch must include a
categories property that indicates the patch should be applied to metadata rather than content.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

// (1) Ensure the example document doesn't already exist
db.documents.remove('/patch/metadata-example.json')
 .result().then(function() {

// (2) Insert the base document into the database
db.documents.write({
 uri: '/patch/metadata-example.json',
 categories: ['content', 'metadata'],
 contentType: 'application/json',
 content: { key: 'value' },
 collections: ['initial1', 'initial2'],
 permissions: [{
 'role-name': 'app-user',
 capabilities: ['read']
 }],
 properties: {
 myProp1: 'some-value',
 myProp2: 'some-other-value'
 },

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 99

 metadataValues: {
 key1: 'value1',
 key2: 2
 }
}).result().then(function(response) {
 // (3) Patch the document
 const pb = marklogic.patchBuilder;
 return db.documents.patch({
 uri: response.documents[0].uri,
 categories: ['metadata'],
 operations: [
 // Add a collection
 pb.collections.add('INSERTED'),

 // Remove a collection
 pb.collections.remove('initial1'),

 // Add a capability to a role
 pb.permissions.replace(
 {'role-name': 'app-user',
 capabilities: ['read','update']}),

 // Add a property
 pb.properties.add('myProp3', 'INSERTED'),

 // Change the quality
 pb.quality.set(2),

 // Add new values metadata
 pb.metadataValues.add('key3', 'INSERTED'),

 // Remove a values metadata key-value pair
 pb.metadataValues.remove('key2'),

 // Replace the value of a values metadata key
 pb.metadataValues.replace('key1', 'REPLACED')
]
 }).result();
}).then(function(response) {
 // (4) Emit the resulting metadata
 return db.documents.read({
 uris: [response.uri],
 categories: ['metadata']
 }).result();
}).then(function(documents) {
 console.log('collections: ' +
 JSON.stringify(documents[0].collections, null, 2));
 console.log('permissions: ' +
 JSON.stringify(documents[0].permissions, null, 2));
 console.log('properties: ' +
 JSON.stringify(documents[0].properties, null, 2));
 console.log('quality: ' +
 JSON.stringify(documents[0].quality, null, 2));
 console.log('metadataValues: ' +

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 100

 JSON.stringify(documents[0].metadataValues, null, 2));
}, function(error) { console.log(error); throw error; });
});

The output from the example script should be similar to the following:

collections: [
 "initial2",
 "INSERTED"
]
permissions: [
 {
 "role-name": "app-user",
 "capabilities": [
 "read",
 "update"
]
 },
 {
 "role-name": "rest-writer",
 "capabilities": [
 "update"
]
 },
 {
 "role-name": "rest-reader",
 "capabilities": [
 "read"
]
 }
]
properties: {
 "myProp1": "some-value",
 "myProp2": "some-other-value",
 "myProp3": "INSERTED"
}
quality: 2
metadataValues: {
 "key1": "REPLACED",
 "key3": "INSERTED"
}

Note that the patch operation that adds the “update” capability to the app-user role replaces the
entire permission, rather than attempting to insert “update” as a new value in the capabilities
array. You must operate on each permission as a unit. You cannot modify selected components,
such as role-name or capabilities.

// Add a capability to a role
pb.permissions.replace(
 {'role-name': 'app-user',
 capabilities: ['read','update']})

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 101

Also, notice that the rest-writer and rest-reader roles are assigned to the document, even
though they are never explicitly specified. All documents created using the Node.js, Java, or
REST Client APIs have these roles by default. For details, see “Security Requirements” on
page 15.

3.7 Creating a Patch Without a Builder
The examples in this chapter use marklogic.PatchBuilder to construct a patch using JSON. You
can also construct a raw patch without a builder and pass it to db.documents.patch as either a
JavaScript object or a string.

You must use a raw patch when patching content for XML documents. For details, see “Patching
XML Documents” on page 102.

The syntax for raw XML and JSON patches is covered in detail in Partially Updating Document
Content or Metadata in the REST Application Developer’s Guide.

The following call to db.documents.patch applies a raw JSON patch that insert an array element:

db.documents.patch(response.documents[0].uri,
 { patch: [{
 insert: [{
 context: '/theTop/child[2]',
 position: 'after',
 content: 'three'
 }] }] }
);

In a raw patch, each type of update (insert, replace, replace-insert, remove) is an array of objects,
with each object describing one operation of that type. The output from a call to a patch builder
operation represents one such operation.

For example, the insert operation in the raw patch above is equivalent to the following patch
builder call:

pb.insert('/theTop/child[2]', 'after', 'three')

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 102

The patch builder functions correspond to raw patch operations as follows:

3.8 Patching XML Documents
You must use a raw XML patch when patching content for XML documents. The patch builder
only constructs JSON patch operations, and a JSON patch can only be applied to a JSON
document.

You can pass a raw XML patch as a string to db.documents.patch. The syntax for raw XML
patches is covered in detail in XML Patch Reference in the REST Application Developer’s Guide.

The following example applies a raw XML patch that inserts a new element as a child of another.
The patch is passed as a string in the second parameter of db.documents.patch.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

PatchBuilder function Raw patch equivalent

insert(
 context, position,
 content, cardinality)

"insert": [...,
 { "context": ...,
 "position": ...,
 "content": ...,
 "cardinality": ...
 }, ...
]

replace(select, content, cardinality) "replace": [...,
 { "select": ...,
 "content": ...
 "cardinality": ...
 }, ...
]

replaceInsert(
 select, context,
 position, content,
 cardinality)

"replace-insert": [...,
 { "select": ...,
 "context": ...,
 "position": ...,
 "content": ...
 "cardinality": ...
 }, ...
]

remove(select, cardinality) "delete": [...,
 { "select": ...,
 "cardinality": ...
 }, ...
]

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 103

// (1) Insert the base document into the database
db.documents.write({
 uri: '/patch/raw-patch2.xml',
 contentType: 'application/xml',
 content: '<parent><child>data</child></parent>'
}).result().then(function(response) {
 // (2) Patch the document
 return db.documents.patch(
 response.documents[0].uri,
 '<rapi:patch xmlns:rapi="http://marklogic.com/rest-api">' +
 ' <rapi:insert context="/parent" position="last-child">' +
 ' <new-child>INSERTED</new-child>' +
 ' </rapi:insert>' +
 '</rapi:patch>'
).result();
}).then(function(response) {
 // (3) Emit the resulting document
 return db.documents.read(response.uri).result();
}).then(function(documents) {
 console.log(documents[0].content);
}, function(error) { console.log(error); throw error; });

The following table shows the document transformation applied by the patch:

For another Node.js example, see “Example: Custom Replacement Constructors” on page 110.
For more details, see “Partially Updating Document Content or Metadata” on page 66 in the
REST Application Developer’s Guide.

3.9 Constructing Replacement Data on MarkLogic Server
You can use builtin or custom replacement constructor functions to generate the content for a
patch operation dynamically on MarkLogic Server. The builtin functions support simple
arithmetic and string manipulation. For example, you can use a builtin function to increment the
current value of numeric data or concatenate strings. For more complex operations, create and
install a custom function.

The following topics are covered:

• Overview of Replacement Constructor Functions

Before Update After Update

<parent>
 <child>data</data>
</parent>

<parent>
 <child>data</data>
 <new-child>INSERTED</new-child>
</parent>

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 104

• Using a Builtin Replacement Constructor

• Passing Parameters to a Replacement Constructor

• Using a Custom Replacement Constructor

• Writing a Custom Replacement Constructor

• Installing or Updating a Custom Replace Library

• Uninstalling a Custom Replace Library

• Example: Custom Replacement Constructors

• Additional Operations

3.9.1 Overview of Replacement Constructor Functions
A replacement constructor function is a server-side function that generates content for a patch
replace or replace-insert operation.

You can use replacement constructor functions when creating a patch operation using
PatchBuilder.replace and PatchBuilder.replaceInsert functions, or the replace and
replace-insert operations of a raw patch. The replacement constructor function call specification
takes the place of replacement content supplied by your application. The replacement constructor
function call is evaluated on MarkLogic Server and usually generates new content relative to the
current value.

For example, you could use the builtin PatchBuilder.multiplyBy operation to increase the current
value of a property by 10%. The following replace operations says “For every value selected by
the XPath expression /inventory/price, multiply the current value by 1.1”. Notice that the
multiplyBy result is passed to PatchBuilder.replace instead of new content.

pb.replace('/inventory/price', pb.multiplyBy(1.1))

The builtin replacement constuctors are available as methods of PatchBuilder. For details, see
“Using a Builtin Replacement Constructor” on page 105.

You can also use custom replacement constructors by calling PatchBuilder.library and
PatchBuilder.apply. Use PatchBuilder.library to identify a server side XQuery library module
that contains your replacement constructor functions, then use PatchBuilder.apply to create a
patch operation that invokes a function in that module.

For example, the following code snippet creates a patch replace operation that doubles the price of
every value selected by the XPath expression /inventory/price. The custom dbl function is
implemented by the XQuery library module installed in the modules database with URI
/ext/marklogic/patch/apply/my-lib.xqy. The dbl function does not expect any argument values,
so there is no additional content supplied to PatchBuilder.apply.

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 105

pb.library('my-lib'),
pb.apply('dbl')

For details, see “Writing a Custom Replacement Constructor” on page 107.

For details on using replacement generator functions in a raw patch, see Constructing Replacement
Data on the Server in the REST Application Developer’s Guide.

3.9.2 Using a Builtin Replacement Constructor
The Node.js Client API includes several builtin server-side functions you can use to dynamically
generate the content for a replace or replaceInsert patch operation. For example, you can use a
builtin function to increment the current value of a data item.

The builtin arithmetic functions are equivalent to the XQuery +, -, *, and div operators, and accept
values castable to the same datatypes. That is, numeric, date, dateTime, duration, and Gregorian
(xs:gMonth, xs:gYearMonth, etc.) values. The operand type combinations are as supported by
XQuery; for details, see http://www.w3.org/TR/xquery/#mapping. All other functions expect values
castable to string.

The PatchBuilder interface includes methods corresponding to each builtin function. If you use a
raw patch rather than the patch builder, see Constructing Replacement Data on the Server in the
REST Application Developer’s Guide.

The table below lists the available builtin replacement constructor functions. In the table,
$current represents the current value of the target of the replace operation; $arg and $argN
represent argument values passed in by the patch. For details, see the Node.js API Reference. The
Apply Operation Name column lists the name of the equivalent operation for use with
patchBuilder.apply.

PatchBuilder
Function

Apply Operation
Name

Num
Args Effect

add ml.add 1 $current + $arg

subtract ml.subtract 1 $current - $arg

multiplyBy ml.multiply 1 $current * $arg

divideBy ml.divide 1 $current div $arg

concatBefore ml.concat-before 1 fn:concat($arg, $current)

concatAfter ml.concat-after 1 fn:concat($current, $arg)

http://www.w3.org/TR/xquery/#mapping
/jsdoc/index.html

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 106

3.9.3 Passing Parameters to a Replacement Constructor
When using a patch builder to construct a call to a builtin or custom replacement constructor,
simply pass the expected arguments to the patchBuilder method.

For example, patchBuilder.concatBetween concatenates each selected value between two strings
supplied as input. Therefore, the concatBetween method takes the two input string as arguments.
The following example concatenates the strings “fore” and “aft” on either side of the current
value of a selected data item.

pb.replace('/some/path/expr',
 pb.concatBetween('fore', 'aft'))

In a raw patch, you supply the input argument values in the content property of the operation. For
details, see Using a Replacement Constructor Function in the REST Application Developer’s Guide.

Use patchBuilder.apply and patchBuilder.datatype to explicitly specify the datatype of an input
argument value. You can choose among the types supported by the XML schema; for details, see
http://www.w3.org/TR/xmlschema-2/#built-in-datatypes. Omit the namespace prefix on the type name.

For example, the following call explicitly specifies xs:long as the datatype for the input value to
the raw patch operation equivalent of calling patchBuilder.multiplyBy. For a list of the builtin
function names usable with apply, see the table in “Using a Builtin Replacement Constructor” on
page 105.

pb.replace('/some/path/expr',
 p.apply('ml.add', p.datatype('long'), '9223372036854775807'))

3.9.4 Using a Custom Replacement Constructor
Before you can use a custom replacement constructor, the XQuery library module containing your
constructor implementation must be installed in the modules database of your REST API
instance. For details, see “Installing or Updating a Custom Replace Library” on page 108.

concatBetween ml.concat-between 2 fn:concat($arg1, $current, $arg2)

substringBefore ml.substring-before 1 fn:substring-before($current, $arg)

substringAfter ml.substring-after 1 fn:substring-after($current, $arg)

replaceRegex ml.replace-regex 2 or 3 fn:replace($current, $arg1,
 $arg2, $arg3)

PatchBuilder
Function

Apply Operation
Name

Num
Args Effect

http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 107

To bring a library of custom replacement constructor functions into scope for a patch operation,
include the result of calling PatchBuilder.library in your patch. The library operation tells the
API how to locate your implementation on MarkLogic Server.

For example, the following library call indicates that any custom replacement constructor
functions used by the patch are in the XQuery module with modules database URI
/ext/marklogic/patch/apply/my-replace-lib.xqy.

pb.patch('/some/doc.json',
 pb.library('my-replace-lib.xqy'),
 ...)

You can only use one such library per patch, but you use multiple functions from the same library.

Use PatchBuilder.apply to construct a “call” to a function in your library. For example, if
my-replae-lib.xqy contains a function called dbl, you can use by including the result of the
following call in your patch:

pb.patch('/some/doc.json',
 pb.library('my-replace-lib.xqy'),
 pb.apply('dbl')
 /* additional patch operations */)

If the function expects input arguments, include them in the apply call:

pb.apply('doSomething', 'arg1Val', 'arg2Val')

You are responsible for passing in values of the type(s) expected by the named function. No type
checking is performed for you.

3.9.5 Writing a Custom Replacement Constructor
This section covers requirements for implementing a custom replacement constructor. For an
example implementation, see “Example: Custom Replacement Constructors” on page 110.

You can create your own functions to generate content for the replace and replace-insert
operations using XQuery. A custom replacement generator function has the following XQuery
interface:

declare function module-ns:func-name(
 $current as node()?,
 $args as item()*
) as node()*

The target node of the replace (or replace-insert) operation is provided in $current. If the function
is invoked as an insert operation on behalf of a replace-insert, then $current is empty.

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 108

The argument list supplied by the operation is passed through $args. You are responsible for
validating the argument values. If the arguments supplied by the patch operation is a JSON array
or a sequence of XML <rapi:value/> elements, then $args is the result of applying the fn:data
function to each value. If an explicit datatype is specified by the patch operation, the cast is
applied before invoking your function.

Your function should report errors using fn:error and RESTAPI-SRVEXERR. For details, see “Error
Reporting in Extensions and Transformations” on page 245.

To use a patch builder to construct references to your module, you must adhere to the following
namespace and installation URI convention:

• Your module must be in the namespace
http://marklogic.com/patch/apply/yourModuleName.

• Your module must be installed in the modules database under a URI of the form
/ext/marklogic/patch/apply/yourModuleName. This happens automatically if you install
your module using db.config.patch.replace.write.

For example, if your library module includes the following module namespace declaration:

module namespace my-lib = "http://marklogic.com/patch/apply/my-lib";

And is installed in the modules database with the following URI:

/ext/marklogic/patch/apply/my-lib.xqy

Then the following patch successfully applies the function dbl in my-lib.xqy:

pb.patch('/some/doc.json',
 pb.library('my-lib.xqy'),
 pb.replace('/some/path/expr', pb.apply('dbl')),
 ...)

This shorthand convention does not apply to raw patches. A raw patch must explicitly specify the
complete namespace and module path in the replace-library directive, even if you follow the
convention naming convention.

3.9.6 Installing or Updating a Custom Replace Library
To install or update custom replacement constructor functions, place your function(s) into an
XQuery library module and install the module and any dependent libraries in the modules
database associated with your REST API instance.

Use config.patch.replace.write to install your module(s). This function ensures your module is
installed using the modules database URI convention expected by PatchBuilder. You must ensure
your module uses the required namespace convention; for details, see “Writing a Custom
Replacement Constructor” on page 107.

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 109

For example, the following script installs a module into the modules database with the URI
/ext/marklogic/patch/apply/my-lib.xqy. The implementation is read from a file with pathname
./my-lib.xqy. The module is executable by users with the app-user role.

const fs = require('fs');
const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.config.patch.replace.write('my-lib.xqy',
 [{'role-name': 'app-user', capabilities: ['execute']}],
 fs.createReadStream('./my-lib.xqy')
).result(function(response) {
 console.log('Installed module ' + response.path);
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

Note that only the module name portion of the URI ('my-lib.xqy') is passed in. The remainder of
the expected URI is constructed for you.

If you do not specify any permissions when writing the implementation to the modules database,
the module is only executable by users with the rest-admin role.

For an end-to-end example, see “Example: Custom Replacement Constructors” on page 110.

If your library module requires dependent libraries, you can install them using the extlibs
interface. The extlibs interface allows you to manage modules database assets at both the
directory and file level. For details, see “Managing Assets in the Modules Database” on page 255.

Calling db.config.patch.replace.write is equivalent to calling db.config.extlibs.write and
setting the path parameter to a value that conforms to the PatchBuilder convention. For example,
the following call performs an installation equivalent to the above use of
db.config.patch.replace.write:

db.config.extlibs.write({
 path: '/marklogic/patch/apply/my-lib.xqy',
 permissions: [
 {'role-name': 'app-user', capabilities: ['execute']}
],
 contentType: 'application/xquery',
 source: fs.createReadStream('./my-lib.xqy')
})

3.9.7 Uninstalling a Custom Replace Library
To remove a module that contains custom replacement constructor functions, use
db.config.patch.replace.remove. For example, the following call removes the module
my-lib.xqy that was previously installed using db.config.patch.replace.write:

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 110

db.config.patch.replace.remove('my-lib.xqy');

3.9.8 Example: Custom Replacement Constructors
This example walks you through installing and using an XQuery library module that contains
custom replacement constructor functions.

The example installs an XQuery library module containing 2 custom replacement constructors,
named dbl and min. The dbl function creates a new node whose value is double that of the original
input; it accepts no additional arguments. The min function creates a new node whose value in the
minimum of the current value and the values passed in as additional arguments.

For simplicity, this example skips most of the input data validation that a production
implementation should include. For example, the min function accepts JSON number nodes and
XML elements as input, but it does not allow for boolean, text, or date input. Nor does min
perform any validation on the additional input args.

After installing the replacement content generators, a patch is applied to double the value of
oranges (from 10 to 20) and select the lowest price for pears.

Use the following procedure to set up the files used by the example:

1. Copy the following XQuery module into a file named my-lib.xqy. This file contains the
implementation of the custom replacement constructors.

xquery version "1.0-ml";

module namespace my-lib = "http://marklogic.com/patch/apply/my-lib";

(: Double the value of a node :)
declare function my-lib:dbl(
 $current as node()?,
 $args as item()*
) as node()*
{
 if ($current/data() castable as xs:decimal)
 then
 let $new-value := xs:decimal($current) * 2
 return
 typeswitch($current)
 case number-node() (: JSON :)
 return number-node {$new-value}
 case element() (: XML :)
 return element {fn:node-name($current)} {$new-value}
 default return fn:error((), "RESTAPI-SRVEXERR",
 ("400", "Bad Request",
 fn:concat("Not an element or number node: ",
 xdmp:path($current))
))
 else fn:error((), "RESTAPI-SRVEXERR",

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 111

 ("400", "Bad Request", fn:concat("Non-decimal data: ", $current)
))
};

(: Find the minimum value in a sequence of value composed of :)
(: the current node and a set of input values. :)
declare function my-lib:min(
 $current as node()?,
 $args as item()*
) as node()*
{
 if ($current/data() castable as xs:decimal)
 then
 let $new-value := fn:min(($current, $args))
 return
 typeswitch($current)
 case element() (: XML :)
 return element {fn:node-name($current)} {$new-value}
 case number-node() (: JSON :)
 return number-node {$new-value}
 default return fn:error((), "RESTAPI-SRVEXERR",
 ("400", "Bad Request",
 fn:concat("Not an element or number node: ",
 xdmp:path($current))
))
 else fn:error((), "RESTAPI-SRVEXERR", ("400", "Bad Request",
 fn:concat("Non-decimal data: ", $current)))
};

2. Copy the following script into a file named install-udf.js. This script installs the above
XQuery module. For demonstration purposes, the module is installed such that the role
app-user has permission to execute the contained functions.

const fs = require('fs');
const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.config.patch.replace.write('my-lib.xqy',
 [{'role-name': 'app-user', capabilities: ['execute']}],
 fs.createReadStream('./my-lib.xqy')
).result(function(response) {
 console.log('Installed module ' + response.path);
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 112

3. Copy the following script into a file named udf.js. This script inserts a base document
into the database and applies a patch that uses the dbl and min replacement content
constructors.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

// (1) Insert the base document into the database
db.documents.write({
 uri: '/patch/udfs.json',
 contentType: 'application/json',
 content: {
 inventory: [
 {name: 'orange', price: 10},
 {name: 'apple', price: 15},
 {name: 'pear', price: 20}
] }
}).result().then(function(response) {
 // (2) Patch the document
 const pb = marklogic.patchBuilder;
 return db.documents.patch(response.documents[0].uri,
 pb.library('my-lib.xqy'),
 pb.replace('/inventory[name eq "orange"]/price', pb.apply('dbl')),
 pb.replace('/inventory[name eq "pear"]/price',
 pb.apply('min', 18, 21))
).result();
}).then(function(response) {
 // (3) Emit the resulting document
 return db.documents.read(response.uri).result();
}).then(function(documents) {
 console.log(JSON.stringify(documents[0].content, null, 2));
}, function(error) { console.log(error); throw error; });

Use the following procedure to run the example. This procedure installs the replacement content
constructor module, inserts a base document in the database, patches the document, and displays
the update document contents.

1. Install the replacement content constructor module:

node install-udf.js

2. Insert and patch a document, using the dbl and min functions.

node udf.js

You should see output similar to the following:

{
 "inventory": [
 {

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 113

 "name": "orange",
 "price": 20
 },
 {
 "name": "apple",
 "price": 15
 },
 {
 "name": "pear",
 "price": 18
 }
]
}

The price of oranges is doubled, from 10 to 20 by the dbl function, due to the following patch
operation:

pb.replace('/inventory[name eq "orange"]/price', pb.apply('dbl'))

The value of pears is lowered from 20 to 18 by the min function, due to the following patch
operation:

pb.replace('/inventory[name eq "pear"]/price',
 pb.apply('min', 18, 21))

The XPath expression used in each patch operation selects a number node (price) in the target
document and the replacement content constructor functions construct a new number node:

typeswitch($current)
 case element() (: XML :)
 return element {fn:node-name($current)} {$new-value}
 case number-node() (: JSON :)
 return number-node {$new-value}

You cannot simply return the new value. You must return a complete replacement node. To learn
more about the JSON document model and JSON node constructors, see Working With JSON in the
Application Developer’s Guide.

The typeswitch on the node type of $current also enables the example replacement constructors
to work with XML input. Run the following script to apply an equivalent to an XML document,
using the previously installed dbl and min replacement content constructors. As described in
“Patching XML Documents” on page 102, you must use a raw patch rather than a builder when
working with XML documents.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

// (1) Insert the base document into the database
db.documents.write({
 uri: '/patch/udf.xml',

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 114

 contentType: 'application/xml',
 content:
 '<inventory>' +
 '<item>' +
 '<name>orange</name>' +
 '<price>10</price>' +
 '</item>' +
 '<item>' +
 '<name>apple</name>' +
 '<price>15</price>' +
 '</item>' +
 '<item>' +
 '<name>pear</name>' +
 '<price>20</price>' +
 '</item>' +
 '</inventory>'

}).result().then(function(response) {
 // (2) Patch the document
 return db.documents.patch(
 response.documents[0].uri,
 '<rapi:patch xmlns:rapi="http://marklogic.com/rest-api">' +
 '<rapi:replace-library ' +
 'at="/ext/marklogic/patch/apply/my-lib.xqy" ' +
 'ns="http://marklogic.com/patch/apply/my-lib" />' +
 '<rapi:replace ' +
 'select="/inventory/item[name eq \'orange\']/price" ' +
 'apply="dbl" />' +
 '<rapi:replace ' +
 'select="/inventory/item[name eq \'pear\']/price" ' +
 'apply="min">' +
 '<rapi:value>18</rapi:value>' +
 '<rapi:value>21</rapi:value>' +
 '</rapi:replace>' +
 '</rapi:patch>'
).result();
}).then(function(response) {
 // (3) Emit the resulting document
 return db.documents.read(response.uri).result();
}).then(function(documents) {
 console.log(documents[0].content);
}, function(error) { console.log(error); throw error; });

Notice that in a raw patch, you must explicitly specify the module path and module namespace in
the replace-library directive:

<rapi:replace-library at="/ext/marklogic/patch/apply/my-lib.xqy"
 ns="http://marklogic.com/patch/apply/my-lib" />'

When you use PatchBuilder to construct a JSON patch, the call to PatchBuilder.library fills
these details in for you, assuming you follow the installation path conventions described in
“Installing or Updating a Custom Replace Library” on page 108.

MarkLogic Server Patching Document Content or Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 115

3.9.9 Additional Operations
The db.config.patch.replace interface offers additional methods for managing library modules
containing replacement content constructor functions, including the following:

• db.config.patch.replace.read - Retrieve the implementation of a replace library. This
returns a module installed using db.config.patch.replace.write.

• db.config.patch.replace.list - Retrieve a list of all installed replace library modules.

For details, see Node.js Client API Reference.

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 116

4.0 Querying Documents and Metadata
180

This chapter covers the following topics related to querying database content and metadata using
the Node.js Client API:

• Query Interface Overview

• Introduction to Search Concepts

• Understanding the queryBuilder Interface

• Searching with String Queries

• Searching with Query By Example

• Searching with Structured Queries

• Searching with Combined Query

• Searching Values Metadata Fields

• Querying Lexicons and Range Indexes

• Generating Search Facets

• Refining Query Results

• Generating Search Term Completion Suggestions

• Loading the Example Data

4.1 Query Interface Overview
The Node.js Client API includes interfaces that enable you to search documents and query
lexicons using a variety of query types. The following interfaces support query operations:

Method Description

marklogic.queryBuilder Construct a string query, QBE, or structured query to
use with DatabaseClient.documents.query. For
details, see Understanding the queryBuilder Interface.

DatabaseClient.documents.query Search for documents that match a string query,
structured query, combined query, or Query By
Example (QBE), returning a search results summary,
matching documents, or both. For details, see
“Searching with Query By Example” on page 134,
“Searching with String Queries” on page 124, or
“Searching with Structured Queries” on page 139.

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 117

4.2 Introduction to Search Concepts
This section provides a brief introduction to search concepts and the capabilities exposed by the
Node.js Client API. Search concepts are covered in detail in the Search Developer’s Guide.

You can query a MarkLogic Server database in two ways: by searching documents contents and
metadata, or by querying value and word lexicons created from your content. This topic deals
with searching content and metadata. For lexicons, see “Querying Lexicons and Range Indexes”
on page 151.

This section covers the following topics:

• Search Overview

• Query Styles

• Types of Query

• Indexing

4.2.1 Search Overview
Performing a search consists of the following basic phases:

1. Build up a set of criteria that defines your desired result set

DatabaseClient.queryCollection Search for the persisted JavaScript objects in a
collection, and return the matching objects.

DatabaseClient.valuesBuilder Construct a values query to use with
DatabaseClient.values.read. For details, see
“Querying Lexicons and Range Indexes” on
page 151.

DatabaseClient.values.read Query the values or tuples (co-occurrences) in
lexicons or range indexes. For details, see “Querying
Lexicons and Range Indexes” on page 151.

DatabaseClient.documents.suggest Match strings in a lexicon to provide search term
completion suggestions. For details, see “Generating
Search Term Completion Suggestions” on page 172.

DatabaseClient.config.query Manage query related customizations stored in the
modules database, including search result
transforms, snippeters, and string query parsers.

Method Description

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 118

2. Refine the result set by defining attributes such as the number of results to return or the
sort order.

3. Search the database or a lexicon.

The Node.js Client API includes the marklogic.queryBuilder interface that abstract away many
of the structural details of defining and refining your query. For details, see “Understanding the
queryBuilder Interface” on page 121. Use DatabaseClient.documents.query to execute your
query operation.

MarkLogic Server supports many different kinds of search criteria, such as matching phrases,
specific values, ranges of values, and geospatial regions. These and other query types are explored
in “Types of Query” on page 119. You can express your search criteria using one of several query
styles; for details, see “Query Styles” on page 118.

Query result refinements include whether or not to return entire documents, content snippets,
facet information, and/or aggregate results. You can also define your own snippeting algorithm or
custom search result tranform. For details, see “Refining Query Results” on page 164.

To perform iterative searches over the database at a fixed point in time, pass a Timestamp
parameter in your query call. For details, see “Performing Point-in-Time Operations” on page 23.

You can also analyze lexicons created from your documents using marklogic.valuesBuilder and
DatabaseClient.values.read. For details, see “Querying Lexicons and Range Indexes” on
page 151.

4.2.2 Query Styles
When you search document content and metadata using the Node.js Client API, you can express
your search criteria using the following query styles. The syntax of each style is different, and the
expressive power varies.

Query Style Description

Query By Example
(QBE)

Search documents by modeling the structure of the documents you want
to match. For details, see “Searching with Query By Example” on
page 134 and queryBuilder.byExample.

String Query Search documents and metadata using a Google-style query string such
as a user enters in a search box. For example, a query of the form “cat
AND dog” matches all documents containing the phrases “cat” and
“dog”. For details, see “Searching with String Queries” on page 124 and
queryBuilder.parsedFrom.

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 119

All the query styles support a rich set of search features, but generally, QBE is more expressive
than string query, structured query is more expressive than QBE, and combined query is more
expressive than any of the others since it is a superset. String query and QBE are designed for ease
of use and cover a wide range of search needs. However, they do not provide the same level of
control over the search as structured query and combined query do.

The following diagram illustrates this tradeoff, at a high level.

You can combine a string query and structured query criteria in a single query operation. QBE
cannot be combined with the other two query styles.

For more details, see Overview of Search Features in MarkLogic Server in the Search Developer’s
Guide.

4.2.3 Types of Query
A query encapsulates your search criteria. No matter what query style you use (string, QBE, or
structured), your criteria fall into one or more of the query types described in this section.

The following query types are basic search building blocks that describe the content you want to
match.

• Range: Match values that satisfy a relational expression. You can express conditions such
as “less than 5” or “not equal to true”. A range query must be backed by a range index.

• Value: Match an entire literal value, such as a string or number, in a specific JSON
property or XML element. By default, value queries use exact match semantics. For
example, a search for “mark” will not match “Mark Twain”.

Structured Query Search documents and metadata by building up complex queries from a
rich set of sub-query types. For details, see “Searching with Structured
Queries” on page 139.

Combined Query Search documents and metadata using a query object that enables you to
combine the other query styles plus query options. Combined query is an
advanced feature for users who prefer to build queries manually. For
details see “Searching with Combined Query” on page 149.

Query Style Description

String Query Query By Example Structured Query

Complexity

Expressive Power

Combined Query

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 120

• Word: Match a word or phrase in a specific JSON property or XML element or attribute.
In contrast to a value query, a word query will match a subset of a text value and does not
not use exact match semantics by default. For example, a search for “mark” will match
“Mark Twain”, in the specified context.

• Term: Match a word or phrase anywhere it appears. In contrast to a value query, a term
query will match a subset of a text value and does not use exact match semantics by
default. For example, a search for “mark” will match “Mark Twain”.

Additional query types enable you to build up complex queries by combining the basic content
queries with each other and with criteria that add additional constraints. The additional query
types fall into the following categories.

• Logical Composers: Express logical relationships between criteria. You can build up
compound logical expressions such as “x AND (y OR z)”.

• Document Selectors: Select documents based on collection, directory, or URI. For
example, you can express criteria such as “x only when it occurs in documents in
collection y”.

• Location Qualifiers: Further limit results based on where the match appears. For example,
“x only when contained in JSON property z”, or “x only when it occurs within n words of
y”, or “x only when it occurs in a document property”.

With no additional configuration, string queries support term queries and logical composers. For
example, the query string “cat AND dog” is implicitly two term queries, joined by an “and”
logical composer.

