

Table	of	Contents
The	Express	Handbook

Express	overview

Request	parameters

Sending	a	response

Sending	a	JSON	response

Manage	Cookies

Work	with	HTTP	headers

Redirects

Routing

CORS

Templating

The	Pug	Guide

Middleware

Serving	static	files

Send	files

Sessions

Validating	input

Sanitizing	input

Handling	forms

File	uploads	in	forms

An	Express	HTTPS	server	with	a	self-signed	certificate

Setup	Let's	Encrypt	for	Express

2

The	Express	Handbook
The	Express	Handbook	follows	the	80/20	rule:	learn	in	20%	of	the	time	the	80%	of	a	topic.

I	find	this	approach	gives	a	well-rounded	overview.	This	book	does	not	try	to	cover	everything
under	the	sun	related	to	Express.	If	you	think	some	specific	topic	should	be	included,	tell	me.

You	can	reach	me	on	Twitter	@flaviocopes.

I	hope	the	contents	of	this	book	will	help	you	achieve	what	you	want:	learn	the	basics
Express.

This	book	is	written	by	Flavio.	I	publish	web	development	tutorials	every	day	on	my	website
flaviocopes.com.

Enjoy!

The	Express	Handbook

3

https://twitter.com/flaviocopes
https://flaviocopes.com

Express	overview
Express	is	a	Node.js	Web	Framework.	Node.js	is	an	amazing	tool	for	building
networking	services	and	applications.	Express	builds	on	top	of	its	features	to
provide	easy	to	use	functionality	that	satisfy	the	needs	of	the	Web	Server	use
case.

Express	is	a	Node.js	Web	Framework.

Node.js	is	an	amazing	tool	for	building	networking	services	and	applications.

Express	builds	on	top	of	its	features	to	provide	easy	to	use	functionality	that	satisfy	the	needs
of	the	Web	Server	use	case.

It's	Open	Source,	free,	easy	to	extend,	very	performant,	and	has	lots	and	lots	of	pre-built
packages	you	can	just	drop	in	and	use,	to	perform	all	kind	of	things.

Installation
You	can	install	Express	into	any	project	with	npm:

Express	overview

4

https://flaviocopes.com/node/
https://flaviocopes.com/npm/

npm	install	express	--save

or	Yarn:

yarn	add	express

Both	commands	will	also	work	in	an	empty	directory,	to	start	up	your	project	from	scratch,
although	 	npm		does	not	create	a	 	package.json		file	at	all,	and	Yarn	creates	a	basic	one.

Just	run	 	npm	init		or	 	yarn	init		if	you're	starting	a	new	project	from	scratch.

Hello	World
We're	ready	to	create	our	first	Express	Web	Server.

Here	is	some	code:

const	express	=	require('express')

const	app	=	express()

app.get('/',	(req,	res)	=>	res.send('Hello	World!'))

app.listen(3000,	()	=>	console.log('Server	ready'))

Save	this	to	an	 	index.js		file	in	your	project	root	folder,	and	start	the	server	using

node	index.js

You	can	open	the	browser	to	port	3000	on	localhost	and	you	should	see	the	 	Hello	World!	
message.

Learn	the	basics	of	Express	by	understanding
the	Hello	World	code
Those	4	lines	of	code	do	a	lot	behind	the	scenes.

First,	we	import	the	 	express		package	to	the	 	express		value.

We	instantiate	an	application	by	calling	its	 	app()		method.

Once	we	have	the	application	object,	we	tell	it	to	listen	for	GET	requests	on	the	 	/		path,	using
the	 	get()		method.

Express	overview

5

https://flaviocopes.com/yarn/

There	is	a	method	for	every	HTTP	verb:	 	get()	,	 	post()	,	 	put()	,	 	delete()	,	 	patch()	:

app.get('/',	(req,	res)	=>	{	/*	*/	})

app.post('/',	(req,	res)	=>	{	/*	*/	})

app.put('/',	(req,	res)	=>	{	/*	*/	})

app.delete('/',	(req,	res)	=>	{	/*	*/	})

app.patch('/',	(req,	res)	=>	{	/*	*/	})

Those	methods	accept	a	callback	function,	which	is	called	when	a	request	is	started,	and	we
need	to	handle	it.

We	pass	in	an	arrow	function:

(req,	res)	=>	res.send('Hello	World!')

Express	sends	us	two	objects	in	this	callback,	which	we	called	 	req		and	 	res	,	that	represent
the	Request	and	the	Response	objects.

Request	is	the	HTTP	request.	It	can	give	us	all	the	info	about	that,	including	the	request
parameters,	the	headers,	the	body	of	the	request,	and	more.

Response	is	the	HTTP	response	object	that	we'll	send	to	the	client.

What	we	do	in	this	callback	is	to	send	the	'Hello	World!'	string	to	the	client,	using	the
	Response.send()		method.

This	method	sets	that	string	as	the	body,	and	it	closes	the	connection.

The	last	line	of	the	example	actually	starts	the	server,	and	tells	it	to	listen	on	port	 	3000	.	We
pass	in	a	callback	that	is	called	when	the	server	is	ready	to	accept	new	requests.

Express	overview

6

Request	parameters
A	handy	reference	to	all	the	request	object	properties	and	how	to	use	them

Request	parameters
I	mentioned	how	the	Request	object	holds	all	the	HTTP	request	information.

These	are	the	main	properties	you'll	likely	use:

Property Description

.app holds	a	reference	to	the	Express	app	object

.baseUrl the	base	path	on	which	the	app	responds

.body contains	the	data	submitted	in	the	request	body	(must	be	parsed	and
populated	manually	before	you	can	access	it)

.cookies contains	the	cookies	sent	by	the	request	(needs	the	 	cookie-parser	
middleware)

.hostname the	server	hostname

.ip the	server	IP

.method the	HTTP	method	used

.params the	route	named	parameters

.path the	URL	path

.protocol the	request	protocol

.query an	object	containing	all	the	query	strings	used	in	the	request

.secure true	if	the	request	is	secure	(uses	HTTPS)

.signedCookies contains	the	signed	cookies	sent	by	the	request	(needs	the	 	cookie-
parser		middleware)

.xhr true	if	the	request	is	an	XMLHttpRequest

How	to	retrieve	the	GET	query	string	parameters
using	Express
The	query	string	is	the	part	that	comes	after	the	URL	path,	and	starts	with	a	question	mark	 	?	.

Example:

Request	parameters

7

https://flaviocopes.com/xhr/

?name=flavio

Multiple	query	parameters	can	be	added	using	 	&	:

?name=flavio&age=35

How	do	you	get	those	query	string	values	in	Express?

Express	makes	it	very	easy	by	populating	the	 	Request.query		object	for	us:

const	express	=	require('express')

const	app	=	express()

app.get('/',	(req,	res)	=>	{

		console.log(req.query)

})

app.listen(8080)

This	object	is	filled	with	a	property	for	each	query	parameter.

If	there	are	no	query	params,	it's	an	empty	object.

This	makes	it	easy	to	iterate	on	it	using	the	for...in	loop:

for	(const	key	in	req.query)	{

		console.log(key,	req.query[key])

}

This	will	print	the	query	property	key	and	the	value.

You	can	access	single	properties	as	well:

req.query.name	//flavio

req.query.age	//35

How	to	retrieve	the	POST	query	string
parameters	using	Express
POST	query	parameters	are	sent	by	HTTP	clients	for	example	by	forms,	or	when	performing	a
POST	request	sending	data.

How	can	you	access	this	data?

Request	parameters

8

If	the	data	was	sent	as	JSON,	using	 	Content-Type:	application/json	,	you	will	use	the
	express.json()		middleware:

const	express	=	require('express')

const	app	=	express()

app.use(express.json())

If	the	data	was	sent	as	JSON,	using	 	Content-Type:	application/x-www-form-urlencoded	,	you	will
use	the	 	express.urlencoded()		middleware:

const	express	=	require('express')

const	app	=	express()

app.use(express.urlencoded())

In	both	cases	you	can	access	the	data	by	referencing	it	from	 	Request.body	:

app.post('/form',	(req,	res)	=>	{

		const	name	=	req.body.name

})

Note:	older	Express	versions	required	the	use	of	the	 	body-parser		module	to	process
POST	data.	This	is	no	longer	the	case	as	of	Express	4.16	(released	in	September	2017)
and	later	versions.

Request	parameters

9

Sending	a	response
How	to	send	a	response	back	to	the	client	using	Express

In	the	Hello	World	example	we	used	the	 	Response.send()		method	to	send	a	simple	string	as	a
response,	and	to	close	the	connection:

(req,	res)	=>	res.send('Hello	World!')

If	you	pass	in	a	string,	it	sets	the	 	Content-Type		header	to	 	text/html	.

if	you	pass	in	an	object	or	an	array,	it	sets	the	 	application/json		 	Content-Type		header,	and
parses	that	parameter	into	JSON.

	send()		automatically	sets	the	 	Content-Length		HTTP	response	header.

	send()		also	automatically	closes	the	connection.

Use	end()	to	send	an	empty	response

An	alternative	way	to	send	the	response,	without	any	body,	it's	by	using	the	 	Response.end()	
method:

res.end()

Set	the	HTTP	response	status

Use	the	 	Response.status()	:

res.status(404).end()

or

res.status(404).send('File	not	found')

	sendStatus()		is	a	shortcut:

res.sendStatus(200)

//	===	res.status(200).send('OK')

res.sendStatus(403)

//	===	res.status(403).send('Forbidden')

Sending	a	response

10

res.sendStatus(404)

//	===	res.status(404).send('Not	Found')

res.sendStatus(500)

//	===	res.status(500).send('Internal	Server	Error')

Sending	a	response

11

Sending	a	JSON	response
How	to	serve	JSON	data	using	the	Node.js	Express	library

When	you	listen	for	connections	on	a	route	in	Express,	the	callback	function	will	be	invoked	on
every	network	call	with	a	Request	object	instance	and	a	Response	object	instance.

Example:

app.get('/',	(req,	res)	=>	res.send('Hello	World!'))

Here	we	used	the	 	Response.send()		method,	which	accepts	any	string.

You	can	send	JSON	to	the	client	by	using	 	Response.json()	,	a	useful	method.

It	accepts	an	object	or	array,	and	converts	it	to	JSON	before	sending	it:

res.json({	username:	'Flavio'	})

Sending	a	JSON	response

12

Manage	Cookies
How	to	use	the	`Response.cookie()`	method	to	manipulate	your	cookies

Use	the	 	Response.cookie()		method	to	manipulate	your	cookies.

Examples:

res.cookie('username',	'Flavio')

This	method	accepts	a	third	parameter	which	contains	various	options:

res.cookie('username',	'Flavio',	{	domain:	'.flaviocopes.com',	path:	'/administrator',	sec

ure:	true	})

res.cookie('username',	'Flavio',	{	expires:	new	Date(Date.now()	+	900000),	httpOnly:	true	

})

The	most	useful	parameters	you	can	set	are:

Value Description

	domain	 the	cookie	domain	name

	expires	
set	the	cookie	expiration	date.	If	missing,	or	0,	the	cookie	is	a	session
cookie

	httpOnly	 set	the	cookie	to	be	accessible	only	by	the	web	server.	See	HttpOnly

	maxAge	 set	the	expiry	time	relative	to	the	current	time,	expressed	in	milliseconds

	path	 the	cookie	path.	Defaults	to	/

	secure	 Marks	the	cookie	HTTPS	only

	signed	 set	the	cookie	to	be	signed

	sameSite	 Value	of	 	SameSite	

A	cookie	can	be	cleared	with

res.clearCookie('username')

Manage	Cookies

13

http://localhost:1313/cookies/#set-a-cookie-domain
http://localhost:1313/cookies/#set-a-cookie-expiration-date
https://flaviocopes.com/cookies/#httponly
https://flaviocopes.com/cookies/#set-a-cookie-path
https://flaviocopes.com/cookies/#secure
https://flaviocopes.com/cookies/#samesite

Work	with	HTTP	headers
Learn	how	to	access	and	change	HTTP	headers	using	Express

Access	HTTP	headers	values	from	a	request
You	can	access	all	the	HTTP	headers	using	the	 	Request.headers		property:

app.get('/',	(req,	res)	=>	{

		console.log(req.headers)

})

Use	the	 	Request.header()		method	to	access	one	individual	request	header	value:

app.get('/',	(req,	res)	=>	{

		req.header('User-Agent')

})

Change	any	HTTP	header	value	of	a	response
You	can	change	any	HTTP	header	value	using	 	Response.set()	:

res.set('Content-Type',	'text/html')

There	is	a	shortcut	for	the	Content-Type	header	however:

res.type('.html')

//	=>	'text/html'

res.type('html')

//	=>	'text/html'

res.type('json')

//	=>	'application/json'

res.type('application/json')

//	=>	'application/json'

res.type('png')

//	=>	image/png:

Work	with	HTTP	headers

14

Work	with	HTTP	headers

15

Redirects
How	to	redirect	to	other	pages	server-side

Redirects	are	common	in	Web	Development.	You	can	create	a	redirect	using	the
	Response.redirect()		method:

res.redirect('/go-there')

This	creates	a	302	redirect.

A	301	redirect	is	made	in	this	way:

res.redirect(301,	'/go-there')

You	can	specify	an	absolute	path	(/go-there),	an	absolute	url	(https://anothersite.com),	a
relative	path	(go-there)	or	use	the	 	..		to	go	back	one	level:

res.redirect('../go-there')

res.redirect('..')

You	can	also	redirect	back	to	the	Referer	HTTP	header	value	(defaulting	to	 	/		if	not	set)	using

res.redirect('back')

Redirects

16

Routing
Routing	is	the	process	of	determining	what	should	happen	when	a	URL	is
called,	or	also	which	parts	of	the	application	should	handle	a	specific
incoming	request.

Routing	is	the	process	of	determining	what	should	happen	when	a	URL	is	called,	or	also	which
parts	of	the	application	should	handle	a	specific	incoming	request.

In	the	Hello	World	example	we	used	this	code

app.get('/',	(req,	res)	=>	{	/*	*/	})

This	creates	a	route	that	maps	accessing	the	root	domain	URL	 	/		using	the	HTTP	GET
method	to	the	response	we	want	to	provide.

Named	parameters

What	if	we	want	to	listen	for	custom	requests,	maybe	we	want	to	create	a	service	that	accepts
a	string,	and	returns	that	uppercase,	and	we	don't	want	the	parameter	to	be	sent	as	a	query
string,	but	part	of	the	URL.	We	use	named	parameters:

app.get('/uppercase/:theValue',	(req,	res)	=>	res.send(req.params.theValue.toUpperCase()))

If	we	send	a	request	to	 	/uppercase/test	,	we'll	get	 	TEST		in	the	body	of	the	response.