However, you can easily extend the expressive power of a string query using parse bindings to
enable additional query types. For example, if you use a range query binding to tie the identifier
“cost” to a specific indexed JSON property, you enable string queries of the form “cost GT 10”.
For details, see “Searching with String Queries” on page 124.

In a QBE, content matches are value queries by default. For example, a QBE search criteria of the
form {'my-key': 'desired-value'} is implicitly a value query for the JSON property 'my-key'
whose value is exactly 'desired-value'. However, the QBE syntax includes special property
names that enable you to construct other types of query. For example, use $word to create a word
query instead of a value query: {'my-key': {'$word': 'desired-value'}}. For details, see
“Searching with Query By Example” on page 134.

For structured query, the queryBuilder interface includes builders corresponding to all the query
types. You can use these builders in combination with each other. Every queryBuilder method
that return a queryBuilder.Query creates a query or sub-query that falls into one of the above
query categories. For details, see “Searching with Structured Queries” on page 139.

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 121

4.2.4 Indexing
Range queries must be backed by an index. Even queries that do not strictly require a backing
index can benefit from indexing by enabling unfiltered searches; for details, see Fast Pagination
and Unfiltered Searches in the Query Performance and Tuning Guide.

You can create range indexes using the Admin Interface, the XQuery Admin API, and the REST
Management API. You can also use the Configuration Manager or REST Packaging API to copy
index configurations from one database or host to another. For details, see the following
references:

• Range Indexes and Lexicons in the Administrator’s Guide

• Using the Configuration Manager in the Administrator’s Guide

• PUT:/manage/v2/databases/{id|name}/properties in the MarkLogic REST API Reference

Use the element range index interfaces to create indexes on JSON properties. For purposes of
index configuration, a JSON property is equivalent to an XML element in no namespace.

You can use the binding feature of the Node.js Client API to bind an index reference to a name
that can be used in string queries. For details, see “Using Constraints in a String Query” on
page 127 and “Generating Search Term Completion Suggestions” on page 172. Values queries on
lexicons and indexes also rely on index references. For details, see “Building an Index Reference”
on page 156.

4.3 Understanding the queryBuilder Interface
Performing a search using the marklogic.queryBuilder interface consists of the following phases:

1. Build up a set of search criteria, creating a query that defines your desired result set.

2. Refine the result set by defining attributes such as the number of results to return or the
sort order.

3. Search the database.

The following diagram illustrates using the Node.js Client API to define and execute a search
using queryBuilder and DatabaseClient.documents.query. In the diagram, “qb” represents a
queryBuilder object, and “db” represents a DatabaseClient object. The functions in italics are
optional.

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 122

The following procedure expresses these steps in more detail:

1. Define your search criteria using string query (qb.parsedFrom), QBE (qb.byExample), or
structured query (other builders, such as qb.word, qb.range, and qb.or). For example:

qb.parsedFrom("dog")

You can pass a string and one or more structured builders together, in which case they are
AND’d together. You cannot combine a QBE with the other query types.

2. Encapsulate your criteria in a query by passing them to queryBuilder.where. This
produces a queryBuilder.BuiltQuery object suitable for passing to
DatabaseClient.documents.query, with or without further result set refinement.

qb.where(qb.parsedFrom("dog"))

3. Optionally, apply further result set refinements to your query. Any or all of the following
steps can be skipped, depending on the results you want.

a. Use queryBuilder.slice to select a subset of documents from the result set and/or specify
a server-side transformation to apply to the selected results. The default slice is the first 10
documents, with no transformations.

b. Use queryBuilder.orderBy to specify a sort key and/or sorting direction.

c. Use queryBuilder.calculate to request one or more aggregate calculations on the result
set.

4. Optionally, use queryBuilder.withOptions to add further refinements to your search, such
as specifying low level search options or a transaction id, or requesting query debugging
information.

5. Perform the search by passing your final BuiltQuery object to the
DatabaseClient.documents.query function. For example:

db.documents.query(qb.where(qb.parsedFrom("dog")))

qb.parsedFrom

qb.byExample

other builders

qb.calculate
qb.orderBy
qb.slice

db.documents.query

Define Criteria Refine Result Set Search

qb.where

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 123

The following table contains examples of using queryBuilder to construct an equivalent query in
each of the available query styles. The queries match documents containing both the phrases “cat”
and “dog”. Notice that only the query building portion of the search varies based on the chosen
query style.

For details, see one of the following topics:

• “Searching with String Queries” on page 124

• “Searching with Query By Example” on page 134

• “Searching with Structured Queries” on page 139

Query Style Code Snippet

string db.documents.query(
 qb.where(
 qb.parsedFrom('cat AND dog')
).orderBy(qb.sort('descending')
 .slice(0,5)
)

QBE db.documents.query(
 qb.where(
 qb.byExample({
 $and:[{$word:'cat'},{$word:'dog'}]
 })
).orderBy(qb.sort('descending')
 .slice(0,5)
)

structured db.documents.query(
 qb.where(
 qb.and(qb.term('cat'), qb.term('dog'))
).orderBy(qb.sort('descending')
 .slice(0,5)
)

combined string and
structured

db.documents.query(
 qb.where(
 qb.term('cat'),
 qb.parsedFrom('dog')
).orderBy(qb.sort('descending')
 .slice(0,5)
)

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 124

4.4 Searching with String Queries
A string query is a simple, but powerful text string, usually corresponding to query text entered
into your application by users via a search box. This section includes the following topics:

• Introduction to String Query

• Example: Basic String Query

• Using Constraints in a String Query

• Example: Using Constraints in a String Query

• Using a Custom Constraint Parser

• Example: Custom Constraint Parser

• Additional Information

4.4.1 Introduction to String Query
The MarkLogic Server Search API default search grammar allows you to quickly construct
simple searches such as “cat”, “cat AND dog”, or “cat NEAR dog”. Such a string query often
represents query text entered into a search box by a user.

The default grammar supports operators such as AND, OR, NOT, and NEAR, plus grouping. For
grammar details, see Searching Using String Queries in the Search Developer’s Guide.

The Node.js client supports string queries through the queryBuilder.parsedFrom method. For
example, to construct a query that matches documents containing the phrases “cat” and “dog”, use
the following queryBuilder call:

qb.parsedFrom('cat AND dog')

For details, see “Example: Basic String Query” on page 125 and the Node.js API Reference.

By default, DatabaseClient.documents.query returns an array of document descriptors, one per
matched document, including the document contents. You can further refine the search in various
ways, such as controlling which and how many documents, returning snippets and/or facets, and
returning a result summary instead of entire documents. For details, see “Refining Query Results”
on page 164.

The string grammar also supports the application of search constraints to query terms. For
example, you can include a term of the form constraintName:value or constraintName
relationalOp value to limit matches to cases where the value satisfies the constraint.
ConstraintName is the name of a constraint you configure into your query.

For example, if you define a word constraint named “location” over a JSON property of the same
name, then the string query “location:oslo” only matches the term “oslo” when it occurs in the
value of the location property.

/jsdoc/index.html

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 125

Similarly, if you define a range constraint over a number-valued property, bound to the name
“votes”, then you can include relational expressions over the value of the property such as “votes
GT 5”.

The Node.js client supports constraints in string queries through parse bindings that bind a
constraint definition to the name usable in a query. Use the queryBuilder.parseBindings function
to define such bindings. For example:

qb.parsedFrom(theQueryString, qb.parseBindings(binding definitions...))

For details, see “Using Constraints in a String Query” on page 127 and “Using a Custom
Constraint Parser” on page 130.

4.4.2 Example: Basic String Query
The following example script assumes the database is seeded with data “Loading the Example
Data” on page 178. The script searches for all documents containing the phrase “oslo”.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
const qb = marklogic.queryBuilder;

db.documents.query(
 qb.where(qb.parsedFrom('oslo'))
).result(function(results) {
 console.log(JSON.stringify(results, null, 2));
});

The search returns an array of document descriptors, one descriptor per matching document. Each
descriptor includes the document contents.

For example, if the file string-search.js contains the above script, then the following command
produces the results below. The search matches two documents, corresponding to contributors
located in Oslo, Norway.

$ node string-search.js
[
 {
 "uri": "/contributors/contrib1.json",
 "category": "content",
 "format": "json",
 "contentType": "application/json",
 "contentLength": "230",
 "content": {
 "Contributor": {
 "userName": "souser10002@email.com",
 "reputation": 446,
 "displayName": "Lars Fosdal",
 "originalId": "10002",

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 126

 "location": "Oslo, Norway",
 "aboutMe": "Software Developer since 1987, mainly using
Delphi.",
 "id": "sou10002"
 }
 }
 },
 {
 "uri": "/contributors/contrib2.json",
 "category": "content",
 "format": "json",
 "contentType": "application/json",
 "contentLength": "202",
 "content": {
 "Contributor": {
 "userName": "souser1000634@email.com",
 "reputation": 272,
 "displayName": "petrumo",
 "originalId": "1000634",
 "location": "Oslo, Norway",
 "aboutMe": "Developer at AspiroTV",
 "id": "sou1000634"
 }
 }
 }
]

To return a search summary instead of the document contents, use queryBuilder.withOptions to
set categories to 'none'. For example:

db.documents.query(
 qb.where(qb.parsedFrom('oslo')).withOptions({categories: 'none'})
)

Now, the result is a search summary that includes a count of the number of matches (2), and
snippets of the matching text in each document:

[{
 "snippet-format": "snippet",
 "total": 2,
 "start": 1,
 "page-length": 10,
 "results": [...snippets here...],
 "qtext": "oslo",
 "metrics": {
 "query-resolution-time": "PT0.005347S",
 "facet-resolution-time": "PT0.000067S",
 "snippet-resolution-time": "PT0.001523S",
 "total-time": "PT0.007753S"
 }]

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 127

You can also refine your results in other ways. For details, see “Refining Query Results” on
page 164.

4.4.3 Using Constraints in a String Query
The string query interfaces enable you to create parse bindings that define how to interpret parts
of the query. You can define a binding between a name and a search constraint so that when a
query term is prefixed by the bound name, the associated constraint is applied to search for that
term. You can create parse bindings on word, value, range, collection, and scope constraints.

For example, you can define a binding between the name “rep” and a constraint that limits the
search to matching values in a JSON property named “reputation”. Then, if a string query
includes a term of the form rep:value, the constraint is applied to the search for the value. Thus,
the following term mean “find all occurrences of the reputation property where the value is 120”:

rep:120

For details, see Using Relational Operators on Constraints in the Search Developer’s Guide.

Note: Range constraints, such as the contraint on reputation used here, must be backed
by a corresponding range index. For details, see “Indexing” on page 121.

Follow these steps to create and apply parse bindings. For a complete example, see “Example:
Using Constraints in a String Query” on page 128.

1. Create a binding name specification by calling queryBuilder.bind or
queryBuilder.bindDefault. For example, the following call creates a bind name
specification for the name “rep”:

qb.bind('rep')

2. Create a binding between the name (or default) and a constraint by calling one of the
queryBuilder binding builder methods (collection, range, scope, value, or word) and
passing in the binding name specification. For example, the following call creates a
binding between the name 'rep' and a value constraint on the JSON property name
'reputation'.

qb.value('reputation', qb.bind('rep'))

3. Bundle your bindings into a queryBuilder.ParseBindings object using
queryBuilder.parseBindings. For example:

qb.parseBindings(
 qb.value('reputation', qb.bind('rep')), ...more bindings..
)

4. Pass the parse bindings as the second parameter of queryBuilder.parsedFrom to apply
them to a specific query. For example:

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 128

qb.parsedFrom('rep:120',
 qb.parseBindings(
 qb.value('reputation', qb.bind('rep')), ...more bindings..
)
)

You can also create a binding that defines the behavior when the query string is empty, using
queryBuilder.bindEmptyAs. You can elect to return all results or none. The default is none. Note
that because a query without a slice specifier returns matching documents, setting the empty
query binding to all-results can cause an empty query to retrieve all documents in the database.

The following example returns all search results because the query text is an empty string and
empty query binding specifies all-results. Calling queryBuilder.slice ensures the query will
return at most 5 documents.

db.documents.query(qb.where(
 qb.parsedFrom('',
 qb.parseBindings(
 qb.bindEmptyAs('all-results')
))
)).slice(0,5)

4.4.4 Example: Using Constraints in a String Query
This example defines some custom parse binding rules and applies them to a string query based
search. The example illustrates the capability described in “Using Constraints in a String Query”
on page 127.

The example uses data derived from the marklogic-samplestack application. The seed data
includes “contributor” JSON documents of the following form:

{ "com.marklogic.samplestack.domain.Contributor": {
 "userName": string,
 "reputation": number,
 "displayName": string,
 "originalId": string,
 "location": string,
 "aboutMe": string,
 "id": string
} }

The example script applies the following parse bindings to the search:

• The term “rep” corresponds to the value of the reputation JSON property. It is bound to a
range constraint, so it can be used with relational expressions such as “rep > 100”. This
constraint is expressed by the following binding definition:

qb.range('reputation', qb.datatype('int'), qb.bind('rep'))

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 129

• Bare terms that are not covered by another constraint are constrained to match a word
query on the aboutMe JSON property. This constraint is expressed by the following
binding definition:

qb.word('aboutMe', qb.bindDefault())

The database configuration includes an element range index on the reputation JSON property
with scalar type “int”. This index is required to support the range constraint on reputation.

This combination of bindings and configuration causes the following query text to match
documents where “marklogic” occurs in the “aboutMe” property. The term “marklogic” is a bare
term because it is not qualified by a constraint name.

"marklogic"

The following query text matches documents where the value of the “reputation” property is
greater than 50:

marklogic AND rep GT 50

You can use these clauses together to match all documents in which the aboutMe property contains
“marklogic” and the reputation property is greater than 50:

marklogic AND rep GT 50

Without the bindings, the above query matches documents that contain the phrase “marklogic”
anywhere, and the sub-expression “rep GT 50” is meaningless because it compares the word
“rep” to “50”.

The following script creates the binding and applies them to the search text shown above.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
const qb = marklogic.queryBuilder;

db.documents.query(qb.where(
 qb.parsedFrom('marklogic AND rep GT 50',
 qb.parseBindings(
 qb.word('aboutMe', qb.bindDefault()),
 qb.range('reputation', qb.datatype('int'), qb.bind('rep'))
))
)).result(function (documents) {
 console.log(JSON.stringify(documents[0].content, null, 2));
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 130

When run against the marklogic-samplestack seed data, the query matches a single contributor
and produces output similar to the following:

{
 "Contributor": {
 "userName": "souser1601813@email.com",
 "reputation": 91,
 "displayName": "grechaw",
 "originalId": "1601813",
 "location": "Occidental, CA",
 "aboutMe": "XML (XQuery, Java, XML database) software engineer at
MarkLogic. Hardcore accordion player.",
 "id": "sou1601813"
 }
}

4.4.5 Using a Custom Constraint Parser
Support for binding word, value, range, collection, and scope constraint parsing is built into the
API. If these constraint types do not meet the needs of your application, you can create a binding
to a custom constraint parser. Implement the parser as described in Creating a Custom Constraint in
the Search Developer’s Guide.

To apply a custom constraint parser to a string query with the Node.js Client, follow these steps:

1. Create an XQuery module that implements your custom constraint parser. Use the parser
interface for structured queries. For details, see Implementing a Structured Query parse
Function in the Search Developer’s Guide. You must following the naming conventions
described below.

2. Install your parser XQuery library module in the modules database associated with your
REST API instance using DatabaseClient.config.query.custom.write. For details, see
“Example: Custom Constraint Parser” on page 131.

3. Use queryBuilder.parseFunction to create a parse binding between a constraint name and
your custom parser.

The Node.js Client API imposes the following naming conventions on your custom constraint
implementation:

• Your parse function must be named parse.

• Your start and finish facet functions, if present, must be called start-facet and
finish-facet, respectively.

• Your module namespace must be http://marklogic.com/query/custom/yourModuleName,
where yourModuleName is a name of your choosing.

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 131

4.4.6 Example: Custom Constraint Parser
This example demonstrates implementing, installing, and using a custom constraint parser with
the Node.js Client API. For details, see “Using a Custom Constraint Parser” on page 130.

This example is based on the marklogic-samplestack seed data. The data includes contributor
documents, installed in the database directory /contributors/, and question documents, installed
in the database directory /questions/.

The example constraint enables constraining a search to either the contributor or question
category by including a term of the form cat:c or cat:q in your query text. The name “cat” is
bound to the custom contraint using the queryBuilder parse bindings. The constraint parser
defines the values “c” and “q” as corresponding to contributor and question data, respectively.

The example walks through the following steps:

• Implementing the Constraint Parser

• Installing the Constraint Parser

• Using the Custom Constraint in a String Query

4.4.6.1 Implementing the Constraint Parser
The following XQuery module implements the constraint parser. No facet handling functions are
provided. The parser generates a directory-query based on the caller-supplied category name.
The module maintains a mapping between the category names that can appear in query text and
the corresponding database directory in the categories variable.

xquery version "1.0-ml";

module namespace my = "http://marklogic.com/query/custom/ss-cat";
import module namespace search =
 "http://marklogic.com/appservices/search"
 at "/MarkLogic/appservices/search/search.xqy";

(: The category name to directory name mapping:)
declare variable $my:categories :=
 map:new((
 map:entry("c", "/contributors/"),
 map:entry("q", "/questions/")
));

(: parser implementation :)
declare function my:parse(
 $query-elem as element(),
 $options as element(search:options)
) as schema-element(cts:query)
{
let $query :=
 <root>{

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 132

 let $cat := $query-elem/search:text/text()
 let $dir :=
 if (map:contains($my:categories, $cat))
 then map:get($my:categories, $cat)[1]
 else "/"
 return cts:directory-query($dir, "infinity")
 }</root>/*
return
(: add qtextconst attribute so that search:unparse will work -
 required for some search library functions :)
element { fn:node-name($query) }
 { attribute qtextconst {
 fn:concat(
 $query-elem/search:constraint-name, ":",
 $query-elem/search:text/text()) },
 $query/@*,
 $query/node()}
};

4.4.6.2 Installing the Constraint Parser
The following script installs the constraint parser module in the modules database, assuming the
implementation is saved to a file named ss-cat.xqy. Installation is performed by calling
DatabaseClient.config.query.custom.write. The module name passed as the first parameter
must have the same basename as the module name in your module namespace declaration
(ss-cat).

const fs = require('fs');
const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.config.query.custom.write(
 'ss-cat.xqy',
 [{'role-name': 'app-user', capabilities: ['execute']}],
 fs.createReadStream('./ss-cat.xqy')
).result(function(response) {
 console.log('Installed module ' + response.path);
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

If you save the script to a file named install-parser.js, then running the script should produce
results similar to the following:

$ node install-parser.sj
Installed module /marklogic/query/custom/ss-cat.xqy

4.4.6.3 Using the Custom Constraint in a String Query
To use this constraint, include a parse binding created by queryBuilder.parseFunction in your
query. The first parameter must match the module name used when installing the implementation.

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 133

For example, the following call binds the name “cat” to the custom constraint parser installed
above, enable queries to include terms of the form “cat:c” or “cat:q”.

qb.parseFunction('ss-cat.xqy', qb.bind('cat'))

Note that the module name (ss-cat.xqy) is the same as the module name passed as the first
parameter to config.query.custom.write.

The following script uses the custom constraint to search for occurrences of “marklogic” in
documents in the contributors category (“cat:c”) by specifying query text of the form “marklogic
AND cat:c”.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
const qb = marklogic.queryBuilder;

db.documents.query(qb.where(
 qb.parsedFrom('marklogic AND cat:c',
 qb.parseBindings(
 qb.parseFunction('ss-cat.xqy', qb.bind('cat'))
))
)).result(function (documents) {
 for (const i in documents)
 console.log(JSON.stringify(documents[i].content, null, 2));
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

If you save the script to a file named ss-cat.js and run it, the search returns two contributor
documents:

$ node ss-cat.js
{
 "Contributor": {
 "userName": "souser1248651@email.com",
 "reputation": 1,
 "displayName": "Nullable",
 "originalId": "1248651",
 "location": "Ogden, UT",
 "aboutMe": "...My current work includes work with MarkLogic
 Application Server (Using XML, Xquery, and Xpath), WPF/C#,
 and Android Development (Using Java)...",
 "id": "sou1248651"
 }
}
{
 "Contributor": {
 "userName": "souser1601813@email.com",
 "reputation": 91,
 "displayName": "grechaw",

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 134

 "originalId": "1601813",
 "location": "Occidental, CA",
 "aboutMe": "XML (XQuery, Java, XML database) software engineer
 at MarkLogic. Hardcore accordion player.",
 "id": "sou1601813"
 }
}

If you remove the “cat:c” term so that the query text is just “marklogic”, the search returns an
additional question document.

For more details and examples, see Creating a Custom Constraint in the Search Developer’s Guide.

4.4.7 Additional Information
For additional information on creating and using custom constraints, see the following resources:

• The following functions in the Node.js API Reference:

• queryBuilder.parsedFrom

• queryBuilder.parseBindings

• queryBuilder.parseFunction

• queryBuilder.binding

• any of the query builders that accept a queryBuilder.BindingParam argument, such
as queryBuilder.collection, queryBuilder.range, queryBuilder.scope,
queryBuilder.value, and queryBuilder.word

• Searching Using String Queries in the Search Developer’s Guide

• Creating a Custom Constraint in the Search Developer’s Guide

• Constraint Options in the Search Developer’s Guide

4.5 Searching with Query By Example
This section covers the following topics related to searching JSON documents using Query By
Example (QBE).

• Introduction to QBE

• Creating a QBE with queryBuilder

• Querying XML Content With QBE

• Additional Information

4.5.1 Introduction to QBE
A Query By Example enables rapid prototyping of queries for “documents that look like this”
using search criteria that resemble the structure of documents in your database.

/jsdoc/index.html

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 135

For example, if your documents include an author property, then the following raw QBE matches
documents with an author value of “Mark Twain”.

{ $query: { author: "Mark Twain" } }

Use queryBuilder.byExample to construct a QBE with the Node.js Client API. When working
with JSON content, this interfaces accepts individual search criteria modeled on the content ({
author: "Mark Twain" }) or an entire $query object as input. For example:

db.documents.query(qb.where(
 qb.byExample({author: 'Mark Twain'}))
)

When searching XML, you can pass in a serialized XML QBE. For details, see “Querying XML
Content With QBE” on page 137.

The subset of the MarkLogic Server Search API exposed by QBE includes value queries, range
queries, and word queries. QBE also supports logical and relational operators on values, such as
AND, OR, NOT, greater than, less than, and equality tests.

You can only use QBE and the Node.js API to query document content. Metadata search is not
supported. Also, you cannot search on fields. To query metadata or search over fields, use the
other queryBuilder builder functions, such as queryBuilder.collection, queryBuilder.property,
or queryBuilder.field. Use a field query to search on the metadataValues metadata category.

This guide provides only a brief introduction to QBE. For details, see Searching Using Query By
Example in Search Developer’s Guide.

4.5.2 Creating a QBE with queryBuilder
To create a QBE, call queryBuilder.byExample and pass in one or more search criteria parameters.
When working with XML documents, you can also pass in a fully formed QBE; for details, see
“Querying XML Content With QBE” on page 137.

For example, the documents created by “Loading the Example Data” on page 178 include a
location property. Running the following script against this data enables you to search for all
contributors from Oslo, Norway.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
const qb = marklogic.queryBuilder;

db.documents.query(
 qb.where(qb.byExample({location: 'Oslo, Norway'}))
).result(function(results) {
 console.log(JSON.stringify(results, null, 2));
});

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 136

The search criteria passed to qb.byExample match only those documents that contain a location
property with a value of ‘Oslo, Norway’. A QBE criteria of the form{propertyName: value} is a
value query, so the value must exactly match 'Oslo, Norway'.

You can construct other query types that model your documents, including word queries and
range queries. For example, you can relax the above constraint to be tolerant of variations on the
location value by using a word query. You can also add a criteria that only matches contributors
with a reputation value greater than 400. The following table describes the QBE criteria you can
use to realize this search:

The following script combines these criteria into a single QBE:

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);
const qb = marklogic.queryBuilder;

db.documents.query(qb.where(
 qb.byExample({
 location: {$word : 'oslo'},
 reputation: {$gt : 400},
 $filtered: true
 }))
).result(function(results) {
 console.log(JSON.stringify(results, null, 2));

QBE Criteria Description

location: {$word : 'oslo'} Match the phrase “oslo” when it appears in the value of
location. $word is a reserved property name that signifies a
word query. The use of word query means the match is case
insensitive, and the value may or may not include other
words. For details, see Word Query in the Search
Developer’s Guide.

reputation: {$gt : 400} Match documents where the value of reputation is greater
than 400. $gt is a reserved property name that signifies the
“greater than” comparison operator. For details, see Range
Query in the Search Developer’s Guide.

$filtered: true Perform a filtered search. QBE uses unfiltered search by
default for best performance. However, range queries, such
as {$gt : 400} require either filtered search or a backing
range index, so we must enable filtered search. For details,
see How Indexing Affects Your Query in the Search
Developer’s Guide.

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 137

}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

You can pass criteria into byExample as individual objects or an array of objects. For example, the
following calls are equivalent to the byExample call above:

// criteria as individual objects
qb.byExample(
 {location: {$word : 'oslo'}},
 {reputation: {$gt : 400}},
 {$filtered: true}
)

// criteria as an array of objects
qb.byExample([
 {location: {$word : 'oslo'}},
 {reputation: {$gt : 400}},
 {$filtered: true}
])

The inputs to queryBuilder.byExample in these examples correspond to search criteria in the
$query portion of a raw QBE; for details, see Constructing a QBE with the Node.js QueryBuilder in the
Search Developer’s Guide.

You can also pass the raw $query portion of a QBE to queryBuilder.byExample by supplying an
object that has a $query property. For example:

// raw QBE $query
qb.byExample(
 { $query: {
 location: {$word : 'oslo'},
 reputation: {$gt : 400},
 $filtered: true
 }}
)

4.5.3 Querying XML Content With QBE
Pass JavaScript query criteria to queryBuilder.byExample, as described in “Creating a QBE with
queryBuilder” on page 135, implicitly creates JSON QBE, which only matches JSON content. By
default, a QBE only matches documents with the same content type as the QBE. That is, a QBE
expressed in JSON matches JSON documents, and a QBE expressed in XML matches XML
documents. You can still search XML content by either using a serialized XML QBE or by setting
the $format QBE property to ‘xml’.

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 138

To use a QBE to search XML content, use one of the following techniques:

• Pass a serialized XML QBE as input to queryBuilder.byExample. If your query relies on
XML namespaces, you must use this technique. For example:

qb.byExample(
 '<q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">'+
 '<q:query>' +
 '<my:contributor xmlns:my="http://marklogic.com/example">' +
 '<my:location><q:word>oslo</q:word></my:location>' +
 '</my:contributor>' +
 '<my:contributor xmlns:my="http://marklogic.com/example">' +
 '<my:reputation><q:gt>400</q:gt></my:reputation>' +
 '</my:contributor>' +
 '<q:filtered>true</q:filtered>' +
 '</q:query>' +
 '</q:qbe>'
)

• Pass a JavaScript object to queryBuilder.byExample that represents a fully formed QBE
that includes a $format property with the value 'xml'. You can only use this technique
when working with XML content that is in no namespace. For example:

qb.byExample({
 $query: {
 location: {$word : 'oslo'},
 reputation: {$gt : 400},
 $filtered: true
 },
 $format: 'xml'
})

In both cases, the data passed in to queryBuilder.byExample must be a fully formed QBE (albeit a
serialized one, in the XML case), not just the query criteria as when searching JSON documents.
For syntax, see Searching Using Query By Example in the Search Developer’s Guide.

As with any search that matches XML, the XML content returned by the search is serialized and
returned as a string.

4.5.4 Additional Information
For additional information on constructing and using QBE, see the following resources:

• queryBuilder.byExample in the Node.js API Reference

• Searching Using Query By Example in the Search Developer’s Guide

/jsdoc/index.html

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 139

4.6 Searching with Structured Queries
The queryBuilder functions that return a queryBuilder.Query construct sub-queries of a
structured query. A structured query is an Abstract Syntax Tree representation of a search
expression. Use a structured query when the expressiveness of string query or QBE is not
sufficient, or when you need to intercept a query and augment or modify it. For details, see
Structured Query Overview in the Search Developer’s Guide.

• Basic Usage

• Example: Using Structured Query

• Builder Methods Taxonomy Reference

• Query Parameter Helper Functions

• Search Result Refiners

4.6.1 Basic Usage
When you pass one or more queryBuilder.query objects to a function that creates a
queryBuilder.BuiltQuery, such as queryBuilder.where, the queries are used to build a structured
query. A structured query is an Abstract Syntax Tree representation of a search expression. Use a
structured query when the expressiveness of string query or QBE is not sufficient, or when you
need to intercept a query and augment or modify it. For details, see Structured Query Overview in
the Search Developer’s Guide.

Structured queries are composed of one or more search criteria that you create using the builder
methods of queryBuilder. For a taxonomy of builders and examples of each, see “Builder
Methods Taxonomy Reference” on page 141.

For example, the following code snippet sends your query to MarkLogic Server as a structured
query. The query matches documents in the database directory “/contributors/” that also contain
the term “marklogic”.

db.documents.query(
 qb.where(
 qb.and(qb.directory("/contributors/",
 qb.term("marklogic"))
))

Use the queryBuilder result refinement methods to tailor your results, just as you do when
searching with a string query or QBE. For details, see “Search Result Refiners” on page 148.

4.6.2 Example: Using Structured Query
The following example relies on the sample data from “Loading the Example Data” on page 178.

This example demonstrates some of the ways you can use the structured query builders to create
complex queries.

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 140

The following example finds documents in the /contributors/ database directory that contain the
term “marklogic”. By default, the query returns the matching documents.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
const qb = marklogic.queryBuilder;

db.documents.query(
 qb.where(
 qb.and(
 qb.directory('/contributors/'),
 qb.term('marklogic')
)
)
).result(function(results) {
 console.log(JSON.stringify(results, null, 2));
});

The query returns an array of document descriptors, one for each matching document. The sample
data contains 2 documents that match, /contributors/contrib3.json and
/contributors/contrib4.json, so you should see output similar to the following. The content
property of the document descriptor contains the contents of the matching document.

[
 {
 "uri": "/contributors/contrib3.json",
 "category": "content",
 "format": "json",
 "contentType": "application/json",
 "contentLength": "323",
 "content": {
 "Contributor": {
 "userName": "souser1248651@email.com",
 "reputation": 1,
 "displayName": "Nullable",
 "originalId": "1248651",
 "location": "Ogden, UT",
 "aboutMe": "...My current work includes work with MarkLogic
 Application Server (Using XML, Xquery, and Xpath), WPF/C#,
 and Android Development (Using Java)...",
 "id": "sou1248651"
 }
 }
 },
 {
 "uri": "/contributors/contrib4.json",
 "category": "content",
 "format": "json",
 "contentType": "application/json",
 "contentLength": "273",

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 141

 "content": {
 "Contributor": {
 "userName": "souser1601813@email.com",
 "reputation": 91,
 "displayName": "grechaw",
 "originalId": "1601813",
 "location": "Occidental, CA",
 "aboutMe": "XML (XQuery, Java, XML database) software
 engineer at MarkLogic. Hardcore accordion player.",
 "id": "sou1601813"
 }
 }
 }
]

You can optionally remove the call to queryBuilder.and because queryBuilder.where implicitly
ANDs together the queries passed to it. For example, you can rewrite the original query as follows
and get the same results:

db.documents.query(
 qb.where(
 qb.directory('/contributors/'),
 qb.term('marklogic')
)

You can also combine a string query with one or more structured query builder results. For
example, you could further limit the results to documents that also contain “java” by adding
qb.parsedFrom('java') to the query list passed to qb.where. The string query is implicitly AND’d
with the other query terms. If you change the query to the following, the result set contains only
/contributors/contrib3.json.

db.documents.query(
 qb.where(
 qb.directory('/contributors/'),
 qb.term('marklogic'),
 qb.parsedFrom('java')
)

The queryBuilder interface includes helper functions that make it easy to construct more complex
query components, such as index references. For details, see “Query Parameter Helper Functions”
on page 146.

As with the other query types, you can refine your result set using queryBuilder.slice and
queryBuilder.withOptions. For details, see “Refining Query Results” on page 164.

4.6.3 Builder Methods Taxonomy Reference
Structured query explicitly exposes all the query types described in “Types of Query” on page 119
through builder methods. This section is a quick reference for locating the builders you need,
based on this categorization.

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 142

• Basic Content Queries

• Logical Composers

• Location Qualifiers

• Document Selectors

You can use most query types in combination with each other, as indicated by the parameters
accepted by the builder functions. For details, see the queryBuilder interface in the Node.js API
Reference.

The queryBuilder interface enables you to build complex structured queries without knowing the
underlying structural details of the query. Cross-references into the structured query Syntax
Reference in the Search Developer’s Guide are included here if you require further details about
the components of a specific query type.

4.6.3.1 Basic Content Queries
Basic content queries express search criteria about your content, such as “JSON property A
contains value B” or “any document containing the phrase ‘dog’”. These queries function as
“leaves” in the structure of a complex, compound query because they never contain sub-queries.

The following table lists the Node.js builder methods that create basic content queries. A link to
the corresponding raw JSON structured query type is provided in case you need more detail about
a particular aspect of a query. You do not need to construct the raw query; the Node.js API does
this for you.

queryBuilder
Function Example Structured Query

Sub-Query

term qb.term('marklogic') term-query

word qb.word('aboutMe','marklogic') word-query

value qb.value('tags','java') value-query

range qb.range('reputation', '>=', 100) range-query

geospatial qb.geospatial(
 qb.geoElement('gElemPoint'),
 qb.latlon(50, 44)
)

geo-elem-query
geo-elem-pair-query
geo-attr-pair-query
geo-json-property-query
geo-json-property-pair-query
geo-path-query

/jsdoc/index.html
/jsdoc/index.html

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 143

geospatialRegion q.geospatialRegion(
 q.geoPath('/envelope/region'),
 'intersects',
 q.circle(5, q.point(10,20))
)

geo-region-path-query

geoElement qb.geospatial(
 qb.geoElement('gElemPoint'),
 qb.latlon(50, 44)
)

geo-elem-query

geoElementPair qb.geospatial(
 qb.geoElementPair(
 'gElemPair',
 'latitude',
 'longitude'),
 qb.latlon(50, 44)
)

geo-elem-pair-query

geoAttrPair qb.geospatial(
 qb.geoAttributePair(
 'gAttrPair',
 'latitude',
 'longitude'),
 qb.circle(100, 240, 144)
)

geo-attr-pair-query

geoProperty q.geospatial(
 q.geoProperty('gElemPoint'),
 q.point(34, 88)
)

geo-json-property-query

geoPropertyPair qb.geospatial(
 qb.geoPropertyPair(
 'gElemPair',
 'latitude',
 'longitude'),
 qb.latlon(12, 5)
)

geo-json-property-pair-query

geoPath q.geospatial(
 q.geoPath('parent/child'),
 q.latlon(12, 5)
)

geo-path-query

queryBuilder
Function Example Structured Query

Sub-Query

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 144

4.6.3.2 Logical Composers
Logical composers are queries that join one or more sub-queries into a logical expression. For
example, “documents which match both query1 and query2” or “documents which match either
query1 or query2 or query3”.

The following table lists the Node.js builder methods for logical composers. A link to the
corresponding raw JSON structured query type is provided in case you need more detail about a
particular aspect of a query. You do not need to construct the raw query; the Node.js API does this
for you.

4.6.3.3 Location Qualifiers
Location qualifiers are queries that limit results based on where sub-query matches occur, such as
only in content, only in metadata, or only when contained a specified JSON property or XML
element. For example, “matches for this sub-query that occur in metadata” or “matches for this
sub-query that are contained in JSON Property P”.

queryBuilder
Function Example Structured Query

Sub-Query

and qb.and(
 qb.word('text','marklogic'),
 qb.value('tags', 'java')
)

and-query

andNot qb.andNot(
 qb.word('text','marklogic'),
 qb.value('tags', 'java')
)

and-not-query

boost qb.boost(
 qb.word('text','marklogic'),
 qb.word('title', 'json')
)

boost-query

not qb.not(qb.term('marklogic')) not-query

notIn qb.notIn(
 qb.word('text','json'),
 qb.word('text', 'json documents')
)

not-in-query

or qb.or(
 qb.value('tags','marklogic'),
 qb.value('tags', 'nosql')
)

or-query

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 145

The following table lists the Node.js builder methods that create location qualifiers. A link to the
corresponding raw JSON structured query type is provided in case you need more detail about a
particular aspect of a query. You do not need to construct the raw query; the Node.js API does this
for you.

queryBuilder Function Example Structured Query
Sub-Query

documentFragment qb.documentFragment(
 qb.term('marklogic')
)

document-fragment-query

locksFragment qb.locksFragment(
 qb.term('marklogic')
)

locks-fragment-query

near qb.near(
 qb.term('marklogic'),
 qb.term('xquery'), 5
)

near-query

propertiesFragment qb.propertiesFragment(
 qb.term('marklogic')
)

properties-fragment-query

scope qb.scope(
 'aboutMe',
 qb.term('marklogic')
)

container-query

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 146

4.6.3.4 Document Selectors
Document selectors are queries that match a group of documents by database attributes such as
collection membership, directory, or URI, rather than by contents. For example, “all documents in
collections A and B” or “all documents in directory D”.

The following table lists the Node.js builder methods that create document selectors. A link to the
corresponding raw JSON structured query type is provided in case you need more detail about a
particular aspect of a query. You do not need to construct the raw query; the Node.js API does this
for you.

4.6.4 Query Parameter Helper Functions
The queryBuilder interface includes helper functions for building sub-query parameters that are
structurally non-trivial.

For example, a container query (queryBuilder.scope) requires a descriptor that idenfities the
container (or scope), such as a JSON property or an XML element. The helper functions
queryBuilder.property and queryBuilder.element enable you to define the container descriptor
required by the scope function.

The following code snippet constructs a container query that matches the term “marklogic” when
it occurs in a JSON property named “aboutMe”. The helper function queryBuilder.property
builds the JSON property name specification.

db.documents.query(
 qb.where(
 qb.scope(qb.property('aboutMe'), qb.term('marklogic'))

queryBuilder
Function Example Structured Query

Sub-Query

collection qb.and(
 qb.collection('marklogicians'),
 qb.term('java')
)

collection-query

directory qb.and(
 qb.directory('/contributors/'),
 qb.term('java')
)

directory-query

document qb.and(
 qb.document(
 '/contributors/contrib1.json',
 '/contributors/contrib3.json'),
 qb.term('norway')
)

document-query

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 147

)
)

Key helper functions provided by queryBuilder are listed below. For details, see the Node.js API
Reference and the Search Developer’s Guide.

Helper Function Purpose

anchor Defines a numeric or dateTime range for the bucket helper function. For
details, see Constrained Searches and Faceted Navigation in the Search
Developer’s Guide.

attribute Identifies an XML element attribute for use with query builders such as
range, word, value, and geospatial query builders.

bucket Defines a numeric or dateTime range bucket for use with the facet
builder. For details, see Constrained Searches and Faceted Navigation in
the Search Developer’s Guide.

datatype Specifies an index type (int, string, etc.) that can be used with the range
query builder to disambiguate an index reference. You should only need
this if you have multiple indexes of differen types over the same docu-
ment component.

element Identifies an XML element for use with query builders such as scope,
range, word, value, and geospatial query builders.

facet Defines a search facet for use with calculate result builder. For details,
see Constrained Searches and Faceted Navigation in the Search Devel-
oper’s Guide.

facetOptions Specifies additional options for use with the facet builder. For details,
see Facet Options in the Search Developer’s Guide.

field Identifies a document or metadataValues field for use with the range,
word, and value query builders. For details, see Fields Database Settings
in the Administrator’s Guide.

fragmentScope Restrict the scope of a range, scope, value, or word query to document
content or document properties.

pathIndex Identifies a path range index for query builders such as range or geo-
Path. The database configuration must include a corresponding path
range index. For details, see Understanding Path Range Indexes in the
Administrator’s Guide. The path expression is limited to a subset of
XPath; for details, see Path Field and Path-Based Range Index Configura-
tion in the XQuery and XSLT Reference Guide.

/jsdoc/index.html
/jsdoc/index.html

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 148

4.6.5 Search Result Refiners
The queryBuilder interface includes several functions that enable you to refine the results of a
search. For example, you can specify how many results to return, how to sort the results, and
whether or not to include search facets.

These refinement functions usually return a queryBuilder.BuiltQuery object, in contrast to query
builders, which usually return a queryBuilder.Query object.

You can chain result modifier calls together. For example:

db.documents.query(qb.where(someQuery).slice(0,5).orderBy(...))

For details, see “Refining Query Results” on page 164.

property Identifies a JSON property name for query builders such as range,
scope, value, word, geoProperty, and geoPropertyPair.

qname Identifies an XML element QName (localname and namespace URI) for
query builders such as range, scope, value, word, geoElement, and
geoElementPair, geoAttributePair. Also used in constructing an attri-
bute identifier.

rangeOptions Additional search options available with the range query builder. For
details, see the Node.js API Reference and Range Options in the Search
Developer’s Guide.

score Specifies a range query relevance scoring algorithm for use with the
orderBy results builder. For details, see Including a Range or Geospatial
Query in Scoring in the Search Developer’s Guide.

sort Specifies the equivalent of a sort-order query option that defines the
search result sorting critieria and order for use with the orderBy results
builder. For details, see sort-order in the Search Developer’s Guide.

termOptions Specifies the equivalent of a term-option query option for use with the
word and value query builders. For details, see Term Options in the
Search Developer’s Guide.

weight Specifies a modified weight to assign to a query. Usable with query
builders such as word and value. For details, see Using Weights to Influ-
ence Scores in the Search Developer’s Guide.

Helper Function Purpose

/jsdoc/index.html

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 149

The table below summarizes the result modifier functions supported by queryBuilder. For details,
see Node.js API Reference.

4.7 Searching with Combined Query
A combined query is a query object that can contain a combination of different query types plus
query options. Most searches can be accomplished without using a combined query. For example,
you can combine a string query and a structured query by simply passing the results of
queryBuilder.parsedFrom and a queryBuilder.Query to queryBuilder.where.

Helper Function Purpose

anchor Defines a numeric or dateTime range for the bucket helper function. For
details, see “Generating Search Facets” on page 160 and Constrained
Searches and Faceted Navigation in the Search Developer’s Guide.

bucket Defines a numeric or dateTime range bucket for use with the facet
builder. For details, see “Generating Search Facets” on page 160 and
Constrained Searches and Faceted Navigation in the Search Developer’s
Guide.

facet Defines a search facet for use with calculate result builder. For details,
see “Generating Search Facets” on page 160 and Constrained Searches
and Faceted Navigation in the Search Developer’s Guide.

facetOptions Specifies additional options for use with the facet builder. For details,
see “Generating Search Facets” on page 160 and Facet Options in the
Search Developer’s Guide.

calculate Builds a search facet specification. For details, see “Generating Search
Facets” on page 160.

orderBy Specifies sort order and sequencing. For example, you can specify a
JSON property, XML element, XML element attribute on which to sort.
For details, see sort-order in the Search Developer’s Guide.

slice Defines the slice of documents that should be returned from within the
result set and any server-side transformation that should be applied to
the results. For details, see “Refining Query Results” on page 164.

withOptions Miscellanious options that can be used to refine and tune you query. For
example, use withOptions to specify the categories of data to retrieve
from the matching documents, such as content or metadata, request
query metrics, or specify a transaction id.

/jsdoc/index.html

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 150

This feature is best suited for advanced users who are already familiar with the Search API and
who have one of the following requirements:

• Your application must use query options previously persisted on MarkLogic Server.

• You require very fine-grained control over query options at query time. (Most query
options are already exposed in other parts of the Node.js API, such as the queryBuilder
methods. You should use those interfaces when possible, rather than relying on combined
query.)

In the Node.js Client API, CombinedQueryDefinition encapsulates a combined query. The API
provides no builder for CombinedQueryDefinition. A CombinedQueryDefinition has the following
form, where the search property contains the combined query, and the remaining properties can
optionally be used to customize the results.

{ search: {
 query: { structuredQuery },
 qtext: stringQuery,
 options: { queryOptions }
 },
 categories: [resultCategories],
 optionsName: persistedOptionsName,
 pageStart: number,
 pageLength: number,
 view: results
}

The combined query portion can contain any combination of a structured query, a string query,
and Search API query options. If you specify options inside the combined query that conflict with
options implied by the settings in the CombinedQueryDefinition wrapper, the wrapper option
settings override the ones inside the combined query. For example, if search.options includes
'page-length':5 and search.pageLength is set to 10, then the page length will be 10.

The following table describes the properties of a combined query:

Property Name Description

query Optional. A structured query conforming to the syntax described in Searching
Using Structured Queries in the Search Developer’s Guide.

qtext Optional. A string query conforming to the Search API string query syntax.
For details, see “Searching with String Queries” on page 124 and Searching
Using String Queries in the Search Developer’s Guide.

options Optional. One or more Search API query options. For details, see Appendix:
Query Options Reference in the Search Developer’s Guide.

/jsdoc/documents.html#toc14

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 151

Use the categories, pageStart, pageLength, and view properties to customize your search results,
as described in “Refining Query Results” on page 164.

Use the optionsName property to name a set of previously persisted query options to apply to the
search. If the CombinedQueryDefinition contains both options in the combined query and a
persistent query options name, then the two sets of options are merged together. Where equivalent
options occur in both, the settings in the combined query takes precedence.

Note: You cannot use the Node.js Client API to persist query options. Instead, use the
REST or Java Client APIs to do so. For details, see Configuring Query Options in the
REST Application Developer’s Guide or Query Options in the Java Application
Developer’s Guide.

The following example uses a CombinedQueryDefinition to find documents containing “java” and
“marklogic” that are in the database directory “/contributors”. The combined query sets the
return-query option to true to include the final query structure in the results. The categories
property is set to “none” so that the search result summary is returned instead of the matching
documents; the summary will contain the final query. Results are returned 3 at a time, due to the
pageLength setting.

db.documents.query({
 search: {
 qtext: 'java',
 query: {
 'directory-query' : { uri: '/contributors/' },
 'term-query': { text: ['marklogic'] }
 },
 options: {
 'return-query': true
 }
 },
 categories: ['none'],
 pageLength: 3
})

4.8 Searching Values Metadata Fields
Values metadata, sometimes called key-value metadata, can only be searched if you define a
metadata field on the keys you want to search. Once you define a field on a metadata key, use the
normal field search capabilities to include a metadata field in your search. For example, you can
use queryBuilder.field and queryBuilder.word to create a word query on a metadata field.

For more details, see Metadata Fields in the Administrator’s Guide.

4.9 Querying Lexicons and Range Indexes
The Node.js Client API enables you to search and analyze lexicons and range indexes in the
following ways:

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 152

• Query the values in a single lexicon or range index.

• Find co-occurrences of values in multiple range indexes.

• Analyze range index or lexicon values or value co-occurrences using builtin or
user-defined aggregate functions. For details, see “Analyzing Lexicons and Range Indexes
with Aggregate Functions” on page 158.

This section covers the following related topics:

• Querying Values in a Lexicon or Range Index

• Finding Value Co-Occurrences in Lexicons

• Building an Index Reference

• Refining the Results of a Values or Co-Occurrence Query

• Analyzing Lexicons and Range Indexes with Aggregate Functions

For related search concepts, see Browsing With Lexicons in the Search Developer’s Guide and Text
Indexes in the Administrator’s Guide.

4.9.1 Querying Values in a Lexicon or Range Index
Use the marklogic.valueBuilder interface to build queries against lexicons and range indexes,
then use DatabaseClient.values.read to apply your query.

For example, if the database is configured to include a range index on the “reputation” JSON
property or XML element, then the following query returns all the values in range index:

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
const vb = marklogic.valuesBuilder;

db.values.read(
 vb.fromIndexes('reputation')
).result(function (result) {
 console.log(JSON.stringify(result, null, 2));
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

If you save the script to a file and run against the data from “Loading the Example Data” on
page 178, you should see results similar to the following. The query returns a
values-response.tuple item for each distinct value.

{ "values-response": {
 "name": "structuredef",
 "types": {
 "type": ["xs:int"]

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 153

 },
 "tuple": [
 {
 "frequency": 1,
 "distinct-value": ["1"]
 },
 {
 "frequency": 1,
 "distinct-value": ["91"]
 },
 {
 "frequency": 1,
 "distinct-value": ["272"]
 },
 {
 "frequency": 1,
 "distinct-value": ["446"]
 }
],
 "metrics": {
 "values-resolution-time": "PT0.000146S",
 "total-time": "PT0.000822S"
 }
 }
}

You can use values.slice to retrieve a subset of the values. For example, if you modify the above
script to so that the query looks like the following, then the query returns 2 values, beginning with
the 3rd value:

db.values.read(
 vb.fromIndexes('reputation')
 .slice(2,4)
)

==>
{ "values-response": {
 "name": "structuredef",
 "types": {
 "type": ["xs:int"]
 },
 "tuple": [
 {
 "frequency": 1,
 "distinct-value": ["272"]
 },
 {
 "frequency": 1,
 "distinct-value": ["446"]
 }
],
 "metrics": {
 "values-resolution-time": "PT0.000174S",

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 154

 "total-time": "PT0.000867S"
 }
 }
}

4.9.2 Finding Value Co-Occurrences in Lexicons
A co-occurrence is a set of index or lexicon values occurring in the same document fragment. The
Node.js Client API supports queries for n-way co-occurrences. That is, tuples of values from
multiple lexicons or indexes, occurring in the same fragment.

To find values co-occurrences across multiple range indexes or lexicons, use the
marklogic.valueBuilder interface to construct a query, then apply it using
DatabaseClient.values.read. When a values query includes multiple index references, the results
are co-occurrence tuples.

For example, the following script find co-occurrences of values in the “tags” and “id” JSON
properties or XML elements, assuming the database configuration includes an element range
index for “tags” and another for “id”. (Recall that range indexes on JSON properties use the
element range index interfaces; for details, see “Indexing” on page 121.)

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
const vb = marklogic.valuesBuilder;

db.values.read(
 vb.fromIndexes('tags','id')
).result(function (result) {
 console.log(JSON.stringify(result, null, 2));
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

If you save the script to a file and run it, you should see results similar to the following. The query
returns a values-response.tuple item for each co-occurrence. The property
values-response.types can guide you in interpreting the data types of the values in each tuple.

{
 "values-response": {
 "name": "structuredef",
 "types": {
 "type": [
 "xs:string",
 "xs:string"
]
 },
 "tuple": [
 {
 "frequency": 1,

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 155

 "distinct-value": [
 "dbobject",
 "soq7684223"
]
 },
 {
 "frequency": 1,
 "distinct-value": [
 "dbobject",
 "sou69803"
]
 },...
],
 "metrics": {
 "values-resolution-time": "PT0.000472S",
 "total-time": "PT0.001251S"
 }
 }
}

You can use values.slice to retrieve a subset of the values. For example, if you modify the script
to so that the query looks like the following, then the query returns two tuples, beginning with the
3rd value:

db.values.read(
 vb.fromIndexes('tags','id').slice(2,4)
)

==>
{
 "values-response": {
 "name": "structuredef",
 "types": {
 "type": [
 "xs:string",
 "xs:string"
]
 },
 "tuple": [
 {
 "frequency": 1,
 "distinct-value": [
 "java",
 "soq22431350"
]
 },
 {
 "frequency": 1,
 "distinct-value": [
 "java",
 "soq7684223"
]
 }

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 156

],
 "metrics": {
 "values-resolution-time": "PT0.00024S",
 "total-time": "PT0.001018S"
 }
 }
}

4.9.3 Building an Index Reference
Use valuesBuilder.fromIndexes to create index references for use in your values and
co-occurrence queries. For example, a query such as the following includes a reference by name
to an index on a JSON property or XML element named “reputation”:

db.values.read(vb.fromIndexes('reputation'))

You can use an index reference builder method to disambiguate the index reference, use another
type of index, or specify a collation. The following interpretation is applied to the inputs to
valuesBuilder.fromIndexes:

• A simple name identifies a range index on a JSON property. For example,
vb.fromIndexes('reputation') identifies a range index for the JSON property
reputation.

• An index reference identifies a range index. For example,
vb.fromIndexes(vb.field('questionId')) identifies a field range index.

• If you do not explicitly specify the data type of the range index, the API will attempt to
look it up server-side during index resolution. Use valuesBuilder.datatype to explicitly
specify the data type.

For example, all of the following index references identify a JSON property range index for the
property named reputation.

vb.fromIndexes('reputation')

vb.fromIndexes(vb.range('reputation'))

vb.fromIndexes(vb.range(vb.property('reputation')))

vb.fromIndexes(vb.range(
 vb.property('reputation'), vb.datatype('int')))

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 157

The following table summarizes the index definition builder methods exposed by valuesBuilder:

The URI and collection lexicons must be enabled on the database in order to use them. For details,
see Text Indexes in the Administrator’s Guide. Use valuesBuilder.uri and
valuesBuilder.collection (with no arguments) to identify these lexicons. For example:

db.values.read(
 vb.fromIndexes(
 vb.uri(), // the URI lexicon
 vb.collection()) // the collection lexicon

4.9.4 Refining the Results of a Values or Co-Occurrence Query
You can refine the results of your queries in the following ways:

• Use valuesBuilder.slice to select a subset of the results and/or specify a result transform.

• Use valuesBuilder.BuiltQuery.withOptions to specify values query options or constrain
results to particular forests. For a list of options, see the API documentation for
cts.values (JavaScript) or cts:values (XQuery).

• Use valuesBuilder.BuiltQuery.where to limit results to those that match another query.

You can use these refinements singly or in any combination.

For example, the following query returns values from the range index on the JSON property
reputation. The where clause selects only those values in documents in the collection
“myInterestingCollection”. The slice clause selects two results, beginning with the third value.
The withOptions clause specifies the results be returned in descending order.

Lexicon or Index Type valuesBuilder builder method

uri vb.uri

collection vb.collection (with no arguments)

range name
vb.range

field vb.field

geospatial vb.geoAttributePair
vb.geoElement
vb.geoElementPair
vb.geoPath
vb.geoProperty
vb.geoPropertyPair

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 158

db.values.read(
 vb.fromIndexes('reputation').
 where(vb.collection('myInterestingCollection')).
 slice(2,4).
 withOptions({values: ['descending']})

4.9.5 Analyzing Lexicons and Range Indexes with Aggregate Functions
You can compute aggregate values over range indexes and lexicons using builtin or user-defined
aggregate functions with valuesBuilder.BuiltQuery.aggregates. This section covers the following
topics:

• Aggregate Function Overview

• Using Builtin Aggregate Functions

• Using User-Defined Aggregate Functions

4.9.5.1 Aggregate Function Overview
An aggregate function performs an operation over values or value co-occurrences in lexicons and
range indexes. For example, you can use an aggregate function to compute the sum of values in a
range index.

Use valuesBuilder.BuiltQuery.aggregates to apply one or more builtin or user-defined
aggregate functions to your values or co-occurrences query. You can combine builtin and
user-defined aggregates in the same query.

MarkLogic Server provides builtin aggregate functions for several common analytical functions;
for a list of functions, see the Node.js API Reference. For a more detailed description of each
builtin, see Using Builtin Aggregate Functions in the Search Developer’s Guide.

You can also implement aggregate user-defined functions (UDFs) in C++ and deploy them as
native plugins. Aggregate UDFs must be installed before you can use them. For details, see
Implementing an Aggregate User-Defined Function in the Application Developer’s Guide. You must
install the native plugin that implements your UDF according to the instructions in Using Native
Plugins in the Application Developer’s Guide.

Note: You cannot use the Node.js Client API to apply aggregate UDFs that require
additional parameters.

4.9.5.2 Using Builtin Aggregate Functions
To use a builtin aggregate function, pass the name of the function to
valuesBuilder.BuiltQuery.aggregates. For a list of supported builtin aggregate function names,
see the Node.js API Reference.

/jsdoc/index.html
/jsdoc/index.html

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 159

For example, the following script uses builtin aggregates to calculate the minimum, maximum,
and standard deviation of the values in the range index over the JSON property named
reputation. Use a slice clause of the form slice(0,0) to return just the computed aggregates,
rather than the aggregates plus values.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
const vb = marklogic.valuesBuilder;

db.values.read(
 vb.fromIndexes('reputation')
 .aggregates('min', 'max', 'stddev')
 .slice(0,0)
).result(function (result) {
 console.log(JSON.stringify(result, null, 2));
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

Running the script produces output similar to the following:

{ "values-response": {
 "name": "structuredef",
 "aggregate-result": [
 { "name": "min", "_value": "1" },
 { "name": "max", "_value": "446" },
 { "name": "stddev", "_value": "197.616632228498" }
],
 "metrics": {
 "aggregate-resolution-time": "PT0.000571S",
 "total-time": "PT0.001279S"
 }
} }

4.9.5.3 Using User-Defined Aggregate Functions
An aggregate UDF is identified by the function name and a relative path to the plugin that
implements the aggregate, as described in Using Aggregate User-Defined Functions in the Search
Developer’s Guide. You must install your UDF plugin on MarkLogic Server before you can use it
in a query. For details on creating and installing aggregate UDFs, see Aggregate User-Defined
Functions in the Application Developer’s Guide.

Once you install your plugin, use valuesBuilder.udf to create a reference to your UDF, and pass
the reference to valuesBuilder.builtQuery.aggregates. For example, the following script uses a
native UDF called “count” provided by a plugin installed in the Extensions database under
“native/sampleplugin”:

const marklogic = require('marklogic');
const my = require('./my-connection.js');

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 160

const db = marklogic.createDatabaseClient(my.connInfo);
const vb = marklogic.valuesBuilder;

//console.log(vb.fromIndexes(vb.range(vb.pathIndex('/id'))));
db.values.read(
 vb.fromIndexes('reputation')
 .aggregates(vb.udf('native/sampleplugin', 'count')
 .slice(0,0)
).result(function (result) {
 console.log(JSON.stringify(result, null, 2));
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

4.10 Generating Search Facets
You can use the Node.js Client API to include facets in your query results, as described in
Constrained Searches and Faceted Navigation in the Search Developer’s Guide. You define facets
using queryBuilder.facet and include them in your search using queryBuilder.calculate. You
can construct facets on JSON properties, XML elements and attributes, fields and paths. A facet
must be backed by a range index.

This section includes the following topics:

• Defining a Simple Facet

• Naming a Facet

• Including Facet Options

• Defining Bucket Ranges

• Creating and Using Custom Constraint Facets

For more details, see Constrained Searches and Faceted Navigation in the Search Developer’s Guide.

4.10.1 Defining a Simple Facet
The following example facets on the reputation JSON property of documents in the database
directory “/contributors/”. The results include only the facets, rather than the facets plus matching
documents, because of the withOptions clause; for details, see “Excluding Document Descriptors
or Values From Search Results” on page 166.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
const qb = marklogic.queryBuilder;

db.documents.query(
 qb.where(qb.directory('/contributors/'))
 .calculate(qb.facet('reputation'))

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 161

 .withOptions({categories: 'none'})
).result(function(results) {
 console.log(JSON.stringify(results, null, 2));
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

If the database includes a range index on “reputation”, and you run the script against the example
data from “Loading the Example Data” on page 178, you should see results similar to the
following:

{ "snippet-format": "empty-snippet",
 "total": 4,
 "start": 1,
 "page-length": 0,
 "results": [],
 "facets": {
 "reputation": {
 "type": "xs:int",
 "facetValues": [
 { "name": "1",
 "count": 1,
 "value": 1 },
 { "name": "91",
 "count": 1,
 "value": 91 },
 { "name": "272",
 "count": 1,
 "value": 272 },
 { "name": "446",
 "count": 1,
 "value": 446 }
]
 }
 }
}

By default, the facet uses the same name as entity from which the facet is derived, such as an
XML element or JSON property, but you can provide a custom name. For details, see “Naming a
Facet” on page 162.

The facets property of the results includes a set of value buckets for the “reputation” facet, one
bucket for each distinct value of reputation. Each bucket includes a name (auto-generated from
the value by default), the number of matches with that value, and the actual value.

"facets": {
 "reputation": { <-- name of the facet
 "type": "xs:int",
 "facetValues": [
 { "name": "1", <-- bucket name
 "count": 1, <-- number of matches with this value
 "value": 1 } <-- value associated with this bucket

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 162

4.10.2 Naming a Facet
By default, the name of a facet is derived from the indexed element or property name on which
the facet is based. For example, the following facet on the “reputation” property generates a facet
with the property name “reputation”:

qb.facet('reputation')
==> "facets": { "reputation": {...} }

You can override this behavior by passing your own name in as the first argument to
queryBuilder.facet. For example, the following facet on the “reputation” property generates a
facet with the property name “rep”:

qb.facet('rep', 'reputation')
==> "facets": { "rep": {... } }

4.10.3 Including Facet Options
You can use queryBuilder.facetOptions to include options in your facet definition that affect
attributes such as sort order and the maximum number of values to return. For details, see Facet
Options in the Search Developer’s Guide and the detailed API documentation for the query that
corresponds to your facet index type, such as cts.values (JavaScript) or cts:values (XQuery).

For example, the following facet definition requests buckets be ordered by descending values and
limits the number of buckets to two. Thus, instead of returning buckets ordered [1, 91, 272, 446],
the results are ordered [446, 272, 91, 1] and truncated to the first 2 buckets:

qb.facet('rep','reputation', qb.facetOptions('limit=2','descending')))

==>

"facets": {
 "reputation": {
 "type": "xs:int",
 "facetValues": [
 { "name": "446",
 "count": 1,
 "value": 446 },
 { "name": "272",
 "count": 1,
 "value": 272 }
]
 }
}

4.10.4 Defining Bucket Ranges
By default, a facet is bucketed by distinct values. However, you can define your own buckets on
numeric and date values using queryBuilder.bucket. A bucket can take on a range of values. The
upper and lower bounds of the range of values in a bucket are the bucket anchors. You can
include both anchor values, or omit the upper or lower anchor.

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 163

Buckets over dateTime values can use symbolic anchors such as “now” and “start-of-day”. The
real values are computed when the query is evaluated. Such definitions describe computed
buckets. For a list of the supported values, see computed-bucket in the Search Developer’s Guide.

For example, you can divide the reputation values into buckets of “less than 50”, “50 to 100”, and
“greater than 100” using a facet definition such as the following:

qb.facet('reputation',
 qb.bucket('less than 50', '<', 50),
 qb.bucket('50 to 100', 50, '<', 101),
 qb.bucket('greater than 100', 101, '<'))
==>

"facets": {
 "reputation": {
 "type": "bucketed",
 "facetValues": [
 { "name": "less than 50",
 "count": 1,
 "value": "less than 50"
 },
 { "name": "50 to 100",
 "count": 1,
 "value": "50 to 100"
 },
 { "name": "greater than 100",
 "count": 2,
 "value": "greater than 100"
 }
]
 }
}

In the above example, '<' is a constant that serves as a boundary between the upper and lower
anchor values. It is not a relational operator, per se. The separator enables the API to handle
buckets with no lower bound, with no upper bound, and with both an upper and a lower bound.

For more examples of defining buckets, see Buckets Example in the Search Developer’s Guide and
Computed Buckets Example in the Search Developer’s Guide.

4.10.5 Creating and Using Custom Constraint Facets
When you define a custom constraint, you can also define facet generators for your constraint, as
described in Creating a Custom Constraint in the Search Developer’s Guide. Use the following
procedure to use a custom constraint facet generator.

1. Implement an XQuery module that includes start-facet and finish-facet functions. For
details, see Creating a Custom Constraint in the Search Developer’s Guide.

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 164

2. Install your custom constraint module in the modules database associated with your REST
API instance using the DatabaseClient.config.query.custom interface, as described in
“Installing the Constraint Parser” on page 132.

3. Use queryBilder.CalculateFunction to create a reference to your facet generator when
building your facet definitions.

For example, if your custom constraint module is installed as ss-cat.xqy, as shown in “Installing
the Constraint Parser” on page 132:

db.config.query.write('ss-cat.xqy', ...)