You	can	use	multiple	named	parameters	in	the	same	URL,	and	they	will	all	be	stored	in
	req.params	.

Use	a	regular	expression	to	match	a	path

You	can	use	regular	expressions	to	match	multiple	paths	with	one	statement:

app.get(/post/,	(req,	res)	=>	{	/*	*/	})

will	match	 	/post	,	 	/post/first	,	 	/thepost	,	 	/posting/something	,	and	so	on.

Routing

17

https://flaviocopes.com/javascript-regular-expressions/

CORS
How	to	allow	cross	site	requests	by	setting	up	CORS

A	JavaScript	application	running	in	the	browser	can	usually	only	access	HTTP	resources	on
the	same	domain	(origin)	that	serves	it.

Loading	images	or	scripts/styles	always	works,	but	XHR	and	Fetch	calls	to	another	server	will
fail,	unless	that	server	implements	a	way	to	allow	that	connection.

This	way	is	called	CORS,	Cross-Origin	Resource	Sharing.

Also	loading	Web	Fonts	using	 	@font-face		has	same-origin	policy	by	default,	and	other	less
popular	things	(like	WebGL	textures	and	 	drawImage		resources	loaded	in	the	Canvas	API).

One	very	important	thing	that	needs	CORS	is	ES	Modules,	recently	introduced	in	modern
browsers.

If	you	don't	set	up	a	CORS	policy	on	the	server	that	allows	to	serve	3rd	part	origins,	the
request	will	fail.

Fetch	example:

XHR	example:

CORS

18

A	Cross-Origin	resource	fails	if	it's:

to	a	different	domain
to	a	different	subdomain
to	a	different	port
to	a	different	protocol

and	it's	there	for	your	security,	to	prevent	malicious	users	to	exploit	the	Web	Platform.

But	if	you	control	both	the	server	and	the	client,	you	have	all	the	good	reasons	to	allow	them	to
talk	to	each	other.

How?

It	depends	on	your	server-side	stack.

Browser	support
Pretty	good	(basically	all	except	IE<10):

Example	with	Express
If	you	are	using	Node.js	and	Express	as	a	framework,	use	the	CORS	middleware	package.

Here's	a	simple	implementation	of	an	Express	Node.js	server:

const	express	=	require('express')

const	app	=	express()

CORS

19

https://github.com/expressjs/cors

app.get('/without-cors',	(req,	res,	next)	=>	{

		res.json({	msg:	'ۘ 	no	CORS,	no	party!'	})

})

const	server	=	app.listen(3000,	()	=>	{

		console.log('Listening	on	port	%s',	server.address().port)

})

If	you	hit	 	/without-cors		with	a	fetch	request	from	a	different	origin,	it's	going	to	raise	the
CORS	issue.

All	you	need	to	do	to	make	things	work	out	is	to	require	the	 	cors		package	linked	above,	and
pass	it	in	as	a	middleware	function	to	an	endpoint	request	handler:

const	express	=	require('express')

const	cors	=	require('cors')

const	app	=	express()

app.get('/with-cors',	cors(),	(req,	res,	next)	=>	{

		res.json({	msg:	'WHOAH	with	CORS	it	works!	ث 	ʦ '	})

})

/*	the	rest	of	the	app	*/

I	made	a	simple	Glitch	example.	Here	is	the	client	working,	and	here's	its	code:
https://glitch.com/edit/#!/flavio-cors-client.

This	is	the	Node.js	Express	server:	https://glitch.com/edit/#!/flaviocopes-cors-example-express

Note	how	the	request	that	fails	because	it	does	not	handle	the	CORS	headings	correctly	is	still
received,	as	you	can	see	in	the	Network	panel,	where	you	find	the	message	the	server	sent:

CORS

20

https://flavio-cors-client.glitch.me/
https://glitch.com/edit/#!/flavio-cors-client
https://glitch.com/edit/#!/flaviocopes-cors-example-express

Allow	only	specific	origins
This	example	has	a	problem	however:	ANY	request	will	be	accepted	by	the	server	as	cross-
origin.

As	you	can	see	in	the	Network	panel,	the	request	that	passed	has	a	response	header	 	access-
control-allow-origin:	*	:

You	need	to	configure	the	server	to	only	allow	one	origin	to	serve,	and	block	all	the	others.

Using	the	same	 	cors		Node	library,	here's	how	you	would	do	it:

const	cors	=	require('cors')

const	corsOptions	=	{

		origin:	'https://yourdomain.com'

}

app.get('/products/:id',	cors(corsOptions),	(req,	res,	next)	=>	{

		//...

})

You	can	serve	more	as	well:

const	whitelist	=	['http://example1.com',	'http://example2.com']

const	corsOptions	=	{

		origin:	function(origin,	callback)	{

				if	(whitelist.indexOf(origin)	!==	-1)	{

						callback(null,	true)

				}	else	{

						callback(new	Error('Not	allowed	by	CORS'))

				}

		}

}

CORS

21

Preflight
There	are	some	requests	that	are	handled	in	a	"simple"	way.	All	 	GET		requests	belong	to	this
group.

Also	some	 	POST		and	 	HEAD		requests	do	as	well.

	POST		requests	are	also	in	this	group,	if	they	satisfy	the	requirement	of	using	a	Content-Type
of

	application/x-www-form-urlencoded	

	multipart/form-data	

	text/plain	

All	other	requests	must	run	through	a	pre-approval	phase,	called	preflight.	The	browser	does
this	to	determine	if	it	has	the	permission	to	perform	an	action,	by	issuing	an	 	OPTIONS		request.

A	preflight	request	contains	a	few	headers	that	the	server	will	use	to	check	permissions
(irrelevant	fields	omitted):

OPTIONS	/the/resource/you/request

Access-Control-Request-Method:	POST

Access-Control-Request-Headers:	origin,	x-requested-with,	accept

Origin:	https://your-origin.com

The	server	will	respond	with	something	like	this(irrelevant	fields	omitted):

HTTP/1.1	200	OK

Access-Control-Allow-Origin:	https://your-origin.com

Access-Control-Allow-Methods:	POST,	GET,	OPTIONS,	DELETE

We	checked	for	POST,	but	the	server	tells	us	we	can	also	issue	other	HTTP	request	types	for
that	particular	resource.

Following	the	Node.js	Express	example	above,	the	server	must	also	handle	the	OPTIONS
request:

var	express	=	require('express')

var	cors	=	require('cors')

var	app	=	express()

//allow	OPTIONS	on	just	one	resource

app.options('/the/resource/you/request',	cors())

//allow	OPTIONS	on	all	resources

app.options('*',	cors())

CORS

22

CORS

23

Templating
Express	is	capable	of	handling	server-side	template	engines.	Template
engines	allow	us	to	add	data	to	a	view,	and	generate	HTML	dynamically.

Express	is	capable	of	handling	server-side	template	engines.

Template	engines	allow	us	to	add	data	to	a	view,	and	generate	HTML	dynamically.

Express	uses	Jade	as	the	default.	Jade	is	the	old	version	of	Pug,	specifically	Pug	1.0.

The	name	was	changed	from	Jade	to	Pug	due	to	a	trademark	issue	in	2016,	when	the
project	released	version	2.	You	can	still	use	Jade,	aka	Pug	1.0,	but	going	forward,	it's
best	to	use	Pug	2.0

Although	the	last	version	of	Jade	is	3	years	old	(at	the	time	of	writing,	summer	2018),	it's	still
the	default	in	Express	for	backward	compatibility	reasons.