Then you can use your facet generator in your facet definitions as follows:

qb.facet('categories', qb.calculateFunction('ss-cat.xqy'))

4.11 Refining Query Results
This section covers the following features of the Node.js Client API that enable you to customize
your search results using queryBuilder.slice or valuesBuilder.BuiltQuery.slice:

• Available Refinements

• Paginating Query Results

• Returning Metadata

• Excluding Document Descriptors or Values From Search Results

• Generating Search Snippets

• Transforming the Search Results

• Extracting a Portion of Each Matching Document

4.11.1 Available Refinements
By default, when you perform a search using DatabaseClient.documents.query, you receive one
“page” of matching document descriptors ordered by relevance ranking. Each descriptor includes
the content of the matching document.

Some query options always cause a search result summary to be returned, in addition to the
matching document descriptors. For example, when you enable options such as 'debug',
'metrics', or 'queryPlan', the additional data requested by the option is returned as part of the
search result summary.

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 165

The Node.js Client API provides several result refinement queryBuilder methods that enable you
to customize your results, including the following:

• Change the size and/or starting document for the “page” using queryBuilder.slice. For
details, see “Paginating Query Results” on page 165

• Change the order of results using queryBuilder.orderBy. For details, see the Node.js
Client API Reference.

• Request metadata in addition to or instead of content using queryBuilder.withOptions.
For details, see “Returning Metadata” on page 166.

• Exclude the document descriptors from the response using queryBuilder.withOptions.
This is useful when you just want to fetch snippets, facets, metrics, or other data about the
matches. For details, see “Excluding Document Descriptors or Values From Search
Results” on page 166

• Request search match snippets in addition to or instead of matching documents using
queryBuilder.snippet with queryBuilder.slice. You can customize your snippets. For
details, see “Generating Search Snippets” on page 167

• Request search facets in addition to or instead of matching documents, using
queryBuilder.calculate. You can customize your facet buckets. For details, see
“Generating Search Facets” on page 160.

• Apply a read transform to the matched documents or search results summary. For details,
see “Transforming the Search Results” on page 168.

The slice specifies the range of matching documents to include in the result set. If you do not
explicitly call queryBuilder.slice, a default slice is still defined. The other refinement methods
(calculate, orderBy, snippet, withOptions) have no effect if the slice is empty, whether the slice
is empty because there are no matches for your query or because you defined an empty page range
such as slice(0,0).

You can use these features in combination. For example, you can request snippets and facets
together, without or without document descriptors.

4.11.2 Paginating Query Results
Use queryBuilder.slice and valuesBuilder.BuiltQuery.slice to fetch slice (batch) of results. A
slice of results is defined by a zero-based starting position and an end position (the value in the
end position is not included in the slice), similar to using Array.prototype.slice.

For example, the following queries return five results, beginning with the first one:

qb.where(qb.parsedFrom('oslo')).slice(0,5)

vb.fromIndexes('reputation').slice(0,5)

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 166

To return the next 5 results, you would use queries such as the following

qb.where(qb.parsedFrom('oslo')).slice(5,10)

vb.fromIndexes('reputation').slice(5,10)

The default maximum number of results is 10.

Setting the starting and end positions to zero selects no matches (or values), but returns an
abbreviated result summary that includes, for example, estimated total number of matches for a
search or computed aggregates for a values query.

4.11.3 Returning Metadata
By default, a query returns document descriptors for each matching documents, and the
descriptors include the document content.To return metadata instead of contents, set the
categories property of queryBuilder.withOptions to 'metadata'. For example:

db.documents.query(
 qb.where(qb.parsedFrom('oslo'))
 .withOptions({categories: 'metadata'})
)

To return both metadata and documents, set categories to both 'content’ and 'metadata'. For
example:

db.documents.query(
 qb.where(qb.parsedFrom('oslo'))
 .withOptions({categories: ['content', 'metadata']})
)

4.11.4 Excluding Document Descriptors or Values From Search Results
By default, a query returns document descriptors for each matching documents, and the
descriptors include the document content. If you want to retrieve snippets, facets, or other search
result data without the matching documents, set the categories property of
queryBuilder.withOptions to 'none'.

For example, the following query normally returns the contents of two document descriptors:

db.documents.query(
 qb.where(qb.parsedFrom('oslo'))
)

If you add the following withOptions clause, you receive a search result summary that include
search snippets, instead of receiving document descriptors:

db.documents.query(
 qb.where(qb.parsedFrom('oslo'))

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 167

 .withOptions({categories: 'none'})
)

The contents of the search result summary depend on the other refinements you apply to your
query, but will never include the document descriptors.

4.11.5 Generating Search Snippets
A search results page typically shows portions of matching documents with the search matches
highlighted, perhaps with some text showing the context of the search matches. These search
result pieces are known as snippets.

Snippets are not included in your query results by default. To request snippets, include a snippet
clause in your slice definition using queryBuilder.snippet. For example, the following query
returns snippets in the default format:

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
const qb = marklogic.queryBuilder;

db.documents.query(
 qb.where(
 qb.byExample({aboutMe: {$word: 'marklogic'}})
).slice(qb.snippet())
).result(function(results) {
 console.log(JSON.stringify(results, null, 2));
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

You can include a snippet clause in a slice that has a start and end position, as well. For example:

slice(0, 5, qb.snippet())

To retrieve snippets without the matching documents, add a withOptions({categories: 'none'})
clause. For exaample:

...slice(qb.snippet()).withOptions({categories: 'none'})

You can use one of several builtin snippet generators or your own custom snippet generator by
providing a name to queryBuilder.snippet. For example, the following slice definition requests
snippets generated by the builtin metadata-snippet generator:

slice(0, 5, qb.snippet('metadata')

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 168

Some of the builtin snippeters accept additional options, which you can specify in the second
parameter to queryBuilder.snippet. For example, the following snippet definition limits the size
of the snippeted text 25 characters:

qb.snippet('my-snippeter.xqy', {'max-snippet-chars': 25})

For details on the supported options, see the Node.js API Reference and Specifying transform-results
Options in the Search Developer’s Guide.

Use the following procedure to use a custom snippeter:

1. Implement your snippet generator in XQuery. Your snippet function must conform to the
interface specified in Specifying Your Own Code in transform-results in the Search
Developer’s Guide.

2. Install your snippeting module in the modules database of your REST API instance using
DatabaseClient.config.query.snippet.write.

3. Use the name of your custom snippeting module as the snippeter name provided to
queryBuilder.snippet. For example:

slice(0, 5, qb.snippet('my-snippeter.xqy'))

You cannot pass options or parameters to a custom snippeter.

For more information on snippet generation, see Modifying Your Snippet Results in the Search
Developer’s Guide.

4.11.6 Transforming the Search Results
You can make arbitrary changes to the response from a search or values query by applying a
transformation function. Your transform is applied to each document returned by the query, as
well as to the search or values response summary, if any.

Transforms must be installed on MarkLogic Server before you can use them. Use
DatabaseClient.config.transforms to install and manage transforms.

To use a transform in a query, create a transform descriptor with queryBuilder.transform or
valuesBuilder.transform. You must specify the name of a previously installed transform
function. You can also include implementation-specific parameters. For details and examples, see
“Working with Content Transformations” on page 231.

For example, the following query applies the transform named “js-query-transform” to the search
results. Since no documents are returned (withOptions), the query only returns a search results
summary and the transform is only applied to the summary. If the query returned documents, the
transform would be applied to each matched document as well.

/jsdoc/index.html

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 169

db.documents.query(
 qb.where(
 qb.byExample({writeTimestamp: {'$exists': {}}})
).slice(qb.transform('js-query-transform'))
 .withOptions({categories: 'none'})
)

You can apply a transform to a values query in the same fashion. For example:

db.values.read(
 vb.fromIndexes('reputation')
 .slice(0, 5, vb.transform('js-query-transform'))

For details, see “Working with Content Transformations” on page 231.

4.11.7 Extracting a Portion of Each Matching Document
Use queryBuilder.extract to return a subset of the content in each matching document instead of
the complete document. You can return selected properties, selected properties plus their
ancestors, or everything except the selected properties. By default, only the selected properties are
included.

Selected properties are specified using XPath expressions. You can only use a subset of XPath for
these path expressions. For details, see The extract-document-data Query Option in the XQuery and
XSLT Reference Guide.

The following example performs the same search as the first query in “Creating a QBE with
queryBuilder” on page 135, but refines the results using queryBuilder.slice and
queryBuilder.extract to return just the displayName and location properties from the matching
documents. The search matches two documents when run against the documents created by
“Loading the Example Data” on page 178.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
const qb = marklogic.queryBuilder;

db.documents.query(
 qb.where(qb.byExample({location: 'Oslo, Norway'}))
 .slice(qb.extract(
 ['/Contributor/displayName', '/Contributor/location'])
)
).result(function(matches) {
 matches.forEach(function(match) {
 console.log(match.content);
 });
});

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 170

When you use queryBuilder.extract in the manner above, each matching document produces a
document descriptor containing content of the following form:

{ context: original-document-context,
 extracted: [obj-from-path1, obj-from-path2, ...] }

For example, the above query produces the following output:

{ context: 'fn:doc("/contributors/contrib1.json")',
 extracted: [
 { displayName: 'Lars Fosdal' },
 { location: 'Oslo, Norway' }]
}
{ context: 'fn:doc("/contributors/contrib2.json")',
 extracted: [
 { displayName: 'petrumo' },
 { location: 'Oslo, Norway' }]
}

You can produce a sparse representation of the original matching document instead by passing a
selected value to queryBuilder.extract. You can created a sparse document that includes the
selected property(s) plus ancestors, or the whole document exclusive of the selected property(s).

For example, the following query returns the same properties but includes their ancestors:

db.documents.query(
 qb.where(qb.byExample({location: 'Oslo, Norway'}))
 .slice(qb.extract({
 paths: ['/Contributor/displayName', '/Contributor/location'],
 selected: 'include-with-ancestors'
 }))
)

The output from this query is the following a sparse version of the original documents:

{ Contributor: {
 displayName: 'Lars Fosdal',
 location: 'Oslo, Norway' } }
{ Contributor: {
 displayName: 'petrumo',
 location: 'Oslo, Norway' } }

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 171

The following table shows the effect of each supported value of the selected parameter of
queryBuilder.extract on the returned content.

selected Value Output

include

(default)
{ context: 'fn:doc("/contributors/contrib1.json")',
 extracted: [
 { displayName: 'Lars Fosdal' },
 { location: 'Oslo, Norway' }] }
{ context: 'fn:doc("/contributors/contrib2.json")',
 extracted: [
 { displayName: 'petrumo' },
 { location: 'Oslo, Norway' }] }

include-with-ancestors { Contributor:
 { displayName: 'Lars Fosdal',
 location: 'Oslo, Norway' } }
{ Contributor:
 { displayName: 'petrumo',
 location: 'Oslo, Norway' } }

exclude { Contributor:
 { userName: 'souser10002@email.com',
 reputation: 446,
 originalId: '10002',
 aboutMe: 'Software Developer since 1987, ...',
 id: 'sou10002' } }
{ Contributor:
 { userName: 'souser1000634@email.com',
 reputation: 272,
 originalId: '1000634',
 aboutMe: 'Developer at AspiroTV',
 id: 'sou1000634' } }

all { Contributor:
 { userName: 'souser10002@email.com',
 reputation: 446,
 displayName: 'Lars Fosdal',
 originalId: '10002',
 location: 'Oslo, Norway',
 aboutMe: 'Software Developer since 1987...',
 id: 'sou10002' } }
{ Contributor:
 { userName: 'souser1000634@email.com',
 reputation: 272,
 displayName: 'petrumo',
 originalId: '1000634',
 location: 'Oslo, Norway',
 aboutMe: 'Developer at AspiroTV',
 id: 'sou1000634' } }

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 172

If an extract path does not match any content in a matched document, then the corresponding
property is omitted. If no extract paths match, a descriptor for the document is still returned, but it
contains an extracted-none property instead of an extracted property or a sparse document. For
example:

{ context: 'fn:doc("/contributors/contrib1.json")',
 extracted-none: null
}

4.12 Generating Search Term Completion Suggestions
This section describes how to generate search term completion suggestions using the Node.js
Client API. The following topics are covered:

• Understanding the Suggestion Interface

• Example: Generating Search Term Suggestions

4.12.1 Understanding the Suggestion Interface
Search applications often offer suggestions for search terms as the user types into the search box.
The suggestions are based on terms that are in the database, and are typically used to make the
user interface more interactive and to quickly suggest search terms that are appropriate to the
application.

Suggestions are drawn from the range indexes and lexicons you specify in your request. For
performance reasons, a range or collection index is recommended over a word lexicon; for details,
see the Usage Notes for search:suggest. Suggestions can be further filtered by additional search
criteria.

Use DatabaseClient.documents.suggest to generate search term completion suggestions using
the Node.js Client API. The simplest suggestion request takes the following form:

db.documents.suggest(partialText, qualifyingQuery)

Where partialText is the query text for which you want to generate suggestions, and
qualifyingQuery is any additional search criteria, including index and lexicon bindings. Though
the qualifying query can be arbitrarily complex, typically at least a portion of it will eventually be
“filled in” by the completed phrase.

For example, the following call requests suggestions for the partial phrase “doc”. Because the first
parameter to qb.parsedFrom is an empty string, there are no additional search criteria.

db.documents.suggest('doc',
 qb.where(qb.parsedFrom('',
 qb.parseBindings(
 qb.value('prefix', qb.bind('prefix')),
 qb.range('name', qb.bindDefault()))

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 173

))
)

The parse bindings in the qualifying query include a binding for unqualified terms
(qb.bindDefault()) to a range query on the JSON property named “name” (qb.range('name',
...)). The database must include a matching range index.

Thus, if the database contains documents of the following form, then suggestions for “doc” are
drawn only from the values of “name” and never from the values of “prefix” or “alias”:

{ "prefix": "xdmp",
 "name": "documentLoad",
 "alias": "document-load" }

When the user completes the search term, possibly from the suggestions, the empty string can be
replaced by the complete phrase in the document query. Thus if the user completes the term as
“documentLoad”, the same query can be used as follows to retrieve matching documents:

db.documents.query(
 qb.where(qb.parsedFrom('documentLoad',
 qb.parseBindings(
 qb.value('prefix', qb.bind('prefix')),
 qb.range('name', qb.bindDefault()))
))
)

The qualifying query can include other search criteria. The following example adds the query
“prefix:xdmp”. The bindings associated the “prefix” term with a value query on the JSON
property named “prefix”. The “prefix:xdmp” term could be a portion of search box text
previously entered by the user.

db.documents.suggest('doc',
 qb.where(qb.parsedFrom('prefix:xdmp',
 qb.parseBindings(
 qb.value('prefix', qb.bind('prefix')),
 qb.range('name', qb.bindDefault()))
))
)

In this case, suggestions are drawn from the “name” property as before, but they are limited to
values that occur in documents that satisfy the “prefix:xdmp” query. That is, suggestions are
drawn from values in documents that meet both these criteria:

• Contain a JSON property named “name” whose value begins with “doc”, AND

• Contain a JSON property named “prefix” with the exact value “xdmp”

The term to be completed can also use explicit bindings. For example, the following call requests
suggestions for “aka:doc”, where “aka” is bound to a range index on the JSON property “alias”.
Suggestions are only drawn from values of this property.

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 174

db.documents.suggest('aka:doc',
 qb.where(qb.parsedFrom('',
 qb.parseBindings(
 qb.range('alias', qb.bind('aka')),
 qb.value('prefix', qb.bind('prefix')),
 qb.range('name', qb.bindDefault()))
))
)

The suggestions returned in this case include the prefix. For example, one suggestion might be
“aka:document-load”.

The qualifying query can include both string query and structured query components, but usually
will include at least one more index or lexicon bindings with which to constrain the suggestions.
For example, the following code adds a directory query that limits suggestions to documents in
the database directory /suggest/.

db.documents.suggest('doc',
 qb.where(qb.parsedFrom('',
 qb.parseBindings(
 qb.value('prefix', qb.bind('prefix')),
 qb.range('name', qb.bindDefault()))
), qb.directory('/suggest/', true))
)

You can override bindings on a per suggest basis without modifying your qualifying query by
including an additional suggestBinding parameter.

In cases where you’re using a previously constructed qualifying query, but you want to add
bindings that limit the scope of suggestions for other reasons (such as performance), you can add
override bindings using queryBuilder.suggestBindings.

For example, the following code overrides the binding for bare terms in the qualifying query with
a binding to a range index on the JSON property alias. Thus, if a document includes a name
property with value “documentLoad” and an alias property with value “document-load”, then the
suggestions would include “documentLoad” without the suggestBindings specification, but
“document-load” with the override.

db.documents.suggest('doc',
 qb.where(qb.parsedFrom('',
 qb.parseBindings(
 qb.value('prefix', qb.bind('prefix')),
 qb.range('name', qb.bindDefault()))
)),
 qb.suggestBindings(qb.range('alias', qb.bindDefault()))
)

Overrides are per binding. In the example above, only the default binding for bare terms is
overridden. The binding for “prefix” continues to take effect as long as the suggestBindings do
not include a binding for “prefix”.

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 175

4.12.2 Example: Generating Search Term Suggestions
The example in this section illustrates the use cases described in “Understanding the Suggestion
Interface” on page 172.

The script first loads the example documents into the database, and then generates suggestions
from the them. To run the example, you must add the following range indexes. You can create
them using the Admin Interface or the Admin API. For details, see Range Indexes and Lexicons in
the Administrator’s Guide.

• An element range index of type “string” with localname “name”.

• An element range index of type “string” with localname “alias”.

The example covers the following use cases, which are discussed in more detail in
“Understanding the Suggestion Interface” on page 172.

• Case 1: Suggestions for “doc”drawn from the name property

• Case 2: Suggestions for “doc” drawn from name where prefix is “xdmp”

• Case 3: Suggestions for “doc” drawn from name where prefix is “xdmp” and the
suggestion is from a document in the /suggest/ directory.

• Case 4: Suggestions for “aka:doc” where the “aka” prefix causes suggestions to be drawn
from the alias property.

• Case 5: Suggestions for “doc” drawn from the alias property by virtue of a suggest
binding override.

The table below summarizes the property values in the example documents for quick reference.

Running the example produces results similar to the following:

1: Suggestions for naked term "doc":
["documentDelete","documentInsert","documentLoad","documentQuery"]

2: Suggestions filtered by prefix:xdmp:

URI name prefix alias

/suggest/load.json documentLoad xdmp document-load

/suggest/insert.json documentInsert xdmp document-insert

/suggest/query.json documentQuery cts document-query

/suggest/search.json search cts search

/elsewhere/delete.json documentDelete xdmp document-delete

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 176

["documentDelete","documentInsert","documentLoad"]

3: Suggestions filtered by prefix:xdmp and dir /suggest/:
["documentInsert","documentLoad"]

4: Suggestions for "aka:doc":
[
 "aka:document-delete",
 "aka:document-insert",
 "aka:document-load",
 "aka:document-query"
]

5: Suggestions with overriding bindings:
["document-delete","document-insert","document-load"]

To run the example, copy the following script into a file, modify the database connection
information as needed, and execute the script with the node command. The script assumes the
connection information is contained in a file named my-connection.js, as described in “Using the
Examples in This Guide” on page 30.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);
const qb = marklogic.queryBuilder;

// NOTE: This example requires a database configuration
// that includes two element range index:
// - type string, localname name
// - type string, localname alias

// Initialize the database with the sample documents
db.documents.write([
 { uri: '/suggest/load.json',
 contentType: 'application/json',
 content: {
 prefix: 'xdmp',
 name: 'documentLoad',
 alias: 'document-load'
 } },
 { uri: '/suggest/insert.json',
 contentType: 'application/json',
 content: {
 prefix: 'xdmp',
 name: 'documentInsert',
 alias: 'document-insert'
 } },
 { uri: '/suggest/query.json',
 contentType: 'application/json',
 content: {
 prefix: 'cts',
 name: 'documentQuery',
 alias: 'document-query'

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 177

 } },
 { uri: '/suggest/search.json',
 contentType: 'application/json',
 content: {
 prefix: 'cts',
 name: 'search',
 alias: 'search'
 } },
 { uri: '/elsewhere/delete.json',
 contentType: 'application/json',
 content: {
 prefix: 'xdmp',
 name: 'documentDelete',
 alias: 'document-delete'
 } },
]).result().then(function(response) {
 // (1) Get suggestions for a naked term
 return db.documents.suggest('doc',
 qb.where(qb.parsedFrom('',
 qb.parseBindings(
 qb.range('name', qb.bindDefault()))
))
).result(null, function(error) {
 console.log(JSON.stringify(error, null, 2));
 });
}).then(function(response) {
 console.log('1: Suggestions for naked term "doc":');
 console.log(JSON.stringify(response));

 // (2) Get suggestions for a qualified term
 return db.documents.suggest('doc',
 qb.where(qb.parsedFrom('prefix:xdmp',
 qb.parseBindings(
 qb.value('prefix', qb.bind('prefix')),
 qb.range('name', qb.bindDefault()))
))
).result(null, function(error) {
 console.log(JSON.stringify(error, null, 2));
 });
}).then(function(response) {
 console.log('\n2: Suggestions filtered by prefix:xdmp:');
 console.log(JSON.stringify(response));

 // (3) Suggestions limited by directory
 return db.documents.suggest('doc',
 qb.where(qb.parsedFrom('prefix:xdmp',
 qb.parseBindings(
 qb.value('prefix', qb.bind('prefix')),
 qb.range('name', qb.bindDefault()))
),
 qb.directory('/suggest/', true))
).result(null, function(error) {
 console.log(JSON.stringify(error, null, 2));
 });

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 178

}).then(function(response) {
 console.log('\n3: Suggestions filtered by prefix:xdmp and dir
/suggest/:');
 console.log(JSON.stringify(response));

 // (4) Get suggestions for a term with a binding
 return db.documents.suggest('aka:doc',
 qb.where(qb.parsedFrom('',
 qb.parseBindings(
 qb.range('alias', qb.bind('aka')),
 qb.range('name', qb.bindDefault()))
))
).result(null, function(error) {
 console.log(JSON.stringify(error, null, 2));
 });
}).then(function(response) {
 console.log('\n4: Suggestions for "aka:doc":');
 console.log(JSON.stringify(response, null, 2));

 // (5) Get suggestions using a binding override
 return db.documents.suggest('doc',
 qb.where(qb.parsedFrom('prefix:xdmp',
 qb.parseBindings(
 qb.value('prefix', qb.bind('prefix')),
 qb.range('name', qb.bindDefault()))
)),
 qb.suggestBindings(
 qb.range('alias', qb.bindDefault()))
).result(null, function(error) {
 console.log(JSON.stringify(error, null, 2));
 });
}).then(function(response) {
 console.log('\n5: Suggestions with overriding bindings:');
 console.log(JSON.stringify(response));
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

4.13 Loading the Example Data
Several of the examples in this chapter rely on data derived from the MarkLogic Samplestack
seed data. Samplestack is an open-source implementation of the MarkLogic Reference
Application architecture; for details, see the Reference Application Architecture Guide.

To load the data, copy the following script to a file and run it. The script uses the connection data
described in“Using the Examples in This Guide” on page 30.

Some of the examples require range indexes.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 179

const documents = [
{ uri: '/contributors/contrib1.json', content:
 {"Contributor":{
 "userName":"souser10002@email.com", "reputation":446,
 "displayName":"Lars Fosdal", "originalId":"10002",
 "location":"Oslo, Norway",
 "aboutMe":"Software Developer since 1987, mainly using Delphi.",
 "id":"sou10002"}}},
{ uri: '/contributors/contrib2.json', content:
 {"Contributor":{
 "userName":"souser1000634@email.com", "reputation":272,
 "displayName":"petrumo", "originalId":"1000634",
 "location":"Oslo, Norway",
 "aboutMe":"Developer at AspiroTV",
 "id":"sou1000634"}}},
{ uri: '/contributors/contrib3.json', content:
 {"Contributor":{
 "userName":"souser1248651@email.com", "reputation":1,
 "displayName":"Nullable", "originalId":"1248651",
 "location":"Ogden, UT",
 "aboutMe":"...My current work includes work with MarkLogic
Application Server (Using XML, Xquery, and Xpath), WPF/C#, and Android
Development (Using Java)...",
 "id":"sou1248651"}}},
{ uri: '/contributors/contrib4.json', content:
 {"Contributor":{
 "userName":"souser1601813@email.com", "reputation":91,
 "displayName":"grechaw", "originalId":"1601813",
 "location":"Occidental, CA",
 "aboutMe":"XML (XQuery, Java, XML database) software engineer at
MarkLogic. Hardcore accordion player.",
 "id":"sou1601813"}}},
{ uri: '/questions/q1.json', content:
 { "tags": ["java", "sql", "json", "nosql", "marklogic"],
 "owner": {
 "userName": "souser1238625@email.com",
 "displayName": "Raevik",
 "id": "sou1238625"
 },
 "id": "soq22431350",
 "accepted": false,
 "text": "I have a MarkLogic DB instance populated with JSON
documents that interest me. I have executed a basic search and have a
SearchHandle that will give me the URIs that matched. Am I required to
now parse through the flattened JSON string looking for my key?",
 "creationDate": "2014-03-16T00:06:06.497",
 "title": "MarkLogic basic questions on equivalent of SELECT with
Java API"
 }},
{ uri: '/questions/q2.json', content:
 { "tags": ["java", "dbobject", "mongodb"],
 "owner": {
 "userName": "souser69803@email.com",
 "displayName": "Ankur",

MarkLogic Server Querying Documents and Metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 180

 "id": "sou69803"
 },
 "id": "soq7684223",
 "accepted": true,
 "text": "MongoDB seems to return BSON/JSON objects. I thought that
surely you'd be able to retrieve values as Strings, ints etc. which can
then be saved as POJO. I have a DBObject (instantiated as a
BasicDBObject) as a result of iterating over a list ... (cur.next()).
Is the only way (other than using some sort of persistence framework)
to get the data into a POJO to use a JSON serlialiser/deserialiser?",
 "creationDate": "2011-10-07T07:27:18.097",
 "title": "Convert DBObject to a POJO using MongoDB Java Driver"
 }},
{ uri: '/questions/q3.json', content:
 { "tags": ["json", "marklogic"],
 "owner": {
 "userName": "souser1238625@email.com",
 "displayName": "Raevik",
 "id": "sou1238625"
 },
 "id": "soq22412345",
 "accepted": false,
 "text": "Does marklogic manage JSON documents?",
 "creationDate": "2014-02-10T00:13:03.282",
 "title": "JSON document management in MarkLogic"
 }},
];

const db = marklogic.createDatabaseClient(my.connInfo);

db.documents.write(documents)
 .result(null, function(error) {
 console.log(JSON.stringify(error));
 });

MarkLogic Server Using the Optic API for Relational Operations

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 181

5.0 Using the Optic API for Relational Operations
198

This chapter covers the following topics related to performing relational operations on indexed
values and documents using the Optic capabilities of the Node.js Client API:

• Introduction to the Optic Interfaces

• Interface Summary

• Preparing to Run the Examples

• Generating a Plan

• Invoking a Plan

• Configuring Row Set Format

• Streaming Row Data

• Passing Parameters into a Plan

• Handling Complex Column Values

• Generating an Execution Plan

• Serializing a Plan

5.1 Introduction to the Optic Interfaces
The Optic API enables you to perform relational operations on indexes and documents. For
example, you can extract data in row format, perform joins, and perform relational queries on
XML and JSON documents. You can also extract a row view of data from other sources, such as
lexicons and semantic triples.

The Optic capabilities of the Node.js Client API closely mirror the server-side Optic API
described in Optic API for Multi-Model Data Access in the Application Developer’s Guide. Refer to
that guide for conceptual details.

The usage model for an optic query in Node.js is as follows:

1. Build an Optic execution plan on the client using the planBuilder interface. For details,
see “Generating a Plan” on page 183.

2. Execute the plan on MarkLogic, resulting in generation of a row set. For details, see
“Invoking a Plan” on page 184.

3. Process the results returned by MarkLogic on the client. For details on result formats, see
“Configuring Row Set Format” on page 187.

Execution of a plan can yield a row that satisfies any of several common use cases:

• A traditional flat list of atomic values with names and XML Schema atomic datatypes.

MarkLogic Server Using the Optic API for Relational Operations

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 182

• A dynamic JSON or XML document with substructure and leaf atomic values or mixed
text.

• An envelope with out-of-band metadata properties and relations for a list of documents.

In addition to executing a query plan, you can also perform the following Optic related
operations:

• Generate an execution plan explanation that reflects the logical flow of the plan as a
sequence of atomic operations.

• Export a serializable version of the plan for later use.

5.2 Interface Summary
The following are the key Optic interfaces in the Node.js Client API:

5.3 Preparing to Run the Examples
The examples in this chapter use the data, templates, and a plan from SQL on MarkLogic Server
Quick Start in the SQL Data Modeling Guide. If you want to run the examples, you should use the
SQL quick start to set up your environment. See the following topics in the SQL Data Modeling
Guide:

• Setup MarkLogic Server

• Load the Data

• Create Template Views

Interface or Method Description

marklogic.planBuilder Use a planBuilder to construct an Optic plan to be evaluated using
rows.query. For details, see “Generating a Plan” on page 183.

DatabaseClient.rows An object that exposes methods for evaluating Optic plans, such as
query, queryAsStream, and explain.

rows.query

rows.queryAsStream

Execute an Optic plan and return the results specified by the plan,
in the form of a row set. For details, see “Invoking a Plan” on
page 184 and “Streaming Row Data” on page 191.

rows.explain Generate an Optic API execution plan that expresses the logical
dataflow of a plan a sequence of atomic operations. For details, see
“Generating an Execution Plan” on page 196.

planBuilder.export Generate a JavaScript object representation of the Abstract Syntax
Tree for a plan, which can be serialized for later use. For details,
see “Serializing a Plan” on page 197.

MarkLogic Server Using the Optic API for Relational Operations

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 183

If you set up a database named “SQLdata”, as directed in the Quick Start, then add a database
property to your DatabaseClient connection information. For example, if your my-connection.js
module should be similar to the following when running the Optic examples:

module.exports = {
 connInfo: {
 host: 'localhost',
 port: 8000,
 user: your-ml-username,
 password: your-ml-user-password,
 database: 'SQLdata'
 }
};

For more details on configuring a DatabaseClient for running the examples, see “Using the
Examples in This Guide” on page 30.

5.4 Generating a Plan
Use marklogic.planBuilder to construct an Optic query plan. Usually, you then use the plan to
extract row data from MarkLogic. You can also generate a plan explanation or serialize a built
plan.

An Optic plan defines a pipeline of relational operations to be applied to a row set.

1. Select a data source using one of the data accessor methods, planBuilder.from*. For
example, planBuilder.fromLiterals, planBuilder.fromView, planBuilder.fromTriples,
or planBuilder.fromLexicons.

2. Refine your plan using modifier and composer operations, such as select, joinInner,
where, and orderBy.

3. Optionally, specify a mapper or reducer to be applied to each row. See
planBuilder.PreparePlan.map or planBuilder.PreparePlan.reduce. The mapper or
reducer function runs on MarkLogic.

For example, the following code snippet builds a plan to list the employee ID, first name, and last
name of all employees, in order of employee ID, using the configuration and data from the SQL on
MarkLogic Server Quick Start chapter in the SQL Data Modeling Guide.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
const pb = marklogic.planBuilder;

pb.fromView('main', 'employees')
 .select(['EmployeeID', 'FirstName', 'LastName'])
 .orderBy('EmployeeID')

MarkLogic Server Using the Optic API for Relational Operations

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 184

The plan is not executed until you process it with rows.query or rows.queryAsStream. For details,
see “Invoking a Plan” on page 184.

For details on the logical structure of a plan and the available operators, see Objects in an Optic
Pipeline in the Application Developer’s Guide. The Node.js planBuilder interface exposes
methods with the same names and purpose as the Server-Side JavaScript Optic API.

The planBuilder interface includes namespaces that expose proxies for many server-side
operations. For example, you can “call” cts query constructors or a server-side function in the fn,
xdmp, or map namespaces. The placeholder in the plan translates into an equivalent invocation of a
server-side function during plan execution.

For example, the following code constructs a plan that includes cts query constructor proxy calls:

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
const pb = marklogic.planBuilder;

db.rows.query(
 pb.fromView('main', 'employees')
 .where(pb.cts.andQuery([
 pb.cts.wordQuery('Senior'),
 pb.cts.wordQuery('Researcher')]))
 .select(['FirstName', 'LastName', 'Position']),
 {columnTypes: 'header'}
).then(function(rows) {
 console.log(JSON.stringify(rows, null, 2));
}).catch(
 function(error) {
 console.log(JSON.stringify(error, null, 2));
});

For more information on the proxy functions, see the planBuilder API Reference and the
following topics in the Application Developer’s Guide:

• Expression Functions For Processing Column Values

• Functions Equivalent to Boolean, Numeric, and String Operators

• Node Constructor Functions

For details on the behavior of a particular server-side function, see the MarkLogic Server-Side
JavaScript Function Reference.