In	any	new	project,	you	should	use	Pug	or	another	engine	of	your	choice.	The	official	site	of
Pug	is	https://pugjs.org/.

You	can	use	many	different	template	engines,	including	Pug,	Handlebars,	Mustache,	EJS	and
more.

Using	Pug
To	use	Pug	we	must	first	install	it:

npm	install	pug

and	when	initializing	the	Express	app,	we	need	to	set	it:

const	express	=	require('express')

const	app	=	express()

app.set('view	engine',	'pug')

We	can	now	start	writing	our	templates	in	 	.pug		files.

Create	an	about	view:

app.get('/about',	(req,	res)	=>	{

		res.render('about')

})

Templating

24

https://pugjs.org/

and	the	template	in	 	views/about.pug	:

p	Hello	from	Flavio

This	template	will	create	a	 	p		tag	with	the	content	 	Hello	from	Flavio	.

You	can	interpolate	a	variable	using

app.get('/about',	(req,	res)	=>	{

		res.render('about',	{	name:	'Flavio'	})

})

p	Hello	from	#{name}

This	is	a	very	short	introduction	to	Pug,	in	the	context	of	using	it	with	Express.	Look	at	the	Pug
guide	for	more	information	on	how	to	use	Pug.

If	you	are	used	to	template	engines	that	use	HTML	and	interpolate	variables,	like	Handlebars
(described	next),	you	might	run	into	issues,	especially	when	you	need	to	convert	existing
HTML	to	Pug.	This	online	converter	from	HTML	to	Jade	(which	is	very	similar,	but	a	little
different	than	Pug)	will	be	a	great	help:	https://jsonformatter.org/html-to-jade

Also	see	the	differences	between	Jade	and	Pug

Using	Handlebars
Let's	try	and	use	Handlebars	instead	of	Pug.

You	can	install	it	using	 	npm	install	hbs	.

Put	an	 	about.hbs		template	file	in	the	 	views/		folder:

Hello	from	{{name}}

and	then	use	this	Express	configuration	to	serve	it	on	 	/about	:

const	express	=	require('express')

const	app	=	express()

const	hbs	=	require('hbs')

app.set('view	engine',	'hbs')

app.set('views',	path.join(__dirname,	'views'))

app.get('/about',	(req,	res)	=>	{

Templating

25

https://flaviocopes.com/pug
https://jsonformatter.org/html-to-jade
https://pugjs.org/api/migration-v2.html

		res.render('about',	{	name:	'Flavio'	})

})

app.listen(3000,	()	=>	console.log('Server	ready'))

You	can	also	render	a	React	application	server-side,	using	the	 	express-react-views	
package.

Start	with	 	npm	install	express-react-views	react	react-dom	.

Now	instead	of	requiring	 	hbs		we	require	 	express-react-views		and	use	that	as	the	engine,
using	 	jsx		files:

const	express	=	require('express')

const	app	=	express()

app.set('view	engine',	'jsx')

app.engine('jsx',	require('express-react-views').createEngine())

app.get('/about',	(req,	res)	=>	{

		res.render('about',	{	name:	'Flavio'	})

})

app.listen(3000,	()	=>	console.log('Server	ready'))

Just	put	an	 	about.jsx		file	in	 	views/	,	and	calling	 	/about		should	present	you	an	"Hello	from
Flavio"	string:

const	React	=	require('react')

class	HelloMessage	extends	React.Component	{

		render()	{

				return	<div>Hello	from	{this.props.name}</div>

		}

}

module.exports	=	HelloMessage

Templating

26

https://github.com/reactjs/express-react-views

The	Pug	Guide
How	to	use	the	Pug	templating	engine

Introduction	to	Pug
How	does	Pug	look	like
Install	Pug
Setup	Pug	to	be	the	template	engine	in	Express
Your	first	Pug	template
Interpolating	variables	in	Pug
Interpolate	a	function	return	value
Adding	id	and	class	attributes	to	elements
Set	the	doctype
Meta	tags
Adding	scripts	and	styles
Inline	scripts
Loops
Conditionals
Set	variables
Incrementing	variables
Assigning	variables	to	element	values
Iterating	over	variables
Including	other	Pug	files
Defining	blocks
Extending	a	base	template
Comments

Visible
Invisible

Introduction	to	Pug
What	is	Pug?	It's	a	template	engine	for	server-side	Node.js	applications.

Express	is	capable	of	handling	server-side	template	engines.	Template	engines	allow	us	to
add	data	to	a	view,	and	generate	HTML	dynamically.

Pug	is	a	new	name	for	an	old	thing.	It's	Jade	2.0.

The	Pug	Guide

27

The	name	was	changed	from	Jade	to	Pug	due	to	a	trademark	issue	in	2016,	when	the	project
released	version	2.	You	can	still	use	Jade,	aka	Pug	1.0,	but	going	forward,	it's	best	to	use	Pug
2.0

Also	see	the	differences	between	Jade	and	Pug

Express	uses	Jade	as	the	default.	Jade	is	the	old	version	of	Pug,	specifically	Pug	1.0.

Although	the	last	version	of	Jade	is	3	years	old	(at	the	time	of	writing,	summer	2018),	it's	still
the	default	in	Express	for	backward	compatibility	reasons.

In	any	new	project,	you	should	use	Pug	or	another	engine	of	your	choice.	The	official	site	of
Pug	is	https://pugjs.org/.

How	does	Pug	look	like

p	Hello	from	Flavio

This	template	will	create	a	 	p		tag	with	the	content	 	Hello	from	Flavio	.

As	you	can	see,	Pug	is	quite	special.	It	takes	the	tag	name	as	the	first	thing	in	a	line,	and	the
rest	is	the	content	that	goes	inside	it.

If	you	are	used	to	template	engines	that	use	HTML	and	interpolate	variables,	like	Handlebars
(described	next),	you	might	run	into	issues,	especially	when	you	need	to	convert	existing
HTML	to	Pug.	This	online	converter	from	HTML	to	Jade	(which	is	very	similar,	but	a	little
different	than	Pug)	will	be	a	great	help:	https://jsonformatter.org/html-to-jade

Install	Pug
Installing	Pug	is	as	simple	as	running	 	npm	install	:

npm	install	pug

Setup	Pug	to	be	the	template	engine	in	Express
and	when	initializing	the	Express	app,	we	need	to	set	it:

const	path	=	require('path')

const	express	=	require('express')

const	app	=	express()

The	Pug	Guide

28

https://pugjs.org/api/migration-v2.html
https://pugjs.org/
https://jsonformatter.org/html-to-jade

app.set('view	engine',	'pug')

app.set('views',	path.join(__dirname,	'views'))

Your	first	Pug	template
Create	an	about	view:

app.get('/about',	(req,	res)	=>	{

		res.render('about')

})

and	the	template	in	 	views/about.pug	:

p	Hello	from	Flavio

This	template	will	create	a	 	p		tag	with	the	content	 	Hello	from	Flavio	.

Interpolating	variables	in	Pug
You	can	interpolate	a	variable	using

app.get('/about',	(req,	res)	=>	{

		res.render('about',	{	name:	'Flavio'	})

})

p	Hello	from	#{name}

Interpolate	a	function	return	value
You	can	interpolate	a	function	return	value	using

app.get('/about',	(req,	res)	=>	{

		res.render('about',	{	getName:	()	=>	'Flavio'	})

})

p	Hello	from	#{getName()}

Adding	id	and	class	attributes	to	elements

The	Pug	Guide

29

p#title

p.title

Set	the	doctype

doctype	html

Meta	tags

html

		head

				meta(charset='utf-8')

				meta(http-equiv='X-UA-Compatible',	content='IE=edge')

				meta(name='description',	content='Some	description')

				meta(name='viewport',	content='width=device-width,	initial-scale=1')

Adding	scripts	and	styles

html

		head

				script(src="script.js")

				script(src='//ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js')

				link(rel='stylesheet',	href='css/main.css')

Inline	scripts

script	alert('test')

script

		(function(b,o,i,l,e,r){b.GoogleAnalyticsObject=l;b[l]||(b[l]=

		function(){(b[l].q=b[l].q||[]).push(arguments)});b[l].l=+new	Date;

		e=o.createElement(i);r=o.getElementsByTagName(i)[0];

		e.src='//www.google-analytics.com/analytics.js';

		r.parentNode.insertBefore(e,r)}(window,document,'script','ga'));

		ga('create','UA-XXXXX-X');ga('send','pageview');

Loops

The	Pug	Guide

30

ul

		each	color	in	['Red',	'Yellow',	'Blue']

				li=	color

ul

		each	color,	index	in	['Red',	'Yellow',	'Blue']

				li=	'Color	number	'	+	index	+	':	'	+	color

Conditionals

if	name

		h2	Hello	from	#{name}

else

		h2	Hello

else-if	works	too:

if	name

		h2	Hello	from	#{name}

else	if	anotherName

		h2	Hello	from	#{anotherName}

else

		h2	Hello

Set	variables
You	can	set	variables	in	Pug	templates:

-	var	name	=	'Flavio'

-	var	age	=	35

-	var	roger	=	{	name:	'Roger'	}

-	var	dogs	=	['Roger',	'Syd']

Incrementing	variables
You	can	increment	a	numeric	variable	using	 	++	:

age++

Assigning	variables	to	element	values

The	Pug	Guide

31

p=	name

span.age=	age

Iterating	over	variables
You	can	use	 	for		or	 	each	.	There	is	no	difference.

for	dog	in	dogs

				li=	dog

ul

		each	dog	in	dogs

				li=	dog

You	can	use	 	.length		to	get	the	number	of	items:

p	There	are	#{values.length}

	while		is	another	kind	of	loop:

-	var	n	=	0;

ul

		while	n	<=	5

				li=	n++

Including	other	Pug	files
In	a	Pug	file	you	can	include	other	Pug	files:

include	otherfile.pug

Defining	blocks
A	well	organized	template	system	will	define	a	base	template,	and	then	all	the	other	templates
extend	from	it.

The	Pug	Guide

32

The	way	a	part	of	a	template	can	be	extended	is	by	using	blocks:

html

		head

				script(src="script.js")

				script(src='//ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js')

				link(rel='stylesheet',	href='css/main.css')

				block	head

		body

				block	body

						h1	Home	page

						p	welcome

In	this	case	one	block,	 	body	,	has	some	content,	while	 	head		does	not.	 	head		is	intended	to
be	used	to	add	additional	content	to	the	heading,	while	the	 	body		content	is	made	to	be
overridden	by	other	pages.

Extending	a	base	template
A	template	can	extend	a	base	template	by	using	the	 	extends		keyword:

extends	home.pug

Once	this	is	done,	you	need	to	redefine	blocks.	All	the	content	of	the	template	must	go	into
blocks,	otherwise	the	engine	does	not	know	where	to	put	them.

Example:

extends	home.pug

block	body

		h1	Another	page

		p	Hey!

		ul

				li	Something

				li	Something	else

You	can	redefine	one	or	more	blocks.	The	ones	not	redefined	will	be	kept	with	the	original
template	content.

Comments
Comments	in	Pug	can	be	of	two	types:	visible	or	not	visible	in	the	resulting	HTML.

The	Pug	Guide

33

Visible

Inline:

//	some	comment

Block:

//

		some

		comment

Invisible

Inline:

//-	some	comment

Block:

//-

		some

		comment

The	Pug	Guide

34

Middleware
A	middleware	is	a	function	that	hooks	into	the	routing	process,	and	performs
some	operation	at	some	point,	depending	on	what	it	want	to	do.

A	middleware	is	a	function	that	hooks	into	the	routing	process,	and	performs	some	operation
at	some	point,	depending	on	what	it	want	to	do.

It's	commonly	used	to	edit	the	request	or	response	objects,	or	terminate	the	request	before	it
reaches	the	route	handler	code.

It's	added	to	the	execution	stack	like	this:

app.use((req,	res,	next)	=>	{	/*	*/	})

This	is	similar	to	defining	a	route,	but	in	addition	to	the	Request	and	Response	objects
instances,	we	also	have	a	reference	to	the	next	middleware	function,	which	we	assign	to	the
variable	 	next	.

We	always	call	 	next()		at	the	end	of	our	middleware	function,	to	pass	the	execution	to	the
next	handler,	unless	we	want	to	prematurely	end	the	response,	and	send	it	back	to	the	client.

You	typically	use	pre-made	middleware,	in	the	form	of	 	npm		packages.	A	big	list	of	the
available	ones	is	here.

One	example	is	 	cookie-parser	,	which	is	used	to	parse	the	cookies	into	the	 	req.cookies	
object.	You	install	it	using	 	npm	install	cookie-parser		and	you	can	use	it	like	this:

const	express	=	require('express')

const	app	=	express()

const	cookieParser	=	require('cookie-parser')

app.get('/',	(req,	res)	=>	res.send('Hello	World!'))

app.use(cookieParser())

app.listen(3000,	()	=>	console.log('Server	ready'))

You	can	also	set	a	middleware	function	to	run	for	specific	routes	only,	not	for	all,	by	using	it	as
the	second	parameter	of	the	route	definition:

const	myMiddleware	=	(req,	res,	next)	=>	{

		/*	...	*/

		next()

}

app.get('/',	myMiddleware,	(req,	res)	=>	res.send('Hello	World!'))

Middleware

35

https://expressjs.com/en/resources/middleware.html

If	you	need	to	store	data	that's	generated	in	a	middleware	to	pass	it	down	to	subsequent
middleware	functions,	or	to	the	request	handler,	you	can	use	the	 	Request.locals		object.	It	will
attach	that	data	to	the	current	request:

req.locals.name	=	'Flavio'

Middleware

36

Serving	static	files
How	to	serve	static	assets	directly	from	a	folder	in	Express

It's	common	to	have	images,	CSS	and	more	in	a	 	public		subfolder,	and	expose	them	to	the
root	level:

const	express	=	require('express')

const	app	=	express()

app.use(express.static('public'))

/*	...	*/

app.listen(3000,	()	=>	console.log('Server	ready'))

If	you	have	an	 	index.html		file	in	 	public/	,	that	will	be	served	if	you	now	hit	the	root	domain
URL	(http://localhost:3000)

Serving	static	files

37

Send	files
Express	provides	a	handy	method	to	transfer	a	file	as	attachment:
`Response.download()`

Express	provides	a	handy	method	to	transfer	a	file	as	attachment:	 	Response.download()	.

Once	a	user	hits	a	route	that	sends	a	file	using	this	method,	browsers	will	prompt	the	user	for
download.