5.5 Invoking a Plan
Use rows.query or rows.queryAsStream to execute a plan and generate a row set. You can also
pass in an options object to control the output format, specify parameter bindings, or pin the query
to a specific point-in-time.

MarkLogic Server Using the Optic API for Relational Operations

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 185

Note: Unlike most other Node.js Client API operations, query and queryAsStream do not
support a result method. Instead, the plan is sent to MarkLogic for evaluation
when you invoke the then or on methods. See the examples below.

To perform a query at a specific point in time, pass a Timestamp object as the value of the
timestamp property of the options parameter. For more details, see “Performing Point-in-Time
Operations” on page 23.

For example, the following code constructs a plan, executes it on MarkLogic, and then processes
the resulting row set. The plan and results are based on the configuration and data from the SQL on
MarkLogic Server Quick Start chapter in the SQL Data Modeling Guide.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
const pb = marklogic.planBuilder;

db.rows.query(
 pb.fromView('main', 'employees')
 .select(['EmployeeID', 'FirstName', 'LastName'])
 .orderBy('EmployeeID')
).then(function(rows) {
 console.log(JSON.stringify(rows, null, 2));
}).catch(function(error) {
 console.log(JSON.stringify(error, null, 2));
});

The following example is the equivalent code using queryAsStream to stream the results as
JavaScript objects instead of returning them all at once. Several stream modes are available; for
details, see “Streaming Row Data” on page 191.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
const pb = marklogic.planBuilder;

db.rows.queryAsStream(
 pb.fromView('main', 'employees')
 .select(['EmployeeID', 'FirstName', 'LastName'])
 .orderBy('EmployeeID'),
 'object'
).on('data', function(rows) {
 console.log(JSON.stringify(rows, null, 2));
}).on ('end', function() {
 console.log('done');
});

MarkLogic Server Using the Optic API for Relational Operations

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 186

The plan returns results similar to the following. You can use the options parameter of the query
and queryAsStream methods to customize the output format; for details, see “Configuring Row Set
Format” on page 187.

{ "columns": [
 { "name": "main.employees.EmployeeID" },
 { "name": "main.employees.FirstName" },
 { "name": "main.employees.LastName" }
],
 "rows": [
 { "main.employees.EmployeeID": {
 "type": "xs:integer",
 "value": 1
 },
 "main.employees.FirstName": {
 "type": "xs:string",
 "value": "John"
 },
 "main.employees.LastName": {
 "type": "xs:string",
 "value": "Widget"
 }
 },
 { "main.employees.EmployeeID": {
 "type": "xs:integer",
 "value": 2
 },
 "main.employees.FirstName": {
 "type": "xs:string",
 "value": "Jane"
 },
 "main.employees.LastName": {
 "type": "xs:string",
 "value": "Lead"
 }
 },
 { "main.employees.EmployeeID": {
 "type": "xs:integer",
 "value": 3
 },
 "main.employees.FirstName": {
 "type": "xs:string",
 "value": "Steve"
 },
 "main.employees.LastName": {
 "type": "xs:string",
 "value": "Manager"
 }
 }, ...
]
}

MarkLogic Server Using the Optic API for Relational Operations

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 187

5.6 Configuring Row Set Format
When you invoke a query plan as described in “Invoking a Plan” on page 184, the result is a row
set. You can use the options parameter of rows.query and rows.queryAsStream to configuring the
layout of the row set.

This section covers the following topics related to how configuration options affect the layout of a
row set.

• Configuration Options

• Layout Examples

5.6.1 Configuration Options
You can fetch row data in the form of JSON objects, JSON arrays, XML elements, or CSV
(comma separated values).

For JSON and XML, you can also control whether column type information is a part of each row
or is only part of the column header data. You should include type information with row unless
you know each of your columns contain values of the same type.

Use the following options to configure the row set format and layout:

• format: Specify the overal format as json, xml, or csv. Default: json.

• structure: When the format is JSON, specify whether each row should be represented as
an object or an array. Default: object.

• columnTypes: Specify whether to embed column value type information in each row or
only in the column header. Only meaningful when format is json or xml. Default: rows.

• complexValues: Specify whether to return column values with non-atomic type inline or by
reference. Only meaningful with rows.queryAsStream. Default: inline.

The option settings can yield different layouts when returning a row set as a single document with
query versus an object stream with queryAsStream. The rest of this section explores how various
option settings interact for query and queryAsStream.

5.6.2 Layout Examples
This section illustrates how various configuration option settings affect the data passed to your
handler when you use rows.query and the promise handling pattern. When you use this pattern,
your response handler receives the entire row set at once. For more details on promises, see
“Promise Result Handling Pattern” on page 20.

You can also stream a row set using queryAsStream. The output is similar, but your handler
receives data in chunks. For details, see “Streaming Row Data” on page 191.

MarkLogic Server Using the Optic API for Relational Operations

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 188

When you fetch rows as a JSON array, the first item in the array is the column header data. When
you fetch rows as CSV, the first record is the column header data.

The following table summarizes the output produced by various option combinations when
fetching rows using rows.query. Each example displays the column header data (where
appropriate) and one row.

Options Example Output

(default)

{format:'json',
 structure: 'object',
 columnTypes: 'rows'}

{ columns: [
 {name: 'main.employees.Employee'},
 {name: 'main.employees.FirstName'},
 {name: 'main.employees.LastName'}
],
 rows: [
 { 'main.employees.EmployeeID': {
 type: 'xs:integer', value: 1},
 'main.employees.FirstName': {
 type: 'xs:string', value: 'John'},
 'main.employees.LastName': {
 type: 'xs:string', value: 'Widget'}
 },
 {...}, ...
]
}

{format:'json',
 structure: 'object',
 columnTypes: 'header'}

{ columns: [
 { name: 'main.employees.EmployeeID',
 type: 'xs:integer' },
 { name: 'main.employees.FirstName',
 type: 'xs:string' },
 { name: 'main.employees.LastName',
 type: 'xs:string' }
],
 rows: [
 { 'main.employees.EmployeeID': 1,
 'main.employees.FirstName': 'John',
 'main.employees.LastName': 'Widget'
 },
 {...}, ...
]
}

MarkLogic Server Using the Optic API for Relational Operations

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 189

{format:'json',
 structure: 'array',
 columnTypes: 'rows'}

[
 [{ name: 'main.employees.EmployeeID' },
 { name: 'main.employees.FirstName' },
 { name: 'main.employees.LastName' }
],
 [{ type: 'xs:integer', value: 1 },
 { type: 'xs:string', value: 'John' },
 { type: 'xs:string', value: 'Widget' }
],
 [...], ...
]

{format:'json',
 structure: 'array',
 columnTypes: 'header'}

[
 [{ name: 'main.employees.EmployeeID',
 type: 'xs:integer' },
 { name: 'main.employees.FirstName',
 type: 'xs:string' },
 { name: 'main.employees.LastName',
 type: 'xs:string' }
],
 [1, 'John', 'Widget'],
 [...], ...
]

{format: 'csv'
 structure: 'object'}

A block of text, containing one line per row:

main.employees.EmployeeID,main.employees.FirstName,main.empl
oyees.LastName
1,John,Widget
...

{format: 'csv'
 structure: 'array'}

A block of text, containing one line per row:

["main.employees.EmployeeID", "main.employees.FirstName",
"main.employees.LastName"]
[1, "John", "Widget"]
...

Options Example Output

MarkLogic Server Using the Optic API for Relational Operations

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 190

{format:'xml',
 columnValues: 'rows'}

Serialized XML of the following form:

<t:table xmlns:t="http://marklogic.com/table">
 <t:columns>
 <t:column name="main.employees.EmployeeID"/>
 <t:column name="main.employees.FirstName"/>
 <t:column name="main.employees.LastName"/>
 </t:columns>
 <t:rows>
 <t:row>
 <t:cell name="main.employees.EmployeeID"
 type="xs:integer">1</t:cell>
 <t:cell name="main.employees.FirstName"
 type="xs:string">John</t:cell>
 <t:cell name="main.employees.LastName"
 type="xs:string">Widget</t:cell>
 </t:row>
 ...
 </t:rows>
</t:table

{format:'xml',
 columnValues:
'header'}

Serialized XML of the following form:

<t:table xmlns:t="http://marklogic.com/table">
 <t:columns>
 <t:column name="main.employees.EmployeeID"
 type="xs:integer"/>
 <t:column name="main.employees.FirstName"
 type="xs:string"/>
 <t:column name="main.employees.LastName"
 type="xs:string"/>
 </t:columns>
 <t:rows>
 <t:row>
 <t:cell name="main.employees.EmployeeID">1</t:cell>
 <t:cell name="main.employees.FirstName">John</t:cell>
 <t:cell name="main.employees.LastName">Widget</t:cell>
 </t:row>
 <t:row>
 ...
 </t:rows>
</t:table>

Options Example Output

MarkLogic Server Using the Optic API for Relational Operations

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 191

5.7 Streaming Row Data
You can use rows.queryAsStream to stream a row set from MarkLogic. Depending on the
streaming mode, data is returned to your handler in chunks of bytes, JavaScript objects, or JSON
text sequence records.

• Object Mode Streaming

• Chunked Mode Streaming

• Sequence Mode Streaming

Row sets formatted as XML or CSV can only be streamed in chunked mode. Rows sets formatted
as JSON can be streamed in any mode.

5.7.1 Object Mode Streaming
When you fetch a row set with queryAsStream in object mode, each invocation of your on('data')
handler receives either a JavaScript object or an array, depending on the value of structure option.
Column header data is passed on the first invocation.

Note: You can only use object mode when streaming row data as JSON. To stream XML
or CSV row set data, use chunked mode. For details, see “Chunked Mode
Streaming” on page 193.

The default streaming mode is chunked. To stream results in object mode, set the streamType
parameter of queryAsStream to 'object':

db.rows.queryAsStream(plan, 'object', options)

MarkLogic Server Using the Optic API for Relational Operations

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 192

The following table illustrates the output produced by various option combinations when fetching
rows using rows.queryAsStream with the stream in object mode. Each example includes the
column header object or array passed in on the first invocation of your data handler, followed by
an example data row.

Options Example Output

{format:'json',
 structure: 'object',
 columnTypes: 'rows'}

{ columns: [
 { name: 'main.employees.EmployeeID' },
 { name: 'main.employees.FirstName' },
 { name: 'main.employees.LastName' }
]}

{ 'main.employees.EmployeeID': {
 type: 'xs:integer', value: 1 },
 'main.employees.FirstName': {
 type: 'xs:string', value: "John' },
 'main.employees.LastName': {
 type: 'xs:string', value: 'Widget' }
}

{format:'json',
 structure: 'object',
 columnTypes: 'header'}

{ columns: [
 { name: 'main.employees.EmployeeID',
 type: 'xs:integer'
 }, {
 name: 'main.employees.FirstName',
 type: 'xs:string'
 }, {
 name: 'main.employees.LastName',
 type: 'xs:string'
 }
]}

{ 'main.employees.EmployeeID': 1,
 'main.employees.FirstName': 'John',
 'main.employees.LastName': 'Widget'
}

MarkLogic Server Using the Optic API for Relational Operations

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 193

5.7.2 Chunked Mode Streaming
When you fetch a row set with queryAsStream in chunked mode, your handler receives control
when some number of bytes are read.

Each chunk provided to your handler is a buffer of bytes, formatted as serialized JSON, XML, or
CSV, depending on your option settings. The aggregate byte stream is formatted similar to the
layouts shown in “Layout Examples” on page 187.

The default stream mode is chunked. You can also set it explicitly. For example:

db.rows.queryAsStream(plan, 'chunked', options)

5.7.3 Sequence Mode Streaming
When you fetch a row set with queryAsStream in sequence mode, your handler receives control
when a record in JSON text sequence format is available. Each record contains the byte
representation of either a JSON object or JSON array, depending on your option settings.

Note: You can only use sequence mode when streaming row data as JSON. To stream
XML or CSV row set data, use chunked mode. For details, see “Chunked Mode
Streaming” on page 193

Each record begins with a record separator (0x1E) in the first byte and ends with an ASCII line
feed character (0x0A), as described in https://tools.ietf.org/html/rfc7464.

{format:'json',
 structure: 'array',
 columnTypes: 'rows'}

[{ name: 'main.employees.EmployeeID' },
 { name: 'main.employees.FirstName' },
 { name: 'main.employees.LastName' }]

[{ type: 'xs:integer',
 value: 1 },
 { type: 'xs:string',
 value: 'John' },
 { type: 'xs:string',
 value: 'Widget' }]

{format:'json',
 structure: 'array',
 columnTypes: 'header'}

[{ name: 'main.employees.EmployeeID',
 type: 'xs:integer'
 }, {
 name: 'main.employees.FirstName',
 type: 'xs:string'
 }, {
 name: 'main.employees.LastName',
 type: 'xs:string'
 }]

[1, 'John', 'Widget']

Options Example Output

MarkLogic Server Using the Optic API for Relational Operations

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 194

The default stream mode is chunked. To activate sequence mode, set the streamType parameter of
queryAsStream to 'sequence':

db.rows.queryAsStream(plan, 'sequence', options)

Each record is formatted like the examples “Layout Examples” on page 187 when the format
option is set to 'json' and the structure option is set to either 'object' or 'array'.

For example, the following code produces records formatted as JSON objects, with column data
in the header (first) record. For illustrative purposes, each record is converted to a string and
stripped of the record separators before displaying it on the console.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const fs = require('fs');

const db = marklogic.createDatabaseClient(my.connInfo);
const plan = fs.readFileSync('./plan.json', 'utf8');
const options = {
 format: 'json',
 structure: 'object',
 columnTypes: 'header'
};

db.rows.queryAsStream(plan, 'sequence', options)
 .on('data', function(record) {
 const asString = record.toString();
 console.log(asString.substring(1,asString.length-2));
 }).on ('end', function() {
 console.log('done');
 });

This example returns output similar to the following, where each record contains an object that
represents one row. The first record contains the column header data.

{"columns":[{"name":"main.employees.EmployeeID","type":"xs:integer"},{
"name":"main.employees.FirstName","type":"xs:string"},{"name":"main.em
ployees.LastName","type":"xs:string"}]}
{"main.employees.EmployeeID":1,"main.employees.FirstName":"John","main
.employees.LastName":"Widget"}
...

If you set the structure option to array, then each record contains an array that represents one row.
The first record contains the column header data.

[{"name":"main.employees.EmployeeID","type":"xs:integer"},{"name":"mai
n.employees.FirstName","type":"xs:string"},{"name"
:"main.employees.LastName","type":"xs:string"}]
[1,"John","Widget"]
...

MarkLogic Server Using the Optic API for Relational Operations

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 195

5.8 Passing Parameters into a Plan
If your plan uses placeholder parameters, use the bindings option to specify values for the
placeholders when you invoke the plan.

The bindings option value is a JavaScript object where the property names correspond to
parameters, and the values are either a parameter value or an object that specifies a type or
language key and a value. That is, each property must take one of forms shown below:

{bindings : {
 paramName1 : value1,
 paramName2 : {value: value2, type: typeNameString},
 paramName3 : {value: value3, lang: languageCode}
}}

The type name can be any derivation of xs:atomicType other than xs:QName. For example, you can
use type names such as 'string', 'integer', and 'decimal'. If you do not specify a type, the
value is interpreted as a string. Use a language code to bind language-tagged strings.

For example, if you defined a placeholder variable named “start” in your plan definition, then you
could specify a value for “start” in the bindings option in any of the following ways:

{bindings:{
 start: 'apple'
}

{bindings:{
 start: {value: 'apple', type: 'string'}
}

{bindings:{
 start: {value: 'apple', lang: 'en'}
}

5.9 Handling Complex Column Values
If your row set includes column values with non-atomic type, such as XML elements, JSON
arrays, JSON objects, binary content, or text nodes, they are serialized inline by default. For
example, the following row contains a column named “complex” whose value is a serialized
XML element:

{ "id":{
 "type":"xs:integer",
 "value":1
 },
 "complex":{
 "type":"element",
 "value":"<root><A>Detail 12015-12-01</root>"
}}

MarkLogic Server Using the Optic API for Relational Operations

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 196

You can use the complexValues option of rows.queryAsStream to specify whether such complex
values should be included inline (as shown above) or by reference. You cannot configure the
handling of complex values when executing a plan using rows.query.

For example, the following option setting specifies complex values should be returned by
reference.

{complexValues: 'reference'}

For example, suppose your row set includes a column named “node” whose value is an XML
element. The default behavior (inline) yields a serialized string of the following form for the node
value:

"node": {
 "type": "element",
 "value": "<alpha><a>true</alpha>"
}

If you set the complexValues option to “reference”, then the same column value is rendered as
follows:

"node": {
 "contentType": "application/xml",
 "format": "xml",
 "content": "<?xml version=\"1.0\"
encoding=\"UTF-8\"?>\n<beta>false</beta>"
}

The node value is actually returned as a reference to a complex value by MarkLogic, but the
reference is resolved and expanded for you in the results returned from the Node.js Client API.

The details of the format depend on the output formatting options you choose and the type of
complex value. For example, if the complex value is a binary document, then it would be returned
as a base64 encoded value inline, but as a Node.js Buffer when fetched by reference.

5.10 Generating an Execution Plan
Use rows.explain to generate an execution plan that expresses the logical flow of an Optic plan as
a sequence of atomic operations. For more details, see Optic Execution Plan in the Application
Developer’s Guide.

For example, the following code generates an execution plan based on the data from SQL on
MarkLogic Server Quick Start in the SQL Data Modeling Guide.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
const pb = marklogic.planBuilder;

MarkLogic Server Using the Optic API for Relational Operations

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 197

db.rows.explain(
 pb.fromView('main', 'employees')
 .select(['EmployeeID', 'FirstName', 'LastName'])
 .orderBy('EmployeeID')
 .limit(3)
).then(function(rows) {
 console.log(JSON.stringify(rows, null, 2));
}).catch(
 function(error) {
 console.log(JSON.stringify(error, null, 2));
});

5.11 Serializing a Plan
Use the export method of a plan object to generate a serializable version of a plan that can be
saved to persistent storage for later use. The export method produces a JavaScript object
representation of a plan, which can be serialized to JSON using, for example, JSON.stringfy.

For example, the following code generates a JSON serialization of a plan and logs it to the
console:

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
const pb = marklogic.planBuilder;

console.log(JSON.stringify(
 pb.fromView('main', 'employees')
 .select(['EmployeeID', 'FirstName', 'LastName'])
 .orderBy('EmployeeID')
 .limit(3)
 .export(),
 null,2));

To subsequently use a serialized plan, convert it back into a JavaScript object and pass the object
to rows.query or rows.queryAsStream. For example:

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
const pb = marklogic.planBuilder;

// Read serialized plan from a file or other storage, then...
const serializedPlan = ...;

const thePlan = JSON.parse(serializedPlan);
db.rows.query(thePlan)
 .then(function(rows) {
 console.log(JSON.stringify(rows, null, 2));

MarkLogic Server Using the Optic API for Relational Operations

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 198

}).catch(
 function(error) {
 console.log(JSON.stringify(error, null, 2));
});

MarkLogic Server Working With Semantic Data

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 199

6.0 Working With Semantic Data
213

This chapter discusses the following topics related to using the Node.js Client API to load
semantic triples, manage semantics graphs, and query semantic data:

• Overview of Common Semantics Tasks

• Loading Triples

• Querying Semantic Triples With SPARQL

• Example: SPARQL Query

• Managing Graphs

• Using SPARQL Update to Manage Graphs and Graph Data

• Applying Inferencing Rules to a SPARQL Query or Update

This chapter only covers details specific to using the Node.js Client API for semantic operations.
For more details, see the Semantics Developer’s Guide.

6.1 Overview of Common Semantics Tasks
The following table lists some common tasks related to Semantics, along with the method best
suited for the completing the task. For a complete list of interfaces, see the Node.js API Reference.

If you want to Then use

Load semantic triples into a named graph or
the default graph without using SPARQL
Update.

DatabaseClient.graphs.write

For details, see “Loading Triples” on
page 200.

Manage graphs or graph data with SPARQL
Update.

DatabaseClient.graphs.sparlUpdate

For details, see “Using SPARQL Update to
Manage Graphs and Graph Data” on
page 209.

Read a semantic graph from the database. DatabaseClient.graphs.read

For details, see “Retrieving the Contents,
Metadata, or Permissions of a Graph” on
page 207.

Query semantic data with SPARQL DatabaseClient.graphs.sparql

For details, see “Querying Semantic Triples
With SPARQL” on page 202

/jsdoc/graphs.html#write
/jsdoc/graphs.html#sparqlUpdate
/jsdoc/graphs.html#read
/jsdoc/graphs.html#sparql
/jsdoc/index.html

MarkLogic Server Working With Semantic Data

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 200

To read a graph or perform a semantic query at fixed point in time, pass a Timestamp object as a
parameter to your call. For more details, see “Performing Point-in-Time Operations” on page 23.

6.2 Loading Triples
This topic covers using DatabaseClient.graphs.write or DatabaseClient.graphs.writeStream to
load semantic triples into the database in several formats. For a list of supported formats, see
Supported RDF Triple Formats in Semantics Developer’s Guide. You can also insert triples with a
SPARQL Update request; for details, see “Using SPARQL Update to Manage Graphs and Graph
Data” on page 209.

Note: The collection lexicon must be enabled on your database when using the semantics
REST services or use the GRAPH '?g' construct in a SPARQL query.

Use DatabaseClient.graphs.write to upload a block of triples to MarkLogic Server in a single
request. Use DatabaseClient.graphs.writeStream to incrementally stream a large number of
triples to MarkLogic Server; for details, see “Streaming Into the Database” on page 22. The input
semantic data can be expressed as a string, object, or Readable stream.

A call to DatabaseClient.graphs.write or DatabaseClient.graphs.writeStream always includes
at least a MIME type parameter indicating the format of the input triples. If you also include a
graph URI, the triples are loaded into that graph. If you do not include a graph URI, the triples are
loaded into the default graph. That is, you can use one of these two forms, depending on the
destination graph:

// load into the default graph
db.graphs.write(mimeType, triples)

// load into a named graph
db.graphs.write(graphURI, mimeType, triples)

Optionally, you can pass a boolean repair flag. If present and set to true, MarkLogic Server
attempts to repair invalid input triples during ingestion. For example:

db.graphs.write(graphURI, true, mimeType, triples)

You can also call the write functions with a call object instead of with positional parameters. The
call object has the following properties:

db.graphs.write({
 uri: graphURI, // optional, omit for default graph
 contentType: mimeType, // required
 data: triples, // required
 repair: boolean // optional
})

The output from a call to DatabaseClient.graphs.write or DatabaseClient.graphs.writeStream
is an object that indicates whether the triples were loaded into the default graph or a named graph.
If the destination is a named graph, the graph name is returned in the graph property. For example:

/jsdoc/graphs.html#write
/jsdoc/graphs.html#writeStream

MarkLogic Server Working With Semantic Data

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 201

// result of loading into default graph
{ defaultGraph: true, graph: null }

// result of loading into a named graph
{ defaultGraph: false, graph: 'example-graph-uri' }

The following example uses DatabaseClient.graphs.write to load a set of triples in RDF/JSON
format into the default graph.

const fs = require('fs');
const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);

const triples = {
 'http://dbpedia.org/resource/Joyce_Carol_Oates' : {
 'http://dbpedia.org/property/influences' : [{
 'type' : 'uri',
 'value' : 'http://dbpedia.org/resource/Ernest_Hemingway'
 }] ,
 'http://dbpedia.org/ontology/influencedBy' : [{
 'type' : 'uri',
 'value' : 'http://dbpedia.org/resource/Ernest_Hemingway'
 }]
 },
 'http://dbpedia.org/resource/Death_in_the_Afternoon' : {
 'http://dbpedia.org/ontology/author' : [{
 'type' : 'uri',
 'value' : 'http://dbpedia.org/resource/Ernest_Hemingway'
 }] ,
 'http://dbpedia.org/property/author' : [{
 'type' : 'uri',
 'value' : 'http://dbpedia.org/resource/Ernest_Hemingway'
 }]
 }
};

db.graphs.write('application/rdf+json', triples).result(
 function(response) {
 if (response.defaultGraph) {
 console.log('Loaded into default graph');
 } else {
 console.log('Loaded into graph ' + response.graph);
 };
 },
 function(error) { console.log(JSON.stringify(error)); }
);

MarkLogic Server Working With Semantic Data

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 202

The following example uses DatabaseClient.graphs.writeStream to load a set of triples in
N-Quads format into a named graph (example-graph). The triples are streamed from the file
“input.nq” using a Readable stream and piped into the Writable stream returned by
DatabaseClient.graphs.createWriteStream. The transaction is not committed until the all the
data from the input stream is transmitted.

const fs = require('fs');
const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
// Load into a named graph using a write stream
const writer =
 db.graphs.createWriteStream('example-graph', 'application/n-quads');
writer.result(
 function(response) {
 if (response.defaultGraph) {
 console.log('Loaded triples into default graph');
 } else {
 console.log('Loaded triples into graph ' + response.graph);
 };
 },
 function(error) { console.log(JSON.stringify(error)); }
);
fs.createReadStream('input.nq').pipe(writer);

To read a semantic graph, use DatabaseClient.graphs.read; for details, see “Retrieving the
Contents, Metadata, or Permissions of a Graph” on page 207. To query semantic data, use
DatabaseClient.graphs.sparql; for details, see “Querying Semantic Triples With SPARQL” on
page 202. For additional operations, see the Node.js API Reference.

6.3 Querying Semantic Triples With SPARQL
Use the DatabaseClient.graphs.sparql method to evaluate SPARQL queries against triples in the
database. For more details on using SPARQL queries with MarkLogic, see the Semantics
Developer’s Guide.

Note: The collection lexicon must be enabled on your database when using the semantics
REST services or use the GRAPH '?g' construct in a SPARQL query.

You can evaluate a SPARQL query by calling DatabaseClient.graphs.sparql. The query is not
sent to MarkLogic for evaluation until you call result(). You can invoke the sparql method in
the following ways:

// (1) db.graphs.sparql(responseContentType, query)
db.graphs.sparql(
 'application/sparql-results+json',
 'SELECT ?s ?p WHERE {?s ?p Paris }')

// (2) db.graphs.sparql(responseContentType, defaultGraphUris, query)

/jsdoc/graphs.html#sparql
/jsdoc/graphs.html#sparql
/jsdoc/index.html

MarkLogic Server Working With Semantic Data

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 203

db.graphs.sparql(
 'application/sparql-results+json',
 'http://def/graph1', 'http://def/graph2',
 'SELECT ?s ?p WHERE {?s ?p Paris }')

// (3) db.graphs.sparql(callObject)
db.graphs.sparql({
 contentType: 'application/sparql-results+json',
 query: 'SELECT ?s ?p WHERE {?s ?p Paris }',
 start: 0,
 length: 15
})

You must include at least a SPARQL query string and a response content type (MIME type) in
your call. For a complete list of the accepted response MIME types, see SPARQL Query Types and
Output Formats in the Semantics Developer’s Guide.

Passing in a call object enables you to configure attributes of your query such as named graph
URIs, an additional document query, result subset controls, and inference rulesets. For a complete
list of the configuration properties, see graphs.sparql in the Node.js Client API Reference.

Advanced users can supply a CombinedQueryDefinition as the docQuery parameter of
db.graphs.sparql. A combined query enables advanced users finer control over the optional
document constraint query you can include in your query. For details, see “Searching with
Combined Query” on page 149.

6.4 Example: SPARQL Query
The following example evaluates a SPARQL query expressed as a string literal against the default
graph.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);

const query = [
 'PREFIX foaf: <http://xmlns.com/foaf/0.1/>' ,
 'PREFIX ppl: <http://people.org/>' ,
 'SELECT ?personName1' ,
 'WHERE {' ,
 ' ?personUri1 foaf:name ?personName1 ;' ,
 ' foaf:knows ppl:person3 .' ,
 ' ?personUri1 foaf:name ?personName1 .' ,
 ' }'
];
db.graphs.sparql('application/sparql-results+json', query.join('\n')
).result(function (result) {
 console.log(JSON.stringify(result, null, 2));
}, function(error) {

/jsdoc/graphs.html#sparql

MarkLogic Server Working With Semantic Data

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 204

 console.log(JSON.stringify(error, null, 2));
});

Running the script produces output similar to the following, given triples that indicate Person 1
and Person 2 know Person 3.

{ "head": {
 "vars": ["personName1"]
 },
 "results": {
 "bindings": [
 {
 "personName1": {
 "type": "literal",
 "value": "Person 1",
 "datatype": "http://www.w3.org/2001/XMLSchema#string"
 }
 },
 {
 "personName1": {
 "type": "literal",
 "value": "Person 2",
 "datatype": "http://www.w3.org/2001/XMLSchema#string"
 }
 }
]
}}

For more examples, see test-basic/graphs.js in the node-client-api project source directory.

6.5 Managing Graphs
This section covers the following graph management operations:

• Creating or Replacing a Graph

• Adding Triples to an Existing Graph

• Removing a Graph

• Retrieving the Contents, Metadata, or Permissions of a Graph

• Testing for Graph Existence

• Retrieving a List of Graphs

You can also use SPARQL Update to perform similar operations; for details, see “Using SPARQL
Update to Manage Graphs and Graph Data” on page 209.

Note: Many graph management operations only apply to managed triples.

MarkLogic Server Working With Semantic Data

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 205

6.5.1 Creating or Replacing a Graph
You can use DatabaseClient.graphs.write to create or replace a graph without using SPARQL
Update. For details and examples, see “Loading Triples” on page 200. You can also use
DatabaseClient.graphs.sparqlUpdate to create or modify a graph; for details, see “Using
SPARQL Update to Manage Graphs and Graph Data” on page 209.

If a graph does not exist when you write to it, the graph is created. If the graph already exists
when you write to it, the unmanaged triples in the graph are replaced with the new triples; this is
equivalent to removing and recreating the graph.

Any unmanaged triples in the graph are unaffected by this operation.

For more details, see the Node.js Client API Reference.

6.5.2 Adding Triples to an Existing Graph
Use DatabaseClient.graphs.merge to add triples to an existing graph without replacing the
current contents. For other update operations or finer control, use the
DatabaseClient.graphs.sparqlUpdate to interact with a graph using SPARQL Update; for more
details, see “Using SPARQL Update to Manage Graphs and Graph Data” on page 209. To replace
the contents of a graph, use DatabaseClient.graphs.write; for details, see “Creating or Replacing
a Graph” on page 205.

You can invoke graphs.merge using the following forms:

// Add triples to a named graph
db.graphs.merge(graphUri, contentType, tripleData)

// Add triples to the default graph
db.graphs.merge(null, contentType, tripleData)

// Add triples to a named graph or the default graph using a call object
db.graphs.merge({uri: ..., contentType: ..., data: ..., ...})

Use the call object pattern to specify operation parameters such as permissions and a transaction
id; for details, see the Node.js Client API Reference. When you use the call object pattern, you can
omit the uri property or set it to null to merge triples into the default graph.

The following example uses the call object pattern to insert two new triples into the graph named
“MyGraph”, repairing the data as needed. In this example, the triples are passed as a string in
Turtle format. You can use other triple formats. You can also supply triple data as a stream, buffer,
or object instead of a string.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);

/jsdoc/graphs.html#merge

MarkLogic Server Working With Semantic Data

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 206

const triples = [
 '@prefix p1: <http://example.org/marklogic/predicate/> .',
 '@prefix p0: <http://example.org/marklogic/people/> .',
 'p0:Julie_Smith p1:livesIn \"Sterling\" .',
 'p0:Jim_Smith p1:livesIn \"Bath\" .'
];
db.graphs.merge({
 uri: 'MyGraph',
 contentType: 'text/turtle',
 data: triples.join('\n'),
 repair: true
}).result(
 function(response) {
 console.log(JSON.stringify(response));
 },
 function(error) { console.log(JSON.stringify(error)); }
);

If the operation is successful, the script produces output similar to the following:

{"defaultGraph":false,"graph":"MyGraph","graphType":"named"}

For more details, see the Node.js Client API Reference.