The	 	Response.download()		method	allows	you	to	send	a	file	attached	to	the	request,	and	the
browser	instead	of	showing	it	in	the	page,	it	will	save	it	to	disk.

app.get('/',	(req,	res)	=>	res.download('./file.pdf'))

In	the	context	of	an	app:

const	express	=	require('express')

const	app	=	express()

app.get('/',	(req,	res)	=>	res.download('./file.pdf'))

app.listen(3000,	()	=>	console.log('Server	ready'))

You	can	set	the	file	to	be	sent	with	a	custom	filename:

res.download('./file.pdf',	'user-facing-filename.pdf')

This	method	provides	a	callback	function	which	you	can	use	to	execute	code	once	the	file	has
been	sent:

res.download('./file.pdf',	'user-facing-filename.pdf',	(err)	=>	{

		if	(err)	{

				//handle	error

				return

		}	else	{

				//do	something

		}

})

Send	files

38

Sessions
How	to	use	sessions	to	identify	users	across	requests

By	default	Express	requests	are	sequential	and	no	request	can	be	linked	to	each	other.	There
is	no	way	to	know	if	this	request	comes	from	a	client	that	already	performed	a	request
previously.

Users	cannot	be	identified	unless	using	some	kind	of	mechanism	that	makes	it	possible.

That's	what	sessions	are.

When	implemented,	every	user	of	you	API	or	website	will	be	assigned	a	unique	session,	and
this	allows	you	to	store	the	user	state.

We'll	use	the	 	express-session		module,	which	is	maintained	by	the	Express	team.

You	can	install	it	using

npm	install	express-session

and	once	you're	done,	you	can	instantiate	it	in	your	application	with

const	session	=	require('express-session')

This	is	a	middleware,	so	you	install	it	in	Express	using

const	express	=	require('express')

const	session	=	require('express-session')

const	app	=	express()

app.use(session(

		'secret':	'343ji43j4n3jn4jk3n'

))

After	this	is	done,	all	the	requests	to	the	app	routes	are	now	using	sessions.

	secret		is	the	only	required	parameter,	but	there	are	many	more	you	can	use.	It	should	be	a
randomly	unique	string	for	you	application.

The	session	is	attached	to	the	request,	so	you	can	access	it	using	 	req.session		here:

app.get('/',	(req,	res,	next)	=>	{

		//	req.session

}

Sessions

39

This	object	can	be	used	to	get	data	out	of	the	session,	and	also	to	set	data:

req.session.name	=	'Flavio'

console.log(req.session.name)	//	'Flavio'

This	data	is	serialized	as	JSON	when	stored,	so	you	are	safe	to	use	nested	objects.

You	can	use	sessions	to	communicate	data	to	middleware	that's	executed	later,	or	to	retrieve
it	later	on	on	subsequent	requests.

Where	is	the	session	data	stored?	it	depends	on	how	you	set	up	the	 	express-session		module.

It	can	store	session	data	in

memory,	not	meant	for	production
a	database	like	MySQL	or	Mongo
a	memory	cache	like	Redis	or	Memcached

There	is	a	big	list	of	3rd	packages	that	implement	a	wide	variety	of	different	compatible
caching	stores	in	https://github.com/expressjs/session

All	solutions	store	the	session	id	in	a	cookie,	and	keep	the	data	server-side.	The	client	will
receive	the	session	id	in	a	cookie,	and	will	send	it	along	with	every	HTTP	request.

We'll	reference	that	server-side	to	associate	the	session	id	with	the	data	stored	locally.

Memory	is	the	default,	it	requires	no	special	setup	on	your	part,	it's	the	simplest	thing	but	it's
meant	only	for	development	purposes.

The	best	choice	is	a	memory	cache	like	Redis,	for	which	you	need	to	setup	its	own
infrastructure.

Another	popular	package	to	manage	sessions	in	Express	is	 	cookie-session	,	which	has	a	big
difference:	it	stores	data	client-side	in	the	cookie.	I	do	not	recommend	doing	that	because
storing	data	in	cookies	means	that	it's	stored	client-side,	and	sent	back	and	forth	in	every
single	request	made	by	the	user.	It's	also	limited	in	size,	as	it	can	only	store	4	kilobytes	of
data.	Cookies	also	need	to	be	secured,	but	by	default	they	are	not,	since	secure	Cookies	are
possible	on	HTTPS	sites	and	you	need	to	configure	them	if	you	have	proxies.

Sessions

40

https://github.com/expressjs/session

Validating	input
Learn	how	to	validate	any	data	coming	in	as	input	in	your	Express	endpoints

Say	you	have	a	POST	endpoint	that	accepts	the	name,	email	and	age	parameters:

const	express	=	require('express')

const	app	=	express()

app.use(express.json())

app.post('/form',	(req,	res)	=>	{

		const	name		=	req.body.name

		const	email	=	req.body.email

		const	age			=	req.body.age

})

How	do	you	server-side	validate	those	results	to	make	sure

name	is	a	string	of	at	least	3	characters?
email	is	a	real	email?
age	is	a	number,	between	0	and	110?

The	best	way	to	handle	validating	any	kind	of	input	coming	from	outside	in	Express	is	by	using
the	 	express-validator		package:

npm	install	express-validator

You	require	the	 	check		object	from	the	package:

const	{	check	}	=	require('express-validator/check')

We	pass	an	array	of	 	check()		calls	as	the	second	argument	of	the	 	post()		call.	Every
	check()		call	accepts	the	parameter	name	as	argument:

app.post('/form',	[

		check('name').isLength({	min:	3	}),

		check('email').isEmail(),

		check('age').isNumeric()

],	(req,	res)	=>	{

		const	name		=	req.body.name

		const	email	=	req.body.email

		const	age			=	req.body.age

})

Validating	input

41

https://express-validator.github.io

Notice	I	used

	isLength()	

	isEmail()	

	isNumeric()	

There	are	many	more	of	these	methods,	all	coming	from	validator.js,	including:

	contains()	,	check	if	value	contains	the	specified	value
	equals()	,	check	if	value	equals	the	specified	value
	isAlpha()	

	isAlphanumeric()	

	isAscii()	

	isBase64()	

	isBoolean()	

	isCurrency()	

	isDecimal()	

	isEmpty()	

	isFQDN()	,	is	a	fully	qualified	domain	name?
	isFloat()	

	isHash()	

	isHexColor()	

	isIP()	

	isIn()	,	check	if	the	value	is	in	an	array	of	allowed	values
	isInt()	

	isJSON()	

	isLatLong()	

	isLength()	

	isLowercase()	

	isMobilePhone()	

	isNumeric()	

	isPostalCode()	

	isURL()	

	isUppercase()	

	isWhitelisted()	,	checks	the	input	against	a	whitelist	of	allowed	characters

You	can	validate	the	input	against	a	regular	expression	using	 	matches()	.

Dates	can	be	checked	using

	isAfter()	,	check	if	the	entered	date	is	after	the	one	you	pass
	isBefore()	,	check	if	the	entered	date	is	before	the	one	you	pass
	isISO8601()	

Validating	input

42

https://github.com/chriso/validator.js#validators

	isRFC3339()	

For	exact	details	on	how	to	use	those	validators,	refer	to
https://github.com/chriso/validator.js#validators.

All	those	checks	can	be	combined	by	piping	them:

check('name')

		.isAlpha()

		.isLength({	min:	10	})

If	there	is	any	error,	the	server	automatically	sends	a	response	to	communicate	the	error.	For
example	if	the	email	is	not	valid,	this	is	what	will	be	returned:

{

		"errors":	[{

				"location":	"body",

				"msg":	"Invalid	value",

				"param":	"email"

		}]

}

This	default	error	can	be	overridden	for	each	check	you	perform,	using	 	withMessage()	:

check('name')

		.isAlpha()

		.withMessage('Must	be	only	alphabetical	chars')

		.isLength({	min:	10	})

		.withMessage('Must	be	at	least	10	chars	long')

What	if	you	want	to	write	your	own	special,	custom	validator?	You	can	use	the	 	custom	
validator.

In	the	callback	function	you	can	reject	the	validation	either	by	throwing	an	exception,	or	by
returning	a	rejected	promise:

app.post('/form',	[

		check('name').isLength({	min:	3	}),

		check('email').custom(email	=>	{

				if	(alreadyHaveEmail(email))	{

						throw	new	Error('Email	already	registered')

				}

		}),

		check('age').isNumeric()

],	(req,	res)	=>	{

		const	name		=	req.body.name

		const	email	=	req.body.email

		const	age			=	req.body.age

})

Validating	input

43

https://github.com/chriso/validator.js#validators

The	custom	validator:

check('email').custom(email	=>	{

		if	(alreadyHaveEmail(email))	{

				throw	new	Error('Email	already	registered')

		}

})

can	be	rewritten	as

check('email').custom(email	=>	{

		if	(alreadyHaveEmail(email))	{

				return	Promise.reject('Email	already	registered')

		}

})

Validating	input

44

Sanitizing	input
You've	seen	how	to	validate	input	that	comes	from	the	outside	world	to	your	Express	app.

There's	one	thing	you	quickly	learn	when	you	run	a	public-facing	server:	never	trust	the	input.

Even	if	you	sanitize	and	make	sure	that	people	can't	enter	weird	things	using	client-side	code,
you'll	still	be	subject	to	people	using	tools	(even	just	the	browser	devtools)	to	POST	directly	to
your	endpoints.

Or	bots	trying	every	possible	combination	of	exploit	known	to	humans.

What	you	need	to	do	is	sanitizing	your	input.

The	 	express-validator		package	you	already	use	to	validate	input	can	also	conveniently	used
to	perform	sanitization.

Say	you	have	a	POST	endpoint	that	accepts	the	name,	email	and	age	parameters:

const	express	=	require('express')

const	app	=	express()

app.use(express.json())

app.post('/form',	(req,	res)	=>	{

		const	name		=	req.body.name

		const	email	=	req.body.email

		const	age			=	req.body.age

})

You	might	validate	it	using:

const	express	=	require('express')

const	app	=	express()

app.use(express.json())

app.post('/form',	[

		check('name').isLength({	min:	3	}),

		check('email').isEmail(),

		check('age').isNumeric()

],	(req,	res)	=>	{

		const	name		=	req.body.name

		const	email	=	req.body.email

		const	age			=	req.body.age

})

You	can	add	sanitization	by	piping	the	sanitization	methods	after	the	validation	ones:

Sanitizing	input

45

https://express-validator.github.io

app.post('/form',	[

		check('name').isLength({	min:	3	}).trim().escape(),

		check('email').isEmail().normalizeEmail(),

		check('age').isNumeric().trim().escape()

],	(req,	res)	=>	{

		//...

})

Here	I	used	the	methods:

	trim()		trims	characters	(whitespace	by	default)	at	the	beginning	and	at	the	end	of	a
string
	escape()		replaces	 	<	,	 	>	,	 	&	,	 	'	,	 	"		and	 	/		with	their	corresponding	HTML	entities
	normalizeEmail()		canonicalizes	an	email	address.	Accepts	several	options	to	lowercase
email	addresses	or	subaddresses	(e.g.	 	flavio+newsletters@gmail.com)

Other	sanitization	methods:

	blacklist()		remove	characters	that	appear	in	the	blacklist
	whitelist()		remove	characters	that	do	not	appear	in	the	whitelist
	unescape()		replaces	HTML	encoded	entities	with	 	<	,	 	>	,	 	&	,	 	'	,	 	"		and	 	/	
	ltrim()		like	trim(),	but	only	trims	characters	at	the	start	of	the	string
	rtrim()		like	trim(),	but	only	trims	characters	at	the	end	of	the	string
	stripLow()		remove	ASCII	control	characters,	which	are	normally	invisible

Force	conversion	to	a	format:

	toBoolean()		convert	the	input	string	to	a	boolean.	Everything	except	for	'0',	'false'	and	''
returns	true.	In	strict	mode	only	'1'	and	'true'	return	true
	toDate()		convert	the	input	string	to	a	date,	or	null	if	the	input	is	not	a	date
	toFloat()		convert	the	input	string	to	a	float,	or	NaN	if	the	input	is	not	a	float
	toInt()		convert	the	input	string	to	an	integer,	or	NaN	if	the	input	is	not	an	integer

Like	with	custom	validators,	you	can	create	a	custom	sanitizer.

In	the	callback	function	you	just	return	the	sanitized	value:

const	sanitizeValue	=	value	=>	{

		//sanitize...

}

app.post('/form',	[

		check('value').customSanitizer(value	=>	{

				return	sanitizeValue(value)

		}),

],	(req,	res)	=>	{

		const	value		=	req.body.value

})

Sanitizing	input

46

Sanitizing	input

47

Handling	forms
How	to	process	forms	using	Express

This	is	an	example	of	an	HTML	form:

<form	method="POST"	action="/submit-form">

		<input	type="text"	name="username"	/>

		<input	type="submit"	/>

</form>

When	the	user	press	the	submit	button,	the	browser	will	automatically	make	a	 	POST		request
to	the	 	/submit-form		URL	on	the	same	origin	of	the	page,	sending	the	data	it	contains,
encoded	as	 	application/x-www-form-urlencoded	.	In	this	case,	the	form	data	contains	the
	username		input	field	value.

Forms	can	also	send	data	using	the	 	GET		method,	but	the	vast	majority	of	the	forms	you'll
build	will	use	 	POST	.

The	form	data	will	be	sent	in	the	POST	request	body.

To	extract	it,	you	will	use	the	 	express.urlencoded()		middleware,	provided	by	Express:

const	express	=	require('express')

const	app	=	express()

app.use(express.urlencoded())

Now	you	need	to	create	a	 	POST		endpoint	on	the	 	/submit-form		route,	and	any	data	will	be
available	on	 	Request.body	:

app.post('/submit-form',	(req,	res)	=>	{

		const	username	=	req.body.username

		//...

		res.end()

})

Don't	forget	to	validate	the	data	before	using	it,	using	 	express-validator	.

Handling	forms

48

File	uploads	in	forms
How	to	manage	storing	and	handling	files	uploaded	via	forms,	in	Express

This	is	an	example	of	an	HTML	form	that	allows	a	user	to	upload	a	file:

<form	method="POST"	action="/submit-form">

		<input	type="file"	name="document"	/>

		<input	type="submit"	/>

</form>

When	the	user	press	the	submit	button,	the	browser	will	automatically	make	a	 	POST		request
to	the	 	/submit-form		URL	on	the	same	origin	of	the	page,	sending	the	data	it	contains,	not
encoded	as	 	application/x-www-form-urlencoded		as	a	normal	form,	but	as	 	multipart/form-data	.

Server-side,	handling	multipart	data	can	be	tricky	and	error	prone,	so	we	are	going	to	use	a
utility	library	called	formidable.	Here's	the	GitHub	repo,	it	has	over	4000	stars	and	well
maintained.