6.5.3 Removing a Graph
Use DatabaseClient.graphs.remove to remove the triples in a named graph or the default graph.
This operation only affects managed triples. If the graph includes unmanaged triples, the
embedded triples are unaffected and the graph will continue to exist after this operation.

You can also use a SPARQL Update request to remove a graph; for details, see “Using SPARQL
Update to Manage Graphs and Graph Data” on page 209.

If you call remove with no parameters, it removes the default graph. If you call remove with a
graph URI, it removes that named graph.

The following example removes all triples in the graph with URI example-graph:

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.graphs.remove('example-graph').result(
 function(response) { console.log(JSON.stringify(response)); }
);

// expected output:
// {"defaultGraph":false,"graph":"example-graph"}

/jsdoc/graphs.html#remove

MarkLogic Server Working With Semantic Data

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 207

To remove the default graph, omit the graph URI from your call. The following example removes
all triples in the default graph. The value of the graph property in the response is null because this
is the default graph. For a named graph, the graph property contains the graph URI.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.graphs.remove().result(
 function(response) { console.log(JSON.stringify(response)); }
);

// expected output:
// {"defaultGraph":true,"graph":null}

For more details, see the Node.js Client API Reference.

6.5.4 Retrieving the Contents, Metadata, or Permissions of a Graph
Use DatabaseClient.graphs.read to retrieve all the triples in a graph, the graph metadata, or
graph permissions. You can use this method on the default graph or a named graph.

You can invoke graphs.read in the following forms:

// (1) Retrieve all triples in the default graph
db.graphs.read(responseContentType)

// (2) Retrieve all triples in a named graph
db.graphs.read(uri, responseContentType)

// (3) Retrieve triples, metadata, or permissions using a call object
db.graphs.read({contentType: ..., ...})

When you use the call object pattern, the call object must include at least a contentType property.
To operate on a named graph, you must also include a uri property. If you omit the uri property
or set it to null, the operation applies to the default graph.

You can retrieve triples in several RDF formats; for a list of supported formats, see the API
reference for graphs.read.

The following example reads all triples from the graph named “MyGraph”. The triples are
returned in Turtle format.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);

db.graphs.read('MyGraph','text/turtle')
 .result(

/jsdoc/graphs.html#read

MarkLogic Server Working With Semantic Data

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 208

 function(response) {
 for (const line of response.split('\n')) {
 console.log(line);
 }
 },
 function(error) { console.log(JSON.stringify(error)); }
);

The call object pattern is required when retrieving graph metadata or permissions; a call object
can also be used to retrieve triples. Use the category property of the call object to specify what to
retrieve (content, metadata, or permissions).

The following example retrieves metadata about the graph named “MyGraph”:

db.graphs.read({
 uri: 'MyGraph',
 contentType: 'application/json',
 category: 'metadata'
});

For more details, see the Node.js Client API Reference.

6.5.5 Testing for Graph Existence
Use DatabaseClient.graphs.probe to test for the existence of a graph. The following example
tests for the existence of a graph with the URI “http://marklogic.com/example/graph”.

db.graphs.probe('http://marklogic.com/example/graph')
 .result(
 function(response) {
 console.log(JSON.stringify(response));
 },
 function(error) { console.log(JSON.stringify(error)); }
);

If the graph exists, the call produces output similar to the following:

{ "contentType": null,
 "contentLength": null,
 "versionId": null,
 "location": null,
 "systemTime": null,
 "exists": true,
 "defaultGraph": false,
 "graph": "http://marklogic.com/example/graph",
 "graphType": "named"
}

/jsdoc/graphs.html#probe

MarkLogic Server Working With Semantic Data

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 209

If the graph does not exist, the graph produces output similar to the following:

{ "exists": false,
 "defaultGraph": false,
 "graph": "NoMyGraph",
 "graphType": "named"
}

Probe for the existence of the default graph by omitting the graph URI.

6.5.6 Retrieving a List of Graphs
Use DatabaseClient.graphs.list to retrieve a list of graphs stored in MarkLogic. You must
specify an expected content MIME type for the response. You can retrieve the list as text/plain
or text/html.

The following example retrieves a list of available graph URI, one URI per line.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);

db.graphs.list('text/uri-list')
 .result(
 function(response) {
 for (const uri of response.split('\n')) {
 console.log(uri);
 }
 },
 function(error) { console.log(JSON.stringify(error)); }
);

If the database includes the default graph and a graph with the URI “MyGraph”, then the raw
response from the above operation is a string of the following form. Each URI is separated by a
newline ('\n').

"MyGraph\nhttp://marklogic.com/semantics#graphs\n"

For more details, see the Node.js Client API Reference.

6.6 Using SPARQL Update to Manage Graphs and Graph Data
You can use a SPARQL Update request to manage graphs and graph data from Node.js by calling
DatabaseClient.graphs.sparqlUpdate. You can only use this interface to work with managed
triples. You can also manage graphs and graph data without using SPARQL Update; for details,
see “Managing Graphs” on page 204 and “Loading Triples” on page 200.

/jsdoc/graphs.html#list
/jsdoc/graphs.html#sparlUpdate

MarkLogic Server Working With Semantic Data

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 210

You can call graphs.sparqlUpdate in the following ways:

// (1) pass only the SPARQL Update as a string or ReadableStream
db.graphs.sparqlUpdate(updateOperation)

// (2) pass a call config object that includes the SPARQL Update
db.graphs.sparqlUpdate({data: updateOperation, ...})

The call object pattern enables you to control operations details, such as permissions, inferencing
rulesets, transaction control, and variable bindings. When you use a call object, the data property
holds your SPARQL Update request string or stream.

The following example creates a graph, passing in only a SPARQL Update request.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);

db.graphs.sparqlUpdate(
 'CREATE GRAPH <http://marklogic.com/semantics/tutorial/update> ;'
).result(
 function(response) {
 console.log('Graph created.');
 console.log(JSON.stringify(response));
 },
 function(error) { console.log(JSON.stringify(error)); }
);

Running this script produces the following output:

Graph created.
{"defaultGraph":false,"graph":null,"graphType":"inline"}

The following example uses a call object to create a graph and insert triples. The call object
defines permissions on the graph, and defines variable bindings used in the SPARQL Update
request.

const graphURI = 'http://marklogic.com/sparqlupd/example';
db.graphs.sparqlUpdate({
 data:
 'CREATE GRAPH <' + graphURI + '> ;' +
 'INSERT {GRAPH <' + graphURI + '> {?s ?p ?b1 }} '+
 'WHERE {GRAPH <' + graphURI + '> ' +
 '{?s ?p ?o. filter (?p = ?b2) }}',
 bindings: {
 b1: 'bindval1',
 b2: {value: 'bindval2', type: 'string'}
 },
 permissions: [
 { 'role-name': 'app-user', capabilities: ['read']},

MarkLogic Server Working With Semantic Data

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 211

 { 'role-name': 'admin', capabilities: ['read','update']},
]
})

For a complete list of configuration properties usable in the call object, see graphs.sparqlUpdate
in the Node.js Client API Reference.

For more details on using SPARQL Update with MarkLogic, see SPARQL Update in the Semantics
Developer’s Guide.

6.7 Applying Inferencing Rules to a SPARQL Query or Update
You can specify one or more inferencing rulesets to apply to a SPARQL query or SPARQL
Update request. Inference rules enable you to “discover” new facts about your data at query or
update time.

SPARQL inference is discussed in detail in Inference in the Semantics Developer’s Guide. This
section only covers usage details specific to the Node.js Client API.

The following topics are covered:

• Basic Inference Ruleset Usage

• Example: SPARQL Query With Inference Ruleset

• Example: SPARQL Update With Inference Rulesets

• Controlling the Default Database Ruleset

6.7.1 Basic Inference Ruleset Usage
To include one or more inference rulesets when using graphs.sparql or graphs.sparqlUpdate,
pass a call configuration object that includes a rulesets property.

For example, to specify one or more rulesets with graphs.sparql, construct an input call object
that includes at least the following properties.

db.graphs.sparql({'content-type': ..., query: ..., rulesets: ...})

To specify one or more rulesets with graphs.sparqlUpdate, construct an input call object that
includes at least the following properties:

db.graphs.sparqlUpdate({data: ..., rulesets: ...})

The value of the rulesets property can be a single string or an array of strings. Each string in
rulesets must be either the name of a built-in ruleset file or the URI of a custom ruleset installed
in the Schemas database.

For more details on built-in rulesets, see Rulesets in the Semantics Developer’s Guide.

/jsdoc/graphs.html#sparqlUpdate

MarkLogic Server Working With Semantic Data

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 212

For details on creating custom rulesets, see Creating a New Ruleset in the Semantics Developer’s
Guide. You can install custom rulesets in the Schemas database using standard document
operations, such as DatabaseClient.documents.write.

To learn more about semantic inferencing with MarkLogic, see Inference in the Semantics
Developer’s Guide.

6.7.2 Example: SPARQL Query With Inference Ruleset
The following example applies the built-in subPropertyOf.rules ruleset to a query. This ruleset is
automatically installed in the MARKLOGIC_INSTALL_DIR/Config directory when you install
MarkLogic.

db.graphs.sparql({
 contentType: 'application/sparql-results+json',
 query: 'SELECT ?s ?p WHERE {?s ?p Paris }',
 rulesets: 'subPropertyOf.rules'
})

6.7.3 Example: SPARQL Update With Inference Rulesets
The following example applies the built-in sameAs.rules ruleset and a custom ruleset installed in
the Schemas database with the URI /my/rules/custom.rules to a SPARQL Update request:

const update = [
 PREFIX exp: <http://example.org/marklogic/people>
 PREFIX pre: <http://example.org/marklogic/predicate>
 INSERT DATA {
 GRAPH <MyGraph>{
 exp:John_Smith pre:livesIn "London" .
 exp:Jane_Smith pre:livesIn "London" .
 exp:Jack_Smith pre:livesIn "Glasgow" .
 }}
];
db.graphs.sparqlUpdate({
 data: update.join('\n'),
 rulesets: ['sameAs.rules', '/my/rules/custom.rules']
})

6.7.4 Controlling the Default Database Ruleset
Every database has an implicit, default inferencing ruleset. You can customize the default ruleset
for a database, as described in Using the Admin UI to Specify a Default Ruleset for a Database in the
Semantics Developer’s Guide.

The database default ruleset is normally applied to all SPARQL query and update operations.
However, you can control whether or not to include the default ruleset for the database in a query
or update operation by using the defaultRulesets property of the input call object.

MarkLogic Server Working With Semantic Data

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 213

Set defaultRulesets to “exclude” to exclude the database default ruleset from inferencing. Set
defaultRulesets to “include” to include the database default ruleset. If you do not explicitly set
defaultRulesets, the database default ruleset is included in the operation.

The following example excludes the default ruleset from a query operation:

db.graphs.sparql({
 contentType: 'application/sparql-results+json',
 query: 'SELECT ?s ?p WHERE {?s ?p Paris }',
 rulesets: 'subPropertyOf.rules',
 defaultRuleSets: 'exclude'
})

MarkLogic Server Managing Transactions

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 214

7.0 Managing Transactions
220

This chapter covers the following topics related to transaction management using the Node.js
Client API.

• Transaction Overview

• Creating a Transaction

• Associating a Transaction with an Operation

• Committing a Transaction

• Rolling Back a Transaction

• Example: Using Promises With a Multi-Statement Transaction

• Checking Transaction Status

• Managing Transactions When Using a Load Balancer

7.1 Transaction Overview
This section gives a brief introduction to the MarkLogic Server transaction model as it applies to
the Node.js Client API. For a full discussion of the MarkLogic transaction model, see
Understanding Transactions in MarkLogic Server in the Application Developer’s Guide..

By default, each operation on the database is equivalent to a single statement transaction. That is,
the operation is evaluated as single transaction. For example, when you update one or more
documents in the database using DatabaseClient.documents.write, the server-side handler
effectively creates a new transaction, updates the document(s), commits the transaction, and then
sends back a response. The updated documents are visible in the database and available to other
operations once the write operation completes successfully. If an error occurs in during the update
of one of the documents, the entire operation fails.

The Node.js Client API also enables your application to take direct control of transaction
boundaries so that multiple operations can be evaluated in the same transaction context. This is
equivalent to the multi-statement transactions described in Multi-Statement Transaction Concept
Summary in the Application Developer’s Guide.

Using multi-statement transactions, you can execute several operations and commit them as a
single transaction, ensuring either all or none of the related updates appear in the database. The
document manipulation and search capabilities of the Node.js Client API support multi-statement
transactions through the DatabaseClient.transactions interface, plus the ability to pass a
transaction object to most operations.

To use multi-statement transactions:

1. Create a multi-statement transaction using DatabaseClient.transactions.open. This
operation returns a transaction object. See “Creating a Transaction” on page 215.

MarkLogic Server Managing Transactions

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 215

2. Perform one or more operations in the context of the transaction by including the
transaction object for the txid parameter. See “Associating a Transaction with an
Operation” on page 216.

3. Commit the transaction using DatabaseClient.transactions.commit, or rollback the
transaction using DatabaseClient.transactions.rollback. See “Committing a
Transaction” on page 217 and “Rolling Back a Transaction” on page 217.

If your application interacts with MarkLogic Server through a load balancer, you might need to
include a HostId cookie in your requests to preserve session affinity. For details, see “Managing
Transactions When Using a Load Balancer” on page 218.

When you explicitly create a transaction, you must explicitly commit it or roll it back. Failure to
do so leaves the transaction open until the request or transaction timeout expires. Open
transactions can hold locks and consume system resources, so it is important to close transactions
when they are complete.

If the request or transaction timeout expires before a transaction is committed, the transaction is
automatically rolled back and all updates are discarded. Configure the request timeout of the App
Server using the Admin UI. Configure the timeout of a single transaction by setting the timeLimit
request parameter during transaction creation.

7.2 Creating a Transaction
Use DatabaseClient.transactions.open to create a multi-statement transaction. For example:

const txObj = null;
db.transactions.open().result()
 .then(function(response) {
 txObj = response
 });

This call returns a transaction object that encapsulates state needed to preserve host affinity across
the transaction, even in the presence of a load balancer.

Multi-statement transactions must be explicitly committed or rolled back. Failure to commit or
rollback the transaction before the request timeout expires causes an automatic rollback. You can
assign a shorter time limit to a transaction by supplying a time limit (in seconds) to open: For
example, the following sets the time limit to tlimit and returns a stateful transaction object:

db.transactions.open({timeLimit: tlimit})

You should not depend on the time limit rolling back your transaction. The limit is only a failsafe.
Instead, you should explicitly rollback your transaction when appropriate.

MarkLogic Server Managing Transactions

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 216

You can also provide a symbolic name when you create a transaction. You must still use the
transaction object (or id) in all operations that accept a transaction parameter, but the name can be
used with DatabaseClient.transactions.read and will show up in the Admin Interface and other
transaction status displays.

For example, the following call provides both a time limit and a name, using an input call object
with appropriate property names:

db.transactions.open({
 timeLimit: 45,
 transactionName: 'mySpecialTxn'
});

7.3 Associating a Transaction with an Operation
Once you create a transaction using DatabaseClient.transactions.open, you can pass the
resulting transaction object (or id) to various operations to perform the operation in the context of
a specific transaction.

For example, to update a document in the context of a specific multi-statement transaction,
include a transaction id in the DatabaseClient.documents.write call:

const txnObj = null;
db.transactions.open(true).result()
 .then(function(response) {
 txnObj = response;
 return db.documents.write({
 uri: '/my/documents.json',
 content: {some: 'content'},
 contentType: 'application/json”,
 txid: txnObj
 }).result;
 ...

Updates associated with a multi-statement transaction are visible to subsequent operations using
the same transaction, but they are not visible outside the transaction until the transaction is
committed.

You can have multiple transactions open at the same time, and/or other users can be using the
same database concurrently. To prevent conflicts, whenever an update occurs in a transaction, the
document is locked until the transaction either commits or rolls back. Therefore, you should
commit or roll back your transactions as soon as possible to avoid resource contention.

Note: The database context in which you perform an operation must be the same as the
database context in which the transaction was created. Consistency is assured if
you’re only using a single DatabaseClient configuration.

MarkLogic Server Managing Transactions

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 217

You can intermix operations that are not part of a transaction with operations that are. Any
operation without a txid parameter or call object property is not part of a multi-statement
transaction. However, you usually group operations in the same transaction together so you can
commit or roll back the transaction in a timely fashion.

7.4 Committing a Transaction
Use DatabaseClient.transactions.commit to commit a multi-statement transaction. Supply the
transaction object (or id) from DatabaseClient.transactions.open in your commit call. For
example:

db.transactions.commit(transactionObj);

Once a transaction is committed, it cannot be rolled back, and the transaction object (or id) can no
longer be used. To perform another transaction, obtain a new transaction by calling open.

Note: The database context in which you commit or roll back a transaction must be the
same as the database context in which the transaction was created. Consistency is
assured if you’re only using a single DatabaseClient configuration.

7.5 Rolling Back a Transaction
In case of an error or exception, you can roll back an open transaction using
DatabaseClient.transactions.rollback.

db.transactions.rollback(transactionObj);

Calling rollback cancels the remainder of the transactions and reverts the database to its state
prior to the transaction start. It is better to explicitly roll back a transaction than wait for a timeout.

You must have the rest-writer or rest-admin role or equivalent privileges to roll back a
transaction.

Note: The database context in which you commit or roll back a transaction must be the
same as the database context in which the transaction was created. Consistency is
assured if you’re only using a single DatabaseClient configuration.

When working with multi-statement transactions, you should ensure your transaction is rolled
back expliciting in the event of an error by including a catch clause that calls rollback. For
example:

const txnObj = null;
db.transactions.open(true).result().
 then(function(response) {
 txnObj = response;
 return db.documents.read({uris: oldUri, txid: txnObj}).result();
 }).
 then(...).

MarkLogic Server Managing Transactions

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 218

 catch(function() {
 db.transactions.rollback(txnObj);
 });

7.6 Example: Using Promises With a Multi-Statement Transaction
The following function demonstrates how you can use the Promise pattern to synchronize
operations within a multi-statement transaction. To learn more about Promises, see “Promise
Result Handling Pattern” on page 20.

This function “moves” a document by reading the contents from the initial URI, inserting the
contents into the database with the new URI, and then removing the original document. The
function initially creates a transaction, then executes the read, write, and remove operations in the
context of that transaction. When these operations complete, the transaction is committed. If an
error occurs, the transaction is rolled back.

function transactionalMove(oldUri, newUri) {
 const txnObj = null;
 db.transactions.open(true).result().
 then(function(response) {
 txnObj = response;
 return db.documents.read({uris: oldUri, txid: txnObj}).result();
 }).
 then(function(documents) {
 documents[0].uri = newUri;
 return db.documents.write(
 {documents: documents, txid: txnObj}).result();
 }).
 then(function(response) {
 return db.documents.remove({uri: oldUri, txid: txnObj}).result();
 }).
 then(function(response) {
 return db.transactions.commit(txnObj).result();
 }).
 catch(function(error) {
 console.log('ERROR: ' + JSON.stringify(error));
 db.transactions.rollback(txnObj);
 });
}

7.7 Checking Transaction Status
Use DatabaseClient.transactions.read to query the status of a transaction. For example:

db.transactions.read(transactionObj)

7.8 Managing Transactions When Using a Load Balancer
This section applies only to client applications that use multi-statement transactions and interact
with a MarkLogic Server cluster through a load balancer.

MarkLogic Server Managing Transactions

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 219

When you use a load balancer, it is possible for requests from your application to MarkLogic
Server to be routed to different hosts, even within the same session. This has no effect on most
interactions with MarkLogic Server, but operations that are part of the same multi-statement
transaction need to be routed to the same host within your MarkLogic cluster. This consistent
routing through a load balancer is called session affinity.

Most load balancers provide a mechanism that supports session affinity. This usually takes the
form of a session cookie that originates on the load balancer. The client acquires the cookie from
the load balancer, and passes it on any requests that belong to the session. The exact steps required
to configure a load balancer to generate session cookies depends on the load balancer. Consult
your load balancer documentation for details.

To the load balancer, a session corresponds to a browser session, as defined in RFC 2109
(https://www.ietf.org/rfc/rfc2109.txt). However, in the context of a Node.js Client API application
using multi-statement transactions, a session corresponds to a single multi-statement transaction.

Note: To properly preserve session affinity, you must call
DatabaseClient.transactions.open in a way that returns a transaction object,
rather than a simple string transaction id. That is, you must ensure the withState
parameter (or call object property) is not explicitly set to false. The
transactions.open function returns an object by default.

The Node.js Client API leverages a session cookie to preserve host affinity across operations in a
multi-statement transaction in the following way. This process is transparent to your application;
the information is provided to illustrate the expected load balancer behavior.

1. When you create a transaction using DatabaseClient.transactions.open, the Node.js
Client API receives a transaction id from MarkLogic and, if the load balancer is properly
configured, a session cookie from the load balancer. This information is cached in the
returned Transaction object.

2. Each time you perform a Node.js API operation that includes a Transaction object, the
Node.js Client API attaches the transaction id and the session cookie to the request(s) it
sends to MarkLogic. The session cookie causes the load balancer to route the request to
the same host in your MarkLogic cluster that created the transaction.

3. When MarkLogic receives a request, it discards the session cookie (if present), but uses
the transaction id to ensure the operation is part of the requested transaction. When
MarkLogic responds, the load balancer again adds a session cookie, which the Node.js
Client API caches on the Transaction object.

4. When you commit or roll back a transaction, any cookies returned by the load balancer are
discarded since the transaction is no longer valid. This effectively ends the session from
the load balancer’s perspective because the Node.js Client API will no longer pass the
session cookie around.

https://www.ietf.org/rfc/rfc2109.txt

MarkLogic Server Managing Transactions

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 220

Any Node.js Client API operation that does not include a Transaction object will not include a
session cookie (or transaction id) in the request to MarkLogic, so the load balancer is free to route
the request to any host in your MarkLogic cluster.

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 221

8.0 Extensions, Transformations, and Server-Side Code
Execution

260

This chapter discusses the following topics related to creating and using extensions and
transformations, as well as executing arbitrary blocks of code and library modules on MarkLogic
Server using the Node.js Client API:

• Ways to Extend and Customize the API

• Working with Resource Service Extensions

• Working with Content Transformations

• Error Reporting in Extensions and Transformations

• Evaluating Ad-Hoc Code and Server-Side Modules

• Managing Assets in the Modules Database

8.1 Ways to Extend and Customize the API
You can extend and customize the behavior of the Node.js Client API through specific extension
points or by initiating execution of arbitrary server-side code from your application.

• Content transformations: A user-defined transform function can be applied when
documents are written to the database or read from the database; for details, see “Working
with Content Transformations” on page 231. You can also define custom replacement
content generators for the patch feature; for details, see “Constructing Replacement Data
on MarkLogic Server” on page 103.

• Search result transformations: A user-defined transform function can be applied to the
search result summary or matching documents when querying documents and values. For
details, see “Working with Content Transformations” on page 231.

• Resource service extensions: Define your own REST endpoints, accessible from Node.js
using the DatabaseClient.resources interface. Resource service extensions are covered in
detail in this chapter. To get started, see “Working with Content Transformations” on
page 231.

• Ad-hoc query execution: Send an arbitrary block of XQuery or JavaScript code to
MarkLogic Server for evaluation. For details, see “Evaluating Ad-Hoc Code and
Server-Side Modules” on page 248.

• Server-side module evaluation: Evaluate user-defined XQuery or JavaScript modules after
installing them on MarkLogic Server. For details, see “Evaluating Ad-Hoc Code and
Server-Side Modules” on page 248

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 222

In addition to these features, the API includes other hooks for server-side user-defined code, such
as custom constraint parsers, facet and snippet generators, and document patch content
generators. All such code, along with resource service extensions and transforms, must be
installed in the modules database associated with your REST API instance before you can use
them. The Node.js API includes interfaces for installing these special-purpose assets, as well as
any dependent libraries and other assets, through the DatabaseClient.config interfaces. For
details, see “Overview of Asset Management” on page 256.

8.2 Working with Resource Service Extensions
This section covers the concept of a resource service extension and how to create, install, use, and
mange them. The following topics are covered:

• What is a Resource Service Extension?

• Creating a Resource Service Extension

• Installing a Resource Service Extension

• Using a Resource Service Extension

• Example: Installing and Using a Resource Service Extension

• Retrieving the Implementation of a Resource Service Extension

• Discovering Resource Service Extensions

• Deleting Resource Service Extensions

8.2.1 What is a Resource Service Extension?
Resource service extensions extend the Node.js Client API by creating a RESTful interface to
XQuery and server-side JavaScript modules. The server-side extension implements functions to
handle GET, PUT, POST, and DELETE HTTP requests received on the extension by the REST
Client API. The Node.js Client API enables you to invoke these methods via the
DatabaseClient.resources interface. You can wrap your own Node.js interface around the
DatabaseClient.resources operations to expose the service in a domain-specific way.

For example, you can create a dictionary program resource extension that looks up words, checks
spelling, and makes suggestions for unknown words on MarkLogic Server. The individual
operations an application programmer may call, for example, lookUpWords(), spellCheck(), and
so on, are the domain-specific services that expose the resource extension.

The following are the basic steps to create and use a resource extension using the Node.js Client
API:

1. Create an XQuery or JavaScript module that implements the services for the resource.

2. Install the resource service extension implementation in the modules database associated
with the REST API instance using DatabaseClient.config.resources.write.

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 223

3. Access the resource extension methods using DatabaseClient.resources operations such
as DatabaseClient.resources.get.

The DatabaseClient.config.resources interface also supports dynamic discovery of installed
extensions. When you install an extension, you can specify metadata, including method parameter
name and type information to make it easier to use dynamically discovered extensions. The
metadata is purely informational.

If your extension depends on other modules or assets, you can install them in the modules
database using DatabaseClient.extlibs interface. For details, see “Managing Assets in the
Modules Database” on page 255.

For a complete example, see “Example: Installing and Using a Resource Service Extension” on
page 226.

8.2.2 Creating a Resource Service Extension
You can implement a resource service Extension using server-side JavaScript or XQuery. The
interface is shared across multiple MarkLogic client APIs, so you can use the same extensions
with the Java Client API, Node.js Client API, and the REST Client API.

You can install an extension with one client API and use it with all them. For example, you can
use a resource service extension installed using the REST Client API with an application
implemented using the Node.js Client API and the Java Client API.

For the interface definition, authoring guidelines, and example implementations, see Extending the
REST API in the REST Application Developer’s Guide.

8.2.3 Installing a Resource Service Extension
Before you can use a resource extension, you must install the implementation on MarkLogic
Server. You must have the rest-admin role or equivalent privileges to install a resource service
extension.

Use the following procedure to install your extension implementation:

1. If your resource extension depends on additional library modules, install these dependent
libraries on MarkLogic Server. For details, see “Managing Assets in the Modules
Database” on page 255.

2. Optionally, define metadata for your extension that describes attributes such as provider,
description, and version.

3. Call DatabaseClient.config.resources.write to install your extension into the modules
database of the REST API instance associated with your DatabaseClient object. Your call
must provide a name for the extension, the implementation language (XQuery or
JavaScript), and the implementation source code. You may include optional metadata.

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 224

Note: For an XQuery extension, the extension must be installed under the same name as
the name in the extension module namespace declaration. For example, an XQuery
extension with the following module namespace must be installed as “example”.

xquery version "1.0-ml";
module namespace yourNSPrefix =
 "http://marklogic.com/rest-api/resource/example";
...

For example, the following code installs a JavaScript extension under the name “js-example”,
without metadata. The extension implementation is streamed from the file js-example.sjs.

const fs = require('fs');
const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.config.resources.write(
 'js-example', 'javascript',
 fs.createReadStream('./js-example.sjs')
).result(function(response) {
 console.log('Installed extension: ' + response.name);
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

The following code installs the same extension with a full set of metadata. You need not provide
all metadata properties. You must include name, format, and source.

const fs = require('fs');
const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.config.resources.write({
 name: 'js-example',
 format: 'javascript',
 source: fs.createReadStream('./js-example.sjs'),
 // everything below this is optional metadata
 title: 'Example JavaScript Extension',
 description: 'An example of implementing resource extensions in SJS',
 provider: 'MarkLogic',
 version: 1.0
}).result(function(response) {
 console.log('Installed extension: ' + response.name);
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

For a complete example, see “Example: Installing and Using a Resource Service Extension” on
page 226.

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 225

8.2.4 Using a Resource Service Extension
To invoke the HTTP methods of a resource service extension, use the DatabaseClient.resources
interface. The interface has a function corresponding to each HTTP verb: get, put, post, and
remove (DELETE). For example, you can invoke the get method of your extension with no
parameters as follows:

db.resources.get('js-example')

You can also pass in an object that encapsulates parameters expected by the implementation, and
a transaction id.

The result of the invocation depends on the method. For example, the GET extension interface
enables you return one or more documents, so the result of calling resources.get is an object
whose stream function can be used to incrementally process the documents in the response.

The following example invokes the get function of the resource service extension from Example:
JavaScript Resource Service Extension in the REST Application Developer’s Guide. Three
parameters are passed to the implementation, named “a”, “b”, and “c”. The GET implementation
of this extension simply echos back the supplied parameters as a JSON document, one document
per parameter.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.resources.get({
 name: 'js-example',
 params: { a: 1, b: 2, c: 'three'}
}).result(function(response) {
 console.log(response);
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

If the call is successful, the output is similar to the following. The value of the content property in
each array item is a document returned by the extensions GET method implementation.

[{ contentType: 'application/json',
 format: 'json',
 contentLength: '29',
 content: { name: 'c', value: 'three' } },
 { contentType: 'application/json',
 format: 'json',
 contentLength: '25',
 content: { name: 'b', value: '2' } },
 { contentType: 'application/json',
 format: 'json',
 contentLength: '25',
 content: { name: 'a', value: '1' } }]

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 226

For details, see “Example: Installing and Using a Resource Service Extension” on page 226.

8.2.5 Example: Installing and Using a Resource Service Extension
This example demonstrates how to install and exercise the GET and PUT methods of the
JavaScript extension from Example: JavaScript Resource Service Extension in the REST Application
Developer’s Guide. The extension is usable with any of the MarkLogic client APIs (Node.js, Java,
REST).

Use the following procedure to install the extension and exercise the GET method. The GET
method of this extension accepts one or more caller-defined parameters and returns a JSON
document of the following form for each parameter passed in: { "name": param-name, "value":
param-value }.

1. Copy the extension implementation to a file named js-example.sjs. For the
implementation, see JavaScript Extension Implementation in the REST Application
Developer’s Guide.

2. Install the extension under the name “js-example” by running the following script. You
must have the rest-admin role or equivalent privileges to install an extension. For details,
see “Installing a Resource Service Extension” on page 223.

const fs = require('fs');
const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.config.resources.write({
 name: 'js-example',
 format: 'javascript',
 source: fs.createReadStream('./js-example.sjs'),
 // everything below this is optional metadata
 title: 'Example JavaScript Extension',
 description: 'An example of implementing resource extensions in SJS',
 provider: 'MarkLogic',
 version: 1.0
}).result(function(response) {
 console.log('Installed extension: ' + response.name);
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

3. Optionally, retrieve metadata about the extension using the following script. For details,
see “Discovering Resource Service Extensions” on page 229.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.config.resources.read('js-example').result(

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 227

 function(response) {
 console.log(response);
 },
 function(error) {
 console.log(JSON.stringify(error, null, 2));
 });

4. Exercise the GET method of the extension by running the following script. For details, see
“Using a Resource Service Extension” on page 225.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.resources.get({
 name: 'js-example',
 params: { a: 1, b: 2, c: 'three'}
}).result(function(response) {
 console.log(response);
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

The GET method generates a JSON document of the form { name: pName, value:
pValue} for each parameter passed in. Thus, the invocation above should generate three
documents. The expected output from invoking the GET method is similar to the
following:

[{ contentType: 'application/json',
 format: 'json',
 contentLength: '29',
 content: { name: 'c', value: 'three' } },
 { contentType: 'application/json',
 format: 'json',
 contentLength: '25',
 content: { name: 'b', value: '2' } },
 { contentType: 'application/json',
 format: 'json',
 contentLength: '25',
 content: { name: 'a', value: '1' } }]

5. Exercise the PUT method of the extension by running the following script.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.resources.put({
 name: 'js-example',
 params: {
 basename: ['one', 'two']},
 documents: [

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 228

 { contentType: 'application/json',
 content: {key1:'value1'} },
 { contentType: 'application/json',
 content: {key2:'value2'} },
]
}).result(function(response) {
 console.log(JSON.stringify(response, null, 2));
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

The PUT method of this extensions accepts JSON and XML documents as input. For each
input JSON document, a written property is added to the document before it is inserted
into the database. XML documents are inserted into the database unchanged. The
document URIs are derived from a “basename” parameter supplied by the caller. The
following is the expected output from invoking PUT method.

{ "written": [
 "/extensions/one.json",
 "/extensions/two.json"
] }

If you examine the two documents created by the PUT exercise, you can see that a written
property has been added. For example, /extensions/one.json has contents similar to the following
(the timestamp value will vary):

{
 "key1": "value1",
 "written": "08:35:54-08:00"
}

To report errors from your implementation to the client, you must use the convention described in
“Error Reporting in Extensions and Transformations” on page 245. For example, if you do not
pass a “basename” parameter value for each input document, the extension reports an error in the
following way:

if (docs.count > basenames.length) {
 returnErrToClient(400, 'Bad Request',
 'Insufficient number of uri basenames. Expected ' +
 docs.count + ' got ' + basenames.length + '.');
 // unreachable - control does not return from fn.error
}

The error reaches the client application in the following form:

{
 "message": "js-example: response with invalid 400 status",
 "statusCode": 400,
 "body": {
 "errorResponse": {
 "statusCode": 400,

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 229

 "status": "Bad Request",
 "messageCode": "RESTAPI-SRVEXERR",
 "message": "Insufficient number of uri basenames. Expected 2 got 1."
 }
 }
}

8.2.6 Retrieving the Implementation of a Resource Service Extension
Use DatabaseClient.config.resources.read to retrieve the implementation of a resource service
extension. You must have the rest-admin role or equivalent privileges to use this interface.

For example, the following call retrieves the implementation of the resource service extension
installed as “js-example”:

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.config.resources.read('js-example').result(
 function(response) {
 console.log(response);
 },
 function(error) {
 console.log(JSON.stringify(error, null, 2));
 });

8.2.7 Discovering Resource Service Extensions
You can use DatabaseClient.config.resources.list to retrieve the name, interface, and other
metadata about installed resource extensions. You must have the rest-reader role or equivalent
privileges to use this interface.

The amount of information available about a given extension depends on the amount of metadata
provided during installation of the extension. The name and methods are always available. Details
such as provider, version, and method parameter information are optional.

By default, this request rebuilds the extension metadata each time it is called to ensure the
metadata is up to date.

The following example retrieves data about the installed extensions:

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.config.resources.list().result(
function(response) {
 console.log('Installed extensions: ');
 console.log(JSON.stringify(response, null, 2));
}, function(error) {

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 230

 console.log(JSON.stringify(error, null, 2));
});

If you installed a single extension named “js-example” with metadata, as shown in “Installing a
Resource Service Extension” on page 223, then the output of the above script is similar to the
following.

{ "resources": {
 "resource": [{
 "name": "js-example",
 "source-format": "javascript",
 "provider-name": "MarkLogic",
 "title": "Example JavaScript Extension",
 "version": "1",
 "description": "An example of implementing resource extensions in SJS",
 "methods": {
 "method": [
 { "method-name": "get" },
 { "method-name": "post" },
 { "method-name": "put" },
 { "method-name": "delete" }
]
 },
 "resource-source": "/v1/resources/js-example"
 }
] }
}

8.2.8 Deleting Resource Service Extensions
Use DatabaseClient.config.resources.remove to remove a resource service extension. You must
supply the same name that you used in installing the extension. To remove an extension, you must
have the rest-admin role or the equivalent privileges.

Deleting an extension is an idempotent operations. That is, you will receive the same response
whether the named extension exists or not.

The following code snippet removes the resource service extension named “js-example”.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.config.resources.remove('js-example').result(
 function(response) {
 console.log('Removed extension: ', response.name);
 },
 function(error) {
 console.log(JSON.stringify(error, null, 2));
 });

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 231

8.3 Working with Content Transformations
This section explains the concept of content transformations and describes how to create, install,
apply, and manage transforms. The following topics are covered:

• What is a Content Transformation?

• Creating a Transformation

• Installing a Transformation

• Using a Transformation

• Example: Read, Write, and Query Transforms

• Discovering Installed Transforms

• Deleting a Transformation

8.3.1 What is a Content Transformation?
The Node.js Client API enables you to create custom content transformations and apply them
during operations such as document ingestion and retrieval. For example, you can create a write
transform that adds or modifies a JSON property or XML element for each document as it is
inserted into the database. The API has hooks for applying the following kinds of transform:

• Write transform: Applied before inserting documents into the database.

• Read transform: Applied when reading documents from the database. You can configure
both default and per-request read transforms.

• Search result transform: Applied to the search result summary when you make queries that
include a summary instead of just returning matching documents and metadata.

You implement a transform as a server-side JavaScript function, XQuery function, or XSLT
stylesheet that accepts a document as input and produces documents as output. Your transform
must conform to the interface and guidelines described Writing Transformations in the REST
Application Developer’s Guide. Your transforms can accept transform-specific parameters.

Transforms must be installed in the modules database associated with the REST API instance
before you can use them. Use the DatabaseClient.config.transforms interface to install and
manage your transforms using Node.js. For details, see “Installing a Transformation” on
page 232.

You apply a transform by passing its name to supporting operations, such as
DatabaseClient.documents.write, DatabaseClient.documents.read and
DatabaseClient.documents.query. For details, see “Using a Transformation” on page 233.

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 232

8.3.2 Creating a Transformation
You can implement a transform function using server-side JavaScript or XQuery. The interface is
shared across multiple MarkLogic client APIs, so you can use the same transforms with the Java
Client API, Node.js Client API, and the REST Client API.

Your transform module must include an export named transform. For example:

function insertTimestamp(context, params, content)
{...}
exports.transform = insertTimestamp;

You can install a transform with one client API and use it with all of them. For example, you can
use transform installed using the Node.js Client API with an application implemented using the
Node.js Client API or the Java Client API.

For the interface definition, authoring guidelines, and example implementations, see Writing
Transformations in the REST Application Developer’s Guide. To return errors from your transform
to the client, use the conventions described in “Error Reporting in Extensions and
Transformations” on page 245.

For a complete Node.js and JavaScript example, see “Example: Read, Write, and Query
Transforms” on page 235.

8.3.3 Installing a Transformation
Use DatabaseClient.config.transforms.write to install a transform in the modules database
associated with your REST API instance. Using this interface ensures your transform is installed
according to the conventions expected by the API, enabling you to subsequently apply and
manage the transform with the Node.js Client API.

You must have the rest-admin role or equivalent privileges to install a transform.

You can include optional metadata about your transform during installation. The metadata is
purely informational. You can retrieve it using DatabaseClient.config.transforms.list.

The following script installs a transform under the name “js-transform”. The transform
implementation is read from a file name “transform.sjs”. Only name, format, and source are
required. Everything else is optional metadata.

const fs = require('fs');
const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.config.transforms.write({
 name: 'js-transform',
 format: 'javascript',
 source: fs.createReadStream('./transform.sjs'),

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 233

 // everything below this is optional metadata
 title: 'Example JavaScript Transform',
 description: 'An example of an SJS read/write transform',
 provider: 'MarkLogic',
 version: 1.0
}).result(function(response) {
 console.log('Installed transform: ' + response.name);
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

For a complete example, see “Example: Read, Write, and Query Transforms” on page 235.

You can retrieve a list of installed transforms and their metadata using
DatabaseClient.transforms.list. For details, see “Discovering Installed Transforms” on
page 244.

For a complete example, see “Example: Read, Write, and Query Transforms” on page 235.

8.3.4 Using a Transformation
You can specify a transform on document read, write, and query operations such as the following:

• DatabaseClient.documents.read

• DatabaseClient.documents.write and DatabaseClient.documents.createWriteStream

• DatabaseClient.documents.query, using queryBuilder.slice

• DatabaseClient.values.read, using valuesBuilder.slice

In all cases, you supply the name of a transform previously installed using
DatabaseClient.config.transforms.write or the equivalent operation through one of the other
client APIs.

For a complete example, see “Example: Read, Write, and Query Transforms” on page 235.

You can only specify one transform per operation. The transform applies to all inputs (write) or
outputs (read or query).

To specify a transform to documents.read or documents.write, add a transform property to your
call object with one of the following forms. The first two forms are equivalent. Use the third form
to pass parameters expected by the transform.

transform: transformName

transform: [transformName]

transform: [transformName, {paramName: paramValue, ...}]

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 234

For read and write, include the transform property as an immediate child of the input call object.
For example, if you pass a single document descriptor to documents.write, you can include the
transform in the descriptor:

db.documents.write({
 uri: '/doc/example.json',
 contentType: 'application/json',
 content: { some: 'data' },
 transform: ['js-write-transform']
})

By contrast, if you use the multi-document form of input to documents.write, include the
transform descriptor in the top level object, not inside each document descriptor. For example:

db.documents.write({
 documents: [
 { uri: '/transforms/example1.json',
 contentType: 'application/json',
 content: { some: 'data' },
 },
 { uri: '/transforms/example2.json',
 contentType: 'application/json',
 content: { some: 'more data' },
 }
],
 transform: ['js-write-transform']
})

To apply a transform to the results from DatabaseClient.documents.query or
DatabaseClient.values.read, use a transform builder to create a descriptor, and then attach the
descriptor to the query through the slice clause. For example, the following call applies a
transform to a content query:

db.documents.query(
 qb.where(
 qb.byExample({writeTimestamp: {'$exists': {}}})
).slice(qb.transform('js-query-transform', {a: 1, b: 'two'}))
)

The following call applies the same transform (without extra parameters) to a values query:

db.values.read(
 vb.fromIndexes('reputation')
 .slice(3,5, vb.transform('js-query-transform'))
)

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 235

8.3.5 Example: Read, Write, and Query Transforms
This example demonstrates installing and using transforms for read, write, and query operations.
The example is designed for you to exercise all three types of transform in sequence, as follows:

1. Install the Transforms

2. Use the Write Transform

3. Use the Read Transform

4. Use the Query Transform

The source code for each transform is provided in the following sections:

• Read Transform Source Code

• Write Transform Source Code

• Query Transform Source Code

8.3.5.1 Install the Transforms
Follow this procedure to install the example read, write, and query transforms. For details, see
“Installing a Transformation” on page 232.

1. Create a file named read-transform.sjs from the code in “Read Transform Source Code”
on page 241.

2. Create a file named write-transform.sjs from the code in “Write Transform Source
Code” on page 242.

3. Create a file named query-transform.sjs from the code in “Query Transform Source
Code” on page 243.

4. Copy the following code to a file named install-transform.js. This script installs all
three transforms.

const fs = require('fs');
const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

// Descriptors for 3 transforms: Read, write, and query.
const transforms = [
 {
 name: 'js-read-transform',
 format: 'javascript',
 source: fs.createReadStream('./read-transform.sjs'),
 // everything below this is optional metadata

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 236

 title: 'Example JavaScript Read Transform',
 description: 'An example of an SJS read transform',
 provider: 'MarkLogic',
 version: 1.0
 },
 { name: 'js-write-transform',
 format: 'javascript',
 source: fs.createReadStream('./write-transform.sjs')
 },
 {
 name: 'js-query-transform',
 format: 'javascript',
 source: fs.createReadStream('./query-transform.sjs')
 }
];

// Install the transforms
transforms.forEach(function installTransform(transform) {
 db.config.transforms.write(transform).result(
 function(response) {
 console.log('Installed transform: ' + response.name);
 },
 function(error) {
 console.log(JSON.stringify(error, null, 2));
 }
);
});

If installation is successful, you should see results similar to the following:

$ node install-transform.js
Installed transform: js-write-transform
Installed transform: js-query-transform
Installed transform: js-read-transform

8.3.5.2 Use the Write Transform
The following script writes documents to the database using a write transform. This script
demonstrates the usage guidelines from “Using a Transformation” on page 233.

You should already have installed the transform using the instructions in “Install the Transforms”
on page 235.

The example transform adds a writeTimestamp to the input documents; for details see “Write
Transform Source Code” on page 242.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);

db.documents.write({

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 237

 documents: [
 { uri: '/transforms/example1.json',
 contentType: 'application/json',
 content: { some: 'data' },
 },
 { uri: '/transforms/example2.json',
 contentType: 'application/json',
 content: { some: 'more data' },
 }
],
 transform: ['js-write-transform']
}).result(function(response) {
 response.documents.forEach(function(document) {
 console.log(document.uri);
 });
}, function(error) {
 console.log(JSON.stringify(error));
});

If you run the above script, you should see output similar to the following:

$ node write.js
/transforms/example1.json
/transforms/example2.json

If you use Query Console to inspect the documents in the database, you can see that a
writeTimestamp property has been added to the content of each one. For example,
/transform/example1.json should have contents similar to the following:

{
 "some": "data",
 "writeTimestamp": "2015-01-02T10:33:39.330483-08:00"
}

A transform applies to every document in a write operation. You cannot specify different
transforms for each document. As a convenience, if you’re only inserting a single document, you
can include the transform in the single document descriptor rather than having to build up a
documents array. For example:

db.documents.write({
 uri: '/transforms/example3.json',
 contentType: 'application/json',
 content: { some: 'even more data' },
 transform: ['js-write-transform']
})...

You can pass parameters to a transform. For an example, see “Use the Read Transform” on
page 238.

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 238

8.3.5.3 Use the Read Transform
This section demonstrates applying a read transform, following the usage guidelines from “Using
a Transformation” on page 233.

Before running this script, you should have installed the example transforms and run the write
transform example. For details, see “Install the Transforms” on page 235 and “Use the Write
Transform” on page 236.

The script reads back the documents inserted in “Use the Write Transform” on page 236. A read
transform is applied to each document. The transform adds a readTimestamp property to the
returned documents. The transform also supports adding properties to the output by accepting
property name-value pairs as input parameters. The example adds two extra properties to the
output documents, extra1 and extra2 by specifying the following parameters in the transform
descriptor:

transform: ['js-read-transform', {extra1: 1, extra2: 'two'}]

Copy the following script to a file and run it with the node command to exercise the example read
transform. To review the transform implementation, see “Read Transform Source Code” on
page 241.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);

db.documents.read({
 uris: ['/transforms/example1.json', '/transforms/example2.json'],
 transform: ['js-read-transform', {extra1: 1, extra2: 'two'}]
}).stream().on('data', function(document) {
 console.log("URI: " + document.uri);
 console.log(JSON.stringify(document.content, null, 2) + '\n');
}).on('end', function() {
 console.log('Finished');
})

If you run the script, you should see output similar to the following.

URI: /transforms/example1.json
{
 "some": "data",
 "writeTimestamp": "2015-01-02T10:33:39.330483-08:00",
 "readTimestamp": "2015-01-02T10:44:18.538343-08:00",
 "extra2": "two",
 "extra1": "1"
}

URI: /transforms/example2.json
{
 "some": "more data",

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 239

 "writeTimestamp": "2015-01-02T10:33:39.355913-08:00",
 "readTimestamp": "2015-01-02T10:44:18.5632-08:00",
 "extra2": "two",
 "extra1": "1"
}

The readTimestamp, extra1, and extra2 properties are added by the read transform. These
properties are only part of the read output. The documents in the database are unchanaged. The
writeTimestamp property was added to the document by the write transform during ingestion; for
details see “Use the Write Transform” on page 236.

8.3.5.4 Use the Query Transform
The following script applies a transform to a query operation following the usage guidelines from
“Using a Transformation” on page 233.

Before running this script, you should have installed the example transforms and run the write
transform example. For details, see “Install the Transforms” on page 235 and “Use the Write
Transform” on page 236.

The script below uses a QBE to read back all the documents with a writeTimestamp JSON
property. This property was previously added to some documents by the write transform in “Use
the Write Transform” on page 236.

The script makes two queries, one that returns matching documents and one that just returns a
search result summary. When retrieving documents, the transform behaves exactly like the read
transform in “Read Transform Source Code” on page 241. That is, it adds a readTimestamp
property to each document and, optionally, properties corresponding to each input parameter.
When retrieving a search result summary as JSON, a queryTimestamp property is added to the
summary.

Copy the following script to a file and run it using the node command in order to demonstrate
applying a transform at query time. To review the transform implementation, see “Query
Transform Source Code” on page 243.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);
const qb = marklogic.queryBuilder;

// Retrieve just search result summary by setting slice to 0
db.documents.query(
 qb.where(
 qb.byExample({writeTimestamp: {'$exists': {}}})
).slice(qb.transform('js-query-transform'))
 .withOptions({categories: 'none'})
).result(function(response) {
 console.log(JSON.stringify(response, null, 2));

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 240

}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

// Retrieve matching documents instead of summary
db.documents.query(
 qb.where(
 qb.byExample({writeTimestamp: {'$exists': {}}})
).slice(qb.transform('js-query-transform', {a: 1, b: 'two'}))
).stream().on('data', function(document) {
 console.log("URI: " + document.uri);
 console.log(JSON.stringify(document.content, null, 2) + '\n');
}).on('end', function() {
 console.log('Finished');
});

If you run the script, you should see output similar to the following. The bolded properties were
added by the transform.

$ node query.js
URI: /transforms/example1.json
{
 "some": "data",
 "writeTimestamp": "2015-01-02T10:33:39.330483-08:00",
 "readTimestamp": "2015-01-02T11:09:58.410351-08:00",
 "b": "two",
 "a": "1"
}

URI: /transforms/example2.json
{
 "some": "more data",
 "writeTimestamp": "2015-01-02T10:33:39.355913-08:00",
 "readTimestamp": "2015-01-02T11:09:58.431676-08:00",
 "b": "two",
 "a": "1"
}

Finished
[
 {
 "snippet-format": "snippet",
 "total": 2,
 "start": 1,
 "page-length": 0,
 "results": [],
 "metrics": {
 "query-resolution-time": "PT0.001552S",
 "facet-resolution-time": "PT0.000141S",
 "snippet-resolution-time": "PT0S",
 "total-time": "PT0.165583S"
 },
 "queryTimestamp": "2015-01-02T11:10:00.208708-08:00"

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 241

 }
]

Note that the transform specification is part of the slice result refinement clause and that a
builder (qb.transform) is used to construct the transform specification. For example:

slice(qb.transform('js-query-transform', {a: 1, b: 'two'}))

The syntax for a transform specification is not the same in a query context as for documents.read
and documents.write, so it is best to use the builder.

On query operations, your transform is invoked for all output, whether it is a matched document
or a result summary. When you query using the Node.js Client API, the search result summary is
always JSON, so you can only distinguish it from matched documents by probing the properties.
For example, the query transform does the following to identify the search summary:

if (result.hasOwnProperty('snippet-format')) {
 // search result summary
 result.queryTimestamp = fn.currentDateTime();
}

If your transform is invoked on behalf of another client API, such as the Java Client API, the
results summary can be in XML, and the query can retrieve both documents and a search
summary.

8.3.5.5 Read Transform Source Code
The following server-side JavaScript module is meant to be used as a transform on read
operations such as DatabaseClient.documents.read. This transform adds properties to the output
document when you read JSON documents; see the comments in the code for details.

Copy the following code to a file named read-transform.sjs. You can use a different filename,
but the installation script elsewhere in this section assumes this name.

// Example Read Transform
//
// If the input is a JSON document:
// - Add a readTimestamp to the result document.
// - For each parameter passed in by the client, add a
// property of the form: propName: propValue.
// Other document types are unchanged.
function readTimestamp(context, params, content)
{
 //if (context.inputType.search('json') >= 0) {
 if (context.inputType.search('json') >= 0) {
 const result = content.toObject();

 result.readTimestamp = fn.currentDateTime();

 // Add a property for each caller-supplied request param

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 242

 for (const pname in params) {
 if (params.hasOwnProperty(pname)) {
 result[pname] = params[pname];
 }
 }
 return result;
 } else {
 // Pass thru for non-JSON documents
 return content;
 }
};

exports.transform = readTimestamp;

8.3.5.6 Write Transform Source Code
The following server-side JavaScript module is meant to be used as a transform on write
operations such as DatabaseClient.documents.write. This transform adds properties to any JSON
documents you ingest; see the comments in the code for details.

Copy the following code to a file named write-transform.sjs. You can use a different filename,
but the installation script elsewhere in this section assumes this name.

// Example Write Transform
//
// If the input is a JSON document:
// - Add a writeTimestamp to the document.
// - For each parameter passed in by the client, add a property
// of the form "propName: propValue" to the document.
// Non-JSON documents are returned unmodified.
function writeTimestamp(context, params, content)
{
 if (context.inputType.search('json') >= 0) {
 const result = content.toObject();
 result.writeTimestamp = fn.currentDateTime();

 // Add a property for each caller-supplied request param
 for (const pname in params) {
 if (params.hasOwnProperty(pname)) {
 result[pname] = params[pname];
 }
 }
 return result;
 } else {
 // Pass thru for non-JSON documents
 return content;
 }
};

exports.transform = writeTimestamp;

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 243

8.3.5.7 Query Transform Source Code
The following server-side JavaScript module is meant to be used as a transform on query
operations such as DatabaseClient.documents.query. You can also use the read transform in
“Read Transform Source Code” on page 241 for this purpose. However, in a query context, your
transform is applied to both the matching documents and the generated search summary. For
demonstration purposes, this transform distinguishes between the two cases.

This transform adds properties to JSON output, but it distinguishes between the search result
summary and matched documents. The transform assumes that JSON input that contains a
snippet-format property is a search summary, and any other JSON input is a document matching
the query.

Copy the following code to a file named query-transform.sjs. You can use a different filename,
but the installation script elsewhere in this section assumes this name.

// When applied to a query operation, a transform is invoked on
// both the search result summary and the matching documents (when
// used as a multi-document read).
//
// The transform does the following:
// - For a JSON search result summary (determined by the presence
// of a search-snippet property), add a queryTimestamp property.
// - For a JSON document, add a readTimestamp property.
// - For all other input, pass it through unchanged.
function queryTimestamp(context, params, content)
{
 if (context.inputType.search('json') >= 0) {
 const result = content.toObject();
 if (result.hasOwnProperty('snippet-format')) {
 // search result summary
 result.queryTimestamp = fn.currentDateTime();
 } else {
 // JSON document. Add readTimestamp property plus a property
 // for each param passed in by the client.
 result.readTimestamp = fn.currentDateTime();
 for (const pname in params) {
 if (params.hasOwnProperty(pname)) {
 result[pname] = params[pname];
 }
 }
 }
 return result;
 } else {
 // Pass thru for non-JSON documents or XML search summary
 return content;
 }
};

exports.transform = queryTimestamp;

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 244

8.3.6 Discovering Installed Transforms
You can retrieve the names and metadata for installed transforms using
DatabaseClient.transforms.list. You must have the read-reader role or equivalent privileges to
retrieve the list of installed transforms.

The following example retrieves the list of installed transforms and displays the response on the
console.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.config.transforms.list().result(
function(response) {
 console.log('Installed transforms: ');
 console.log(JSON.stringify(response, null, 2));
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

If you have installed the transform from “Installing a Transformation” on page 232, then running
the above script produces output similar to the following:

{ "transforms": {
 "transform": [{
 "name": "js-transform",
 "source-format": "javascript",
 "title": "Example JavaScript Transform",
 "version": "1",
 "provider-name": "MarkLogic",
 "description": "An example of an SJS read/write transform",
 "transform-parameters": "",
 "transform-source": "/v1/config/transforms/js-transform"
 }]
} }

For additional examples, see test-basic/documents-transform.js in the Node.js Client API
GitHub project.

8.3.7 Deleting a Transformation
Use DatabaseClient.transforms.remove to uninstall a transform on MarkLogic Server. The
uninstall operation is idempotent. That is, the results are the same whether or not the named
transform is installed.

You must have the rest-admin role or equivalent privileges to uninstall a transform.

The following script uninstalls a transform named “js-transform”.

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 245

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.config.transforms.remove('js-transform').result(
 function(response) {
 console.log('Removed transform: ', response.name);
 },
 function(error) {
 console.log(JSON.stringify(error, null, 2));
 });

8.4 Error Reporting in Extensions and Transformations
Extensions and transforms use the same mechanism to report errors to the calling application:

Use fn.error (JavaScript) or fn:error (XQuery) to raise RESTAPI-SRVEXERR and provide
additional information in the data parameter. You can control the response status code, status
message, and provide an additional error reporting response payload.

If you raise an error in any other way, it is returned to the client application as a 500 Internal
Server Error.

See the following topics for examples:

• Example: Reporting Errors in JavaScript

• Example: Reporting Errors in XQuery

8.4.1 Example: Reporting Errors in JavaScript
To return an error to the client application from a JavaScript extension or transform, use fn.error
to report a RESTAPI-SRVEXERR error and provide additional information in the data parameter of
fn.error. You can control the response status code and status message, and provide an additional
error reporting response payload. For example, you can return an error to the client in the
following way:

fn.error(null, 'RESTAPI-SRVEXERR',
 Sequence.from([400, 'Bad Request',
 'Insufficient number of uri basenames.']));
 // unreachable - control does not return from fn.error

The 3rd parameter to fn.error should be a sequence of the form (status-code,
'status-message', 'payload-format', 'response-payload'). That is, when using fn.error to
raise RESTAPI-SRVEXERR, the data parameter to fn.error is sequence containing the following
items, all optional:

• HTTP status code. Default: 400.

• HTTP status message. Default: Bad Request.

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 246

• Response payload. It is best to restrict this to text as the payload may be in JSON or XML,
depending on the REST API instance configuration.

Note: Best practice is to use RESTAPI-SRVEXERR. If you report any other error or raise any
other exception, it is reported to the calling application as a 500 Server Internal
Error.

You can use xdmp.arrayValues or Sequence.from to construct a sequence from a JavaScript array.

Control does not return from fn.error. You should perform any necessary cleanup or other tasks
prior to calling it.

You can use a utility function similar to the following to abstract most of the details away from
your extension implementation:

function returnErrToClient(statusCode, statusMsg, body)
{
 fn.error(null, 'RESTAPI-SRVEXERR',
 Sequence.from([statusCode, statusMsg, body]));
 // unreachable
};

The following is an example of using this function:

returnErrToClient(400, 'Bad Request',
 'Insufficient number of uri basenames.');

If errors from an extension invocation are trapped as follows using the Node.js API:

db.resources.put({
 ...
}).result(function(response) {
 console.log(JSON.stringify(response, null, 2));
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

Then the output is similar to the following:

{
 "message": "js-example: response with invalid 400 status",
 "statusCode": 400,
 "body": {
 "errorResponse": {
 "statusCode": 400,
 "status": "Bad Request",
 "messageCode": "RESTAPI-SRVEXERR",
 "message": "Insufficient number of uri basenames."
 }

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 247

 }
}

For a working example, see “Example: Installing and Using a Resource Service Extension” on
page 226.

8.4.2 Example: Reporting Errors in XQuery
Use fn:error to report a RESTAPI-SRVEXERR error, and provide additional information in the $data
parameter of fn:error. You can control the response status code, status message, and provide an
additional error reporting response payload. For example, you can return an error to the client in
the following way:

fn:error((),"RESTAPI-SRVEXERR",
 (415, "Unsupported Input Type",
 "Only application/xml is supported"))

The 3rd parameter to fn:error should be a sequence of the form ("status-code",
"status-message", "response-payload"). That is, when using fn:error to raise
RESTAPI-SRVEXERR, the $data parameter to fn:error is a sequence with the following members, all
optional:

• HTTP status code. Default: 400.

• HTTP status message. Default: Bad Request.

• Response payload. It best to limit this to text as the payload can be either JSON or XML,
depending on the REST API instance configuration.

Note: Best practice is to use RESTAPI-SRVEXERR. If you report any other error or raise any
other exception, it is reported to the calling application as a 500 Server Internal
Error.

For example, this resource extension function raises RESTAPI-SRVEXERR if the input content type is
not as expected:

declare function example:put(
 $context as map:map,
 $params as map:map,
 $input as document-node()
) as document-node()
{
 (: get 'input-types' to use in content negotiation :)
 let $input-types := map:get($context,"input-types")
 let $negotiate :=
 if ($input-types = "application/xml")
 then () (: process, insert/update :)
 else fn:error((),"RESTAPI-SRVEXERR",
 ("415", "Raven", "nevermore"))
 return document { "Done"} (: may return a document node :)
};

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 248

If a PUT request is made to the extension with an unexpected content type, the fn:error call
causes the request to fail with a status 415 and to include the additional error description in the
response body:

HTTP/1.1 415 Raven
Content-type: application/xml
Server: MarkLogic
Set-Cookie: SessionID=714070bdf4076536; path=/
Content-Length: 62
Connection: close

<?xml version="1.0" encoding="UTF-8"?>
<word>nevermore</word>

8.5 Evaluating Ad-Hoc Code and Server-Side Modules
You can use DatabaseClient.eval or DatabaseClient.xqueryEval to evaluate ad-hoc blocks of
XQuery or server-side JavaScript code on MarkLogic Server. The code blocks originate in your
client application. You can use DatabaseClient.invoke to evaluate previously installed XQuery
or server-side JavaScript modules on MarkLogic Server.

This section covers the following topics related to using eval and invoke:

• Required Privileges

• Evaluating a Ad-Hoc Query

• Invoking a Module Installed on MarkLogic Server

• Interpreting the Results of Eval or Invoke

• Specifying External Variable Values

8.5.1 Required Privileges
Using DatabaseClient.eval, DatabaseClient.xqueryEval, and DatabaseClient.invoke requires
additional privileges, beyond those required for normal read/write/query operations using the
Node.js Client API.

To use DatabaseClient.eval or DatabaseClient.xqueryEval, you must have at least the following
privileges or their equivalent:

• http://marklogic.com/xdmp/privileges/xdmp-eval

• http://marklogic.com/xdmp/privileges/xdmp-eval-in

• http://marklogic.com/xdmp/privileges/xdbc-eval

• http://marklogic.com/xdmp/privileges/xdbc-eval-in

To use DatabaseClient.invoke, you must have at least the following privileges or their
equivalent:

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 249

• http://marklogic.com/xdmp/privileges/xdmp-invoke

• http://marklogic.com/xdmp/privileges/xdmp-invoke-in

• http://marklogic.com/xdmp/privileges/xdbc-invoke

• http://marklogic.com/xdmp/privileges/xdbc-invoke-in

The privileges listed above merely make it possible to eval/invoke server-side code. The
operations performed by that code may require additional privileges.

8.5.2 Evaluating a Ad-Hoc Query
Use DatabaseClient.eval to evaluate an ad-hoc block of JavaScript on MarkLogic Server. You
must use the MarkLogic server-side JavaScript dialect described in the JavaScript Reference
Guide. To evaluate an ad-hoc block of XQuery, use DatabaseClient.xqueryEval. The calling and
response conventions are the same for both eval and xqueryEval. These operations are equivalent
to using the xdmp.eval (JavaScript) or xdmp:eval (XQuery) builtin function. The code is evaluated
in the context of the database associated with the DatabaseClient object.

Using eval or xqueryEval requires extra security privileges; for details, see “Required Privileges”
on page 248.

You can call eval and xqueryEval using one of the following forms. The code is the only required
parameter/property.

db.eval(codeAsString, externalVarsObj)
db.eval({source: codeAsString, variables: externalVarsObj, txid:...})

db.xqueryEval(codeAsString, externalVarsObj)
db.xqueryEval({
 source: codeAsString,
 variables: externalVarsObj,
 txid:...})

External variables enable you to pass variable values to MarkLogic Server, where they’re
substituted into your ad-hoc code. For details, see “Specifying External Variable Values” on
page 254.

For example, suppose you want to evaluate the following JavaScript code, where word1 and word2
are external variable values supplied by your application:

word1 + " " + word2

Then the following call evaluates the code on MarkLogic Server. The values for word1 and word2
are passed to MarkLogic Server through the second parameter.

db.eval('word1 + " " + word2', {word1: 'hello', word2: 'world'})

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 250

The response from calling eval is an array containing an item for each value returned by the code
block. Each item contains the returned value, plus type information to help you interpret the
value. For details, see “Interpreting the Results of Eval or Invoke” on page 253.

For example, the above call returns the following response.

[{
 "format": "text",
 "datatype": "string",
 "value": "hello world"
}]

You can return documents, objects, and arrays as well as atomic values. To return multiple items,
you must return either a Sequence (JavaScript only) or a sequence. You can construct a Sequence
from an array-like or generator, and many builtin functions return multiple values return a
Sequence. To construct a sequence in server-side JavaScript, apply xdmp.arrayValues or
Sequence.from to a JavaScript array.

For example, to extend the previous example to return the combined lenght of the two input
values as well as the concatenated string, accumulate the results in an array and then apply
Sequence.from to the array:

Sequence.from([word1.length + word2.length, word1 + " " + word2])

The following script evaluates the above code. The response contains 2 array items: One for the
length and one for concatenated string.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.eval(
 'Sequence.from([word1.length + word2.length, word1 + " " + word2])',
 {word1: 'hello', word2: 'world'}
).result(function(response) {
 console.log(JSON.stringify(response, null, 2));
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

Running the script produces the following output:

[
 {
 "format": "text",
 "datatype": "integer",
 "value": 10
 },
 {
 "format": "text",

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 251

 "datatype": "string",
 "value": "hello world"
 }
]

The following script uses DatabaseClient.xqueryEval to evaluates a block XQuery that performs
the same operations as the previous JavaScript eval. The output is exactly as before. Note that in
XQuery you must explicitly declare the external variables in your ad-hoc code.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.xqueryEval(
 'xquery version "1.0-ml";' +
 'declare variable $word1 as xs:string external;' +
 'declare variable $word2 as xs:string external;' +
 '(fn:string-length($word1) + fn:string-length($word2),' +
 ' concat($word1, " ", $word2))',
 {word1: 'hello', word2: 'world'}
).result(function(response) {
 console.log(JSON.stringify(response, null, 2));
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

For more examples, see test-basic/server-exec.js in the Node.js Client API source project on
GitHub.

8.5.3 Invoking a Module Installed on MarkLogic Server
You can use DatabaseClient.invoke to an XQuery or server-side JavaScript module installed on
MarkLogic Server. This is equivalent to calling the builtin server function xdmp.invoke
(JavaScript) or xdmp:invoke (XQuery). Using invoke requires extra security privileges; for details,
see “Required Privileges” on page 248.

The module you invoke must already be installed on MarkLogic Server. You can install your
module in the modules database associated with your REST API instance using
DatabaseClient.config.extlibs.write or an equivalent operation. For details, see “Managing
Assets in the Modules Database” on page 255.

Note: Installing a module using DatabaseClient.config.extlibs.write adds a /ext/.
prefix to the path. Omit the prefix when using the config.extlibs interface, but
include it in your module path when calling invoke.

When installing the module, you must include the module path, content type, and source code.
For a JavaScript module, set the content type to application/vnd.marklogic-javascript and set
the file extension in your module path to .sjs. For an XQuery module, set the content type to
application/xquery and set the file extension in your module path to .xqy. See the example
below.

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 252

You can use external variables to pass arbitrary values to your module at runtime. For details, see
“Specifying External Variable Values” on page 254.

The response to invoke is an array containing one item for each value returned by the invoked
module. For details, see “Interpreting the Results of Eval or Invoke” on page 253.

The following example installs a JavaScript module on MarkLogic Server and then uses
DatabaseClient.invoke to evaluate it.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

// (1) Install the module in the modules database
// Note: You do not need to install on every invocation.
// It is included here to make the example self-contained.
db.config.extlibs.write({
 path: '/invoke/example.sjs',
 contentType: 'application/vnd.marklogic-javascript',
 source: 'Sequence.from([word1, word2, word1 + " " + word2])'
}).result().then(function(response) {
 console.log('Installed module: ' + response.path);

 // (2) Invoke the module
 return db.invoke({
 path: '/ext/' + response.path,
 variables: {word1: 'hello', word2: 'world'}
 }).result(function(response) {
 console.log(JSON.stringify(response, null, 2));
 }, function(error) {
 console.log(JSON.stringify(error, null, 2));
 });
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

If you save the script to a file and run it, you should see results similar to the following:

[
 {
 "format": "text",
 "datatype": "string",
 "value": "hello"
 },
 {
 "format": "text",
 "datatype": "string",
 "value": "world"
 },
 {
 "format": "text",
 "datatype": "string",

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 253

 "value": "hello world"
 }
]

To install an equivalent XQuery module, use a call similar to the following:

db.config.extlibs.write({
 path: '/invoke/example.xqy',
 contentType: 'application/xquery',
 source:
 'xquery version "1.0-ml";' +
 'declare variable $word1 as xs:string external;' +
 'declare variable $word2 as xs:string external;' +
 '($word1, $word2, fn:concat($word1, " ", $word2))'
})

8.5.4 Interpreting the Results of Eval or Invoke
When you evaluate or invoke server-side code using DatabaseClient.eval,
DatabaseClient.xqueryEval, or DatabaseClient.invoke, the response is always an array
containing an item for each value returned by the server.

Each item contains information that helps your application interpret the value. Each item has the
following form, where format and value are always present, but datatype is not.

{
 format: 'text' | 'json' | 'xml' | 'binary'
 datatype: string
 value: ...
}

The datatype property can be a node type, an XSD datatype, or any other server type, such as
cts:query. The reported type may be more general than the actual type. Types derived from
anyAtomicType include anyURI, boolean, dateTime, double, and string. For details, see
http://www.w3.org/TR/xpath-functions/#datatypes.

http://www.w3.org/TR/xpath-functions/#datatypes

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 254

The table below summarizes how the representation of the data in the value property is
determined.

For example, an atomic value (anyAtomicType, a type derived from anyAtomicType, or an
equivalent JavaScript type) has a datatype property that can specify an explicit type such as
integer, string, or date.

If your code or module returns JSON (or a Javascript object or array), then value is a parsed
JavaScript object or array. For example:

db.eval('const result = {number: 42, phrase: "hello"}; result;')

==>
[{ format: 'json',
 datatype: 'node()',
 value: { number: 42, phrase: 'hello' }
}]

8.5.5 Specifying External Variable Values
You can pass values to an ad-hoc query (or invoked module) at runtime using external variables.
Specify external variables to your eval and invoke calls using a JavaScript object of the following
form. The values must be JavaScript primitives.

{ varName1: varValue1, varName2: varValue2, ... }

For example, the following object supplies values for two external variables, named word1 and
word2:

{ word1: 'hello', word2: 'world' }

format datatype value Representation

json node() A parsed JavaScript object or array

text any atomic type A JavaScript boolean, number, or null value, if datatype
permits conversion from string; otherwise, a string value. For
example, if datatype is integer, then value is a number.

xml node() string

binary a Buffer object

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 255

If you’re evaluating or invoking XQuery code, you must declare the variables explicitly in the
ad-hoc query or module. For example, the folloiwng prolog declares two external variables whose
values can be supplied by the above parameter object:

xquery version "1.0-ml";
declare variable $word1 as xs:string external;
declare variable $word2 as xs:string external;
...

If you’re evaluating or invoking XQuery code that depends on variables in a namespace, use
Clark notation on the variable name. That is, specify the name using notation of the form
{namespaceURI}name.

For example, the following script uses a namspace qualified external variable, $my:who. The
external variable input parameter uses the fully qualified variable in Clark notation:
{'{http://example.com}who':'world'}.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient(my.connInfo);

db.xqueryEval(
 'xquery version "1.0-ml";' +
 'declare namespace my = "http://example.com";' +
 'declare variable $my:who as xs:string external;' +
 'fn:concat("hello ", $my:who)',
 {'{http://example.com}who' : 'world'}
).result(function(response) {
 console.log(JSON.stringify(response, null, 2));
}, function(error) {
 console.log(JSON.stringify(error, null, 2));
});

8.6 Managing Assets in the Modules Database
Use the DatabaseClient.config.extlibs interface to install and manage server-side assets required
by your application, such as XQuery and JavaScript modules usable with DatabaseClient.eval
and dependent libraries used by resource service extensions and tranforms.

This section covers the following topics:

• Overview of Asset Management

• Installing or Updating an Asset

• Referencing an Asset from Server-Side Code

• Removing an Asset

• Retrieving an Asset List

• Retrieving an Asset

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 256

8.6.1 Overview of Asset Management
Your Node.js Client API application can use several kinds of user-defined code that is stored in
the modules database associated with your REST API instance, including transforms, resource
service extension implementations, constraint binding parsers, custom snippet generators, and
patch content generators.

Most of these asset classes have specialized management interfaces, such as
DatabaseClient.config.resources and DatabaseClient.config.query.snippet. These interfaces
abstract away the details of where and how the API manages the assets. You generally should not
manage such assets through another, more general interface. Assets which do not have a
specialized interface can be managed using the DatabaseClient.config.extlibs interface.

The table below summarizes the asset management interfaces available through the Node.js
Client API.

Interface Used to Manage

DatabaseClient.config.extlibs XQuery and JavaScript modules that can be
invoked using DatabaseClient.invoke. For
details, see “Invoking a Module Installed on
MarkLogic Server” on page 251.

Dependent libraries and other assets needed
by your resource service extensions,
transforms. For details, see “Working with
Resource Service Extensions” on page 222.

DatabaseClient.config.patch.replace Replacement content generators for
DatabaseClient.documents.patch. For details,
see “Constructing Replacement Data on
MarkLogic Server” on page 103.

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 257

All the asset management interfaces offer the same basic set of methods, customized to suit a
given asset classet:

• write: Install an asset in the modules database.

• read: Retrieve an asset from the modules database.

• list: Retrieve a list of all assets of a given class from the modules database, such as all
resource service extensions or all facet generators.

• remove: Remove an asset from the modules database.

You should not mix and match interfaces among asset classes. For example, you should not install
a snippeter using DatabaseClient.config.query.snippet.write and then delete it using
DatabaseClient.config.extlibs.remove. You can manage assets through the equivalent
interfaces of the other client APIs, such as the Java Client API and the REST Client API.

When you install or update an asset in the modules database, the asset is replicated across your
cluster automatically. There can be a delay of up to one minute between update and availability.

MarkLogic Server does not automatically remove dependent assets when you delete the related
extension or transform.

Since dependent assets are installed in the modules database, they are removed when you remove
the REST API instance if you include the modules database in the instance teardown. For details,
see Removing an Instance in the REST Application Developer’s Guide.

DatabaseClient.config.query.custom Custom query binding and facet generators.
For details, see “Using a Custom Constraint
Parser” on page 130 and “Generating Search
Facets” on page 160.

DatabaseClient.config.query.snippet Custom snippet generators. For details, see
“Generating Search Snippets” on page 167.

DatabaseClient.config.resources Resource service extensions. For details, see
“Working with Resource Service Extensions”
on page 222.

DatabaseClient.config.transforms Read, write and query transforms. For details,
see “Working with Content Transformations”
on page 231.

Interface Used to Manage

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 258

8.6.2 Installing or Updating an Asset
This section describes how to install or update an asset that is not covered by a specialized asset
management interface, such as a dependent library or a module to be invoked using
DatabaseClient.invoke. For other asset classes, use the write method of the specialized interface.
For a list of the specialized interfaces, see “Overview of Asset Management” on page 256.

Use DatabaseClient.config.extlibs.write to install or update an asset in the modules database
associated with your REST API instance. You must provide a module path, content type, and the
asset contents. You can insert assets into the modules database as JSON, XML, text, or binary
documents. MarkLogic Server determines the document format. The document type is
determined by the content type or the module path URI file extension and the server MIME type
mappings.

The module path you provide is prepended with /ext/ during installation. You can omit the prefix
when manipulating the asset using the extlibs interface, but you should include when you
reference the module elsewhere, such as in a resource service extension require statement that
uses an absolute path or when invoking a module with using DatabaseClient.invoke.

The following example installs a module whose contents are read in from a file. The module is
installed in the modules database with the URI /ext/extlibs/example.sjs.

const fs = require('fs');
const marklogic = require('marklogic');
const db = marklogic.createDatabaseClient(my.connInfo);

...
db.config.extlibs.write({
 path: '/extlibs/example.sjs',
 contentType: 'application/vnd.marklogic-javascript',
 source: fs.createReadStream('./example.sjs')
})...

For additional examples, see “Invoking a Module Installed on MarkLogic Server” on page 251 or
test-basic/extlibs.js in the marklogic/node-client-api project on GitHub.

8.6.3 Referencing an Asset from Server-Side Code
To use a dependent library installed with DatabaseClient.extlibs.write from an extension,
transform, or invoked module, use the same URI under which you installed the dependent library,
including the /ext/ prefix.

For example, if a dependent asset is installed with using db.config.extlibs.write({path:
'/my/domain/lib/myasset', ...}), then its URI in the modules database is
/ext/my/domain/myasset.

A JavaScript extension, transform, or invoked module using this asset can refer to it as follows:

const myDep = require('/ext/my/domain/lib/myasset');

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 259

An XQuery extension, transform, or invoked module using this library can include an import of
the following form:

import module namespace dep="mylib" at "/ext/my/domain/lib/myasset";

8.6.4 Removing an Asset
Use DatabaseClient.config.extlibs.remove to delete an asset from the modules database if it
was installed using DatabaseClient.config.extlibs.write. For assets with specialized interfaces,
such as extensions and tranforms, use the remove method of the specialized interface, such as
DatabaseClient.config.resources.remove.

Removing an asset is an idempotent operation. That is, it returns the same response whether the
asset exists or not.

To remove all the assets in a given directory, supply the containing directory name instead of a
specific asset path.

For example, if an asset is installed as follows:

db.config.extlibs.write({
 path: '/invoke/example.sjs',
 contentType: 'application/vnd.marklogic-javascript',
 source: ...
})

Then you can remove that single asset with a call similar to the following:

db.config.extlibs.remove('/invoke/example.sjs');

To remove all the assets installed under /ext/invoke/ instead, use a call similar to the following:

db.config.extlibs.remove('/invoke/');

8.6.5 Retrieving an Asset List
Use DatabaseClient.config.extlibs.list to retrieve a list of assets installed using
DatabaseClient.config.extlibs.write. For assets with specialized interfaces, such as extensions
and tranforms, use the list method of the specialized interface, such as
DatabaseClient.config.transforms.list.

The response has the following format:

{ "assets": [
 { "asset": "/ext/invoke/example.sjs" },
 { "asset": "/ext/util/dep.sjs" },
 { "asset": assetModulePath }, ...
]}

MarkLogic Server Extensions, Transformations, and Server-Side Code

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 260

8.6.6 Retrieving an Asset
Use DatabaseClient.config.extlibs.read to retrieve an asset installed using
DatabaseClient.config.extlibs.write. For assets with specialized interfaces, such as extensions
and tranforms, use the read method of the specialized interface, such as
DatabaseClient.config.transforms.read.

Retrieve the asset using the same module path you used to install it. For example:

db.config.extlibs.read('/invoke/example.sjs')

MarkLogic Server Administering REST API Instances

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 261

9.0 Administering REST API Instances
264

The Node.js Client API requires a REST Client API instance on MarkLogic Server in order to
communicate with the server and access the database. This chapter describes how to create and
manage an instance.

The following topics are covered:

• What Is a REST API Instance?

• Creating an Instance

• Configuring Instance Properties

• Retrieving Configuration Information

• Removing an Instance

9.1 What Is a REST API Instance?
The Node.js Client API implementation communicates with MarkLogic Server using the REST
Client API described in REST Application Developer’s Guide. Therefore, requests to MarkLogic
Server through the Node.js Client API require the presence of a REST API instance. A REST API
instance consists of an HTTP App Server specially configured to handle REST Client API
requests, a default content database, and a modules database.

Note: Each REST API instance can host a single application. If you have multiple REST
API applications, you must create an instance for each one, and each one must
have its own modules database.

When you install MarkLogic Server, a pre-configured REST API instance is available on port
8000. This instance is available as soon as you install MarkLogic Server. No further setup is
required. This instance uses the Documents database as the default content database and the
Modules database as the modules database.

The instance on port 8000 is convenient for getting started, but you will usually create a dedicated
instance for production purposes. This chapter covers creating and managing your own instance.

When you use marklogic.createDatabaseClient to create a DatabaseClient object, you’re
creating a connection to a REST API instance. When you create the DatabaseClient, you can
specify a content database other than the default content database associated with the instance.
Using an alternative database requires extra security privileges. For details, see “Evaluating
Requests Against a Different Database” on page 16.

The default content database associated with a REST API instance can be created for you when
the instance is created, or you can create it separately before making the instance. You can
associate any content database with an instance. Administer your content database as usual, using
the Admin Interface, XQuery or JavaScript Admin API, or REST Management API.

MarkLogic Server Administering REST API Instances

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 262

The REST instance modules database can be created for you during instance creation, or you can
create it separately before making the instance. If you choose to pre-create the modules database,
it must not be shared across instances. Special code is inserted into the modules database during
instance creation. The modules database also holds any persistent query options, extensions,
content transformations, custom parsers, and other assets installed using the
DatabaseClient.config interfaces.

Aside from the instance properties described in this chapter, you cannot pre-configure the App
Server associated with an instance. However, once the instance is created, you can further
customize properties such as request timeouts using the Admin Interface, XQuery or JavaScript
Admin API, or REST Management API.

9.2 Creating an Instance
When you install MarkLogic Server, a pre-configured REST API instance is available on port
8000. However, you can create your own instance using the REST Client API.

To create a new REST instance, send a POST request to the /rest-apis service on port 8002 with
a URL of the form:

http://host:8002/version/rest-apis

You can use either the keyword LATEST or the current version for version. The POST body
should contain a JSON or XML instance configuration. The configuration must include at least a
name, but can also include a port number, content and modules database name, and other instance
properties.

For example, the following command uses the cURL command line tool to create an instance
named “RESTstop” using the defaults for port, databases, and properties.

curl --anyauth --user user:password -X POST -i \
 -d '{"rest-api": {"name":"RESTstop" }}' \
 -H "Content-type: application/json" \
 http://localhost:8002/LATEST/rest-apis

For details and examples, see Creating an Instance in the REST Application Developer’s Guide. For
an example of creating an instance using Node.js libraries, see etc/test-setup.js in the Node.js
Client API source code project on GitHub.

9.3 Configuring Instance Properties
Several instance properties can be examined and modified after you create an instance. For
example, you can use the document-transform-out property to specify a default read transform.

Use DatabaseClient.config.serverprops interface to read and write instance properties. You
must have the rest-admin role or equivalent privileges to use this interface. For a description of
the available properties, see Instance Configuration Properties in the REST Application Developer’s
Guide.

MarkLogic Server Administering REST API Instances

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 263

To retrieve the current configuration, use the read method. The response is an object that contains
all the properties. For example:

db.config.serverprops.read()

To set properties, use the write method and pass in an object that contains an object property for
each instance property you want to change. The object returned by read is suitable as input to
write.

db.config.serverprops.write(props)

For example, the following script reads the current instance properties, uses the result to toggle
the value of the debug property, then sets it back to its original value using a property descriptor
that only contains the debug setting.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient(my.connInfo);

db.config.serverprops.read().result()
 .then(function(props) {
 console.log("Current instance properties:");
 console.log(props);
 // flip the debug property setting
 props.debug = !props.debug;
 return db.config.serverprops.write(props).result();
 }).then(function(response) {
 console.log("Props updated: " + response);
 // demonstrate the setting changed
 return db.config.serverprops.read().result();
 }).then(function(props) {
 console.log("Debug setting is now: " + props.debug);
 // flip the setting back using sparse properties
 const newProps = {};
 newProps.debug = !props.debug;
 return db.config.serverprops.write(newProps).result();
 }).then(function(response) {
 return db.config.serverprops.read().result();
 }).then(function(props) {
 console.log("Debug setting is now: " + props.debug);
 });

If you run the script, you should see output similar to the following. Your instance property values
may differ.

{ 'content-versions': 'none',
 'validate-options': true,
 'document-transform-out': '',
 debug: false,
 'document-transform-all': true,

MarkLogic Server Administering REST API Instances

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 264

 'update-policy': 'merge-metadata',
 'validate-queries': false }
Props updated: true
Debug setting is now: true
Debug setting is now: false

9.4 Retrieving Configuration Information
You can use a GET request on the /rest-apis service on port 8002 to retrieve configuration
information about all REST API instances on a host, or about a specific instance that you identify
by instance name or content database.

For details, see Retrieving Configuration Information in the REST Application Developer’s Guide.

9.5 Removing an Instance
To remove an instance of the REST Client API, send a DELETE request to the /rest-apis service
on port 8002. You can choose wehther or not to leave the content database intact.

Warning You usually should not apply this procedure to the pre-configured REST API
instance on port 8000. Doing so can disable other services on that port, including
XDBC, Query Console, and the REST Management API.

For details and examples, see Removing an Instance in the REST Application Developer’s Guide.

MarkLogic Server Technical Support

MarkLogic 9

10.0 Technical Support
265

MarkLogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information on
known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts
and on working with the MarkLogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful
information is available for all developers at http://developer.marklogic.com. For technical
questions, we encourage you to ask your question on Stack Overflow.

http://help.marklogic.com/
https://stackoverflow.com/questions/tagged/marklogic
http://developer.marklogic.com
http://www.marklogic.com/files/Mark_Logic_Support_Handbook.pdf

MarkLogic Server Copyright

MarkLogic 9

11.0 Copyright
999

MarkLogic Server 9.0 and supporting products.
Last updated: April 28, 2018

COPYRIGHT
Copyright © 2018 MarkLogic Corporation. All rights reserved.
This technology is protected by U.S. Patent No. 7,127,469B2, U.S. Patent No. 7,171,404B2, U.S.
Patent No. 7,756,858 B2, and U.S. Patent No 7,962,474 B2, US 8,892,599, and US 8,935,267.

The MarkLogic software is protected by United States and international copyright laws, and
incorporates certain third party libraries and components which are subject to the attributions,
terms, conditions and disclaimers set forth below.

For all copyright notices, including third-party copyright notices, see the Combined Product
Notices for your version of MarkLogic.

	Node.js Application Developer’s Guide
	Table of Contents
	1.0 Introduction to the Node.js Client API
	1.1 Getting Started
	1.2 Required Software
	1.3 Security Requirements
	1.3.1 Basic Security Requirements
	1.3.2 Controlling Document Access
	1.3.3 Evaluating Requests Against a Different Database
	1.3.4 Evaluating or Invoking Server-Side Code

	1.4 Terms and Definitions
	1.5 Key Concepts and Conventions
	1.5.1 MarkLogic Namespace
	1.5.2 Parameter Passing Conventions
	1.5.3 Document Descriptor
	1.5.4 Supported Result Handling Techniques
	1.5.5 Promise Result Handling Pattern
	1.5.6 Stream Result Handling Pattern
	1.5.7 Streaming Into the Database
	1.5.8 Performing Point-in-Time Operations
	1.5.9 Error Handling

	1.6 Creating a Database Client
	1.7 Authentication and Connection Security
	1.7.1 Connecting to MarkLogic with SSL
	1.7.2 Using Certificate-Based Authentication
	1.7.3 Using Kerberos Authentication

	1.8 Using the Examples in This Guide

	2.0 Manipulating Documents
	2.1 Introduction to Document Operations
	2.2 Loading Documents into the Database
	2.2.1 Overview
	2.2.2 Input Document Descriptors
	2.2.3 Calling Convention
	2.2.4 Example: Loading A Single Document
	2.2.5 Example: Loading Multiple Documents
	2.2.6 Inserting or Updating Metadata for One Document
	2.2.7 Automatically Generating Document URIs
	2.2.8 Transforming Content During Ingestion

	2.3 Reading Documents from the Database
	2.3.1 Retrieving the Contents of a Document By URI
	2.3.2 Retrieving Metadata About a Document
	2.3.3 Example: Retrieving Content and Metadata
	2.3.4 Transforming Content During Retrieval

	2.4 Removing Content from the Database
	2.4.1 Removing Documents By URI
	2.4.2 Removing Sets of Documents
	2.4.3 Removing All Documents

	2.5 Managing Collections of Objects and Documents
	2.6 Performing a Lightweight Document Check
	2.7 Conditional Updates Using Optimistic Locking
	2.7.1 Understanding Optimistic Locking
	2.7.2 Enable Optimistic Locking
	2.7.3 Obtain a Version Id
	2.7.4 Apply a Conditional Update

	2.8 Working with Binary Documents
	2.8.1 Type of Binary Documents
	2.8.2 Streaming Binary Content
	2.8.3 Retrieving Binary Content with Range Requests

	2.9 Working with Temporal Documents
	2.10 Working with Metadata
	2.10.1 Metadata Categories
	2.10.2 Metadata Format
	2.10.3 Working with Document Properties
	2.10.4 Disabling Metadata Merging

	3.0 Patching Document Content or Metadata
	3.1 Introduction to Content and Metadata Patching
	3.2 Example: Adding a JSON Property
	3.3 Patch Reference
	3.3.1 insert
	3.3.2 replace
	3.3.3 replaceInsert
	3.3.4 remove
	3.3.5 apply
	3.3.6 library
	3.3.7 pathLanguage
	3.3.8 collections
	3.3.9 permissions
	3.3.10 properties
	3.3.11 quality
	3.3.12 metadataValues

	3.4 Defining the Context for a Patch Operation
	3.5 How Position Affects the Insertion Point
	3.6 Patch Examples
	3.6.1 Preparing to Run the Examples
	3.6.2 Example: Insert
	3.6.3 Example: Replace
	3.6.4 Example: ReplaceInsert
	3.6.5 Example: Remove
	3.6.6 Example: Patching Metadata

	3.7 Creating a Patch Without a Builder
	3.8 Patching XML Documents
	3.9 Constructing Replacement Data on MarkLogic Server
	3.9.1 Overview of Replacement Constructor Functions
	3.9.2 Using a Builtin Replacement Constructor
	3.9.3 Passing Parameters to a Replacement Constructor
	3.9.4 Using a Custom Replacement Constructor
	3.9.5 Writing a Custom Replacement Constructor
	3.9.6 Installing or Updating a Custom Replace Library
	3.9.7 Uninstalling a Custom Replace Library
	3.9.8 Example: Custom Replacement Constructors
	3.9.9 Additional Operations

	4.0 Querying Documents and Metadata
	4.1 Query Interface Overview
	4.2 Introduction to Search Concepts
	4.2.1 Search Overview
	4.2.2 Query Styles
	4.2.3 Types of Query
	4.2.4 Indexing

	4.3 Understanding the queryBuilder Interface
	4.4 Searching with String Queries
	4.4.1 Introduction to String Query
	4.4.2 Example: Basic String Query
	4.4.3 Using Constraints in a String Query
	4.4.4 Example: Using Constraints in a String Query
	4.4.5 Using a Custom Constraint Parser
	4.4.6 Example: Custom Constraint Parser
	4.4.7 Additional Information

	4.5 Searching with Query By Example
	4.5.1 Introduction to QBE
	4.5.2 Creating a QBE with queryBuilder
	4.5.3 Querying XML Content With QBE
	4.5.4 Additional Information

	4.6 Searching with Structured Queries
	4.6.1 Basic Usage
	4.6.2 Example: Using Structured Query
	4.6.3 Builder Methods Taxonomy Reference
	4.6.4 Query Parameter Helper Functions
	4.6.5 Search Result Refiners

	4.7 Searching with Combined Query
	4.8 Searching Values Metadata Fields
	4.9 Querying Lexicons and Range Indexes
	4.9.1 Querying Values in a Lexicon or Range Index
	4.9.2 Finding Value Co-Occurrences in Lexicons
	4.9.3 Building an Index Reference
	4.9.4 Refining the Results of a Values or Co-Occurrence Query
	4.9.5 Analyzing Lexicons and Range Indexes with Aggregate Functions

	4.10 Generating Search Facets
	4.10.1 Defining a Simple Facet
	4.10.2 Naming a Facet
	4.10.3 Including Facet Options
	4.10.4 Defining Bucket Ranges
	4.10.5 Creating and Using Custom Constraint Facets

	4.11 Refining Query Results
	4.11.1 Available Refinements
	4.11.2 Paginating Query Results
	4.11.3 Returning Metadata
	4.11.4 Excluding Document Descriptors or Values From Search Results
	4.11.5 Generating Search Snippets
	4.11.6 Transforming the Search Results
	4.11.7 Extracting a Portion of Each Matching Document

	4.12 Generating Search Term Completion Suggestions
	4.12.1 Understanding the Suggestion Interface
	4.12.2 Example: Generating Search Term Suggestions

	4.13 Loading the Example Data

	5.0 Using the Optic API for Relational Operations
	5.1 Introduction to the Optic Interfaces
	5.2 Interface Summary
	5.3 Preparing to Run the Examples
	5.4 Generating a Plan
	5.5 Invoking a Plan
	5.6 Configuring Row Set Format
	5.6.1 Configuration Options
	5.6.2 Layout Examples

	5.7 Streaming Row Data
	5.7.1 Object Mode Streaming
	5.7.2 Chunked Mode Streaming
	5.7.3 Sequence Mode Streaming

	5.8 Passing Parameters into a Plan
	5.9 Handling Complex Column Values
	5.10 Generating an Execution Plan
	5.11 Serializing a Plan

	6.0 Working With Semantic Data
	6.1 Overview of Common Semantics Tasks
	6.2 Loading Triples
	6.3 Querying Semantic Triples With SPARQL
	6.4 Example: SPARQL Query
	6.5 Managing Graphs
	6.5.1 Creating or Replacing a Graph
	6.5.2 Adding Triples to an Existing Graph
	6.5.3 Removing a Graph
	6.5.4 Retrieving the Contents, Metadata, or Permissions of a Graph
	6.5.5 Testing for Graph Existence
	6.5.6 Retrieving a List of Graphs

	6.6 Using SPARQL Update to Manage Graphs and Graph Data
	6.7 Applying Inferencing Rules to a SPARQL Query or Update
	6.7.1 Basic Inference Ruleset Usage
	6.7.2 Example: SPARQL Query With Inference Ruleset
	6.7.3 Example: SPARQL Update With Inference Rulesets
	6.7.4 Controlling the Default Database Ruleset

	7.0 Managing Transactions
	7.1 Transaction Overview
	7.2 Creating a Transaction
	7.3 Associating a Transaction with an Operation
	7.4 Committing a Transaction
	7.5 Rolling Back a Transaction
	7.6 Example: Using Promises With a Multi-Statement Transaction
	7.7 Checking Transaction Status
	7.8 Managing Transactions When Using a Load Balancer

	8.0 Extensions, Transformations, and Server-Side Code Execution
	8.1 Ways to Extend and Customize the API
	8.2 Working with Resource Service Extensions
	8.2.1 What is a Resource Service Extension?
	8.2.2 Creating a Resource Service Extension
	8.2.3 Installing a Resource Service Extension
	8.2.4 Using a Resource Service Extension
	8.2.5 Example: Installing and Using a Resource Service Extension
	8.2.6 Retrieving the Implementation of a Resource Service Extension
	8.2.7 Discovering Resource Service Extensions
	8.2.8 Deleting Resource Service Extensions

	8.3 Working with Content Transformations
	8.3.1 What is a Content Transformation?
	8.3.2 Creating a Transformation
	8.3.3 Installing a Transformation
	8.3.4 Using a Transformation
	8.3.5 Example: Read, Write, and Query Transforms
	8.3.6 Discovering Installed Transforms
	8.3.7 Deleting a Transformation

	8.4 Error Reporting in Extensions and Transformations
	8.4.1 Example: Reporting Errors in JavaScript
	8.4.2 Example: Reporting Errors in XQuery

	8.5 Evaluating Ad-Hoc Code and Server-Side Modules
	8.5.1 Required Privileges
	8.5.2 Evaluating a Ad-Hoc Query
	8.5.3 Invoking a Module Installed on MarkLogic Server
	8.5.4 Interpreting the Results of Eval or Invoke
	8.5.5 Specifying External Variable Values

	8.6 Managing Assets in the Modules Database
	8.6.1 Overview of Asset Management
	8.6.2 Installing or Updating an Asset
	8.6.3 Referencing an Asset from Server-Side Code
	8.6.4 Removing an Asset
	8.6.5 Retrieving an Asset List
	8.6.6 Retrieving an Asset

	9.0 Administering REST API Instances
	9.1 What Is a REST API Instance?
	9.2 Creating an Instance
	9.3 Configuring Instance Properties
	9.4 Retrieving Configuration Information
	9.5 Removing an Instance

	10.0 Technical Support
	11.0 Copyright
	COPYRIGHT