You	can	install	it	using:

npm	install	formidable

Then	in	your	Node.js	file,	include	it:

const	express	=	require('express')

const	app	=	express()

const	formidable	=	require('formidable')

Now	in	the	 	POST		endpoint	on	the	 	/submit-form		route,	we	instantiate	a	new	Formidable	form
using	 	formidable.IncomingFrom()	:

app.post('/submit-form',	(req,	res)	=>	{

		new	formidable.IncomingFrom()

})

After	doing	so,	we	need	to	parse	the	form.	We	can	do	so	synchronously	by	providing	a
callback,	which	means	all	files	are	processed,	and	once	formidable	is	done,	it	makes	them
available:

app.post('/submit-form',	(req,	res)	=>	{

		new	formidable.IncomingFrom().parse(req,	(err,	fields,	files)	=>	{

				if	(err)	{

File	uploads	in	forms

49

https://github.com/felixge/node-formidable

						console.error('Error',	err)

						throw	err

				}

				console.log('Fields',	fields)

				console.log('Files',	files)

				files.map(file	=>	{

						console.log(file)

				})

		})

})

Or	you	can	use	events	instead	of	a	callback,	to	be	notified	when	each	file	is	parsed,	and	other
events,	like	ending	processing,	receiving	a	non-file	field,	or	an	error	occurred:

app.post('/submit-form',	(req,	res)	=>	{

		new	formidable.IncomingFrom().parse(req)

				.on('field',	(name,	field)	=>	{

						console.log('Field',	name,	field)

				})

				.on('file',	(name,	file)	=>	{

						console.log('Uploaded	file',	name,	file)

				})

				.on('aborted',	()	=>	{

						console.error('Request	aborted	by	the	user')

				})

				.on('error',	(err)	=>	{

						console.error('Error',	err)

						throw	err

				})

				.on('end',	()	=>	{

						res.end()

				})

})

Whatever	way	you	choose,	you'll	get	one	or	more	Formidable.File	objects,	which	give	you
information	about	the	file	uploaded.	These	are	some	of	the	methods	you	can	call:

	file.size	,	the	file	size	in	bytes
	file.path	,	the	path	this	file	is	written	to
	file.name	,	the	name	of	the	file
	file.type	,	the	MIME	type	of	the	file

The	path	defaults	to	the	temporary	folder	and	can	be	modified	if	you	listen	to	the	 	fileBegin	
event:

app.post('/submit-form',	(req,	res)	=>	{

		new	formidable.IncomingFrom().parse(req)

				.on('fileBegin',	(name,	file)	=>	{

						form.on('fileBegin',	(name,	file)	=>	{

								file.path	=	__dirname	+	'/uploads/'	+	file.name

						})

File	uploads	in	forms

50

				})

				.on('file',	(name,	file)	=>	{

						console.log('Uploaded	file',	name,	file)

				})

				//...

})

File	uploads	in	forms

51

An	Express	HTTPS	server	with	a	self-
signed	certificate
How	to	create	a	self-signed	HTTPS	certificate	for	Node.js	to	test	apps	locally

To	be	able	to	serve	a	site	on	HTTPS	from	localhost	you	need	to	create	a	self-signed
certificate.

A	self-signed	certificate	will	be	enough	to	establish	a	secure	HTTPS	connection,	although
browsers	will	complain	that	the	certificate	is	self-signed	and	as	such	it's	not	trusted.	It's	great
for	development	purposes.

To	create	the	certificate	you	must	have	OpenSSL	installed	on	your	system.

You	might	have	it	installed	already,	just	test	by	typing	 	openssl		in	your	terminal.

If	not,	on	a	Mac	you	can	install	it	using	 	brew	install	openssl		if	you	use	Homebrew.	Otherwise
search	on	Google	"how	to	install	openssl	on	".

Once	OpenSSL	is	installed,	run	this	command:

openssl	req	-nodes	-new	-x509	-keyout	server.key	-out	server.cert

It	will	as	you	a	few	questions.	The	first	is	the	country	name:

Generating	a	1024	bit	RSA	private	key

...........++++++

.........++++++

writing	new	private	key	to	'server.key'

You	are	about	to	be	asked	to	enter	information	that	will	be	incorporated	into	your	certifi

cate	request.

What	you	are	about	to	enter	is	what	is	called	a	Distinguished	Name	or	a	DN.

There	are	quite	a	few	fields	but	you	can	leave	some	blank

For	some	fields	there	will	be	a	default	value,

If	you	enter	'.',	the	field	will	be	left	blank.

Country	Name	(2	letter	code)	[AU]:

Then	your	state	or	province:

State	or	Province	Name	(full	name)	[Some-State]:

your	city:

An	Express	HTTPS	server	with	a	self-signed	certificate

52

https://brew.sh

Locality	Name	(eg,	city)	[]:

and	your	organization	name:

Organization	Name	(eg,	company)	[Internet	Widgits	Pty	Ltd]:

Organizational	Unit	Name	(eg,	section)	[]:

You	can	leave	all	of	these	empty.

Just	remember	to	set	this	to	 	localhost	:

Common	Name	(e.g.	server	FQDN	or	YOUR	name)	[]:	localhost

and	to	add	your	email	address:

Email	Address	[]:

That's	it!	Now	you	have	2	files	in	the	folder	where	you	ran	this	command:

	server.cert		is	the	self-signed	certificate	file
	server.key		is	the	private	key	of	the	certificate

Both	files	will	be	needed	to	establish	the	HTTPS	connection,	and	depending	on	how	you	are
going	to	setup	your	server,	the	process	to	use	them	will	be	different.

Those	files	need	to	be	put	in	a	place	reachable	by	the	application,	then	you	need	to	configure
the	server	to	use	them.

This	is	an	example	using	the	 	https		core	module	and	Express:

const	https	=	require('https')

const	app	=	express()

app.get('/',	(req,	res)	=>	{

		res.send('Hello	HTTPS!')

})

https.createServer({},	app).listen(3000,	()	=>	{

		console.log('Listening...')

})

without	adding	the	certificate,	if	I	connect	to	 	https://localhost:3000		this	is	what	the	browser
will	show:

An	Express	HTTPS	server	with	a	self-signed	certificate

53

With	the	certificate	in	place:

const	fs	=	require('fs')

//...

https.createServer({

		key:	fs.readFileSync('server.key'),

		cert:	fs.readFileSync('server.cert')

},	app).listen(3000,	()	=>	{

		console.log('Listening...')

})

Chrome	will	tell	us	the	certificate	is	invalid,	since	it's	self-signed,	and	will	ask	us	to	confirm	to
continue,	but	the	HTTPS	connection	will	work:

An	Express	HTTPS	server	with	a	self-signed	certificate

54

An	Express	HTTPS	server	with	a	self-signed	certificate

55

Setup	Let's	Encrypt	for	Express
How	to	set	up	HTTPS	using	the	popular	free	solution	Let's	Encrypt

If	you	run	a	Node.js	application	on	your	own	VPS,	you	need	to	manage	getting	an	SSL
certificate.

Today	the	standard	for	doing	this	is	to	use	Let's	Encrypt	and	Certbot,	a	tool	from	EFF,	aka
Electronic	Frontier	Foundation,	the	leading	nonprofit	organization	focused	on	privacy,	free
speech,	and	in	general	civil	liberties	in	the	digital	world.

These	are	the	steps	we'll	follow:

Install	Certbot
Generate	the	SSL	certificate	using	Certbot
Allow	Express	to	serve	static	files
Confirm	the	domain
Obtain	the	certificate
Setup	the	renewal

Install	Certbot
Those	instructions	assume	you	are	using	Ubuntu,	Debian	or	any	other	Linux	distribution	that
uses	 	apt-get	:

sudo	add-apt	repository	ppa:certbot/certbot

sudo	apt-get	update

sudo	apt-get	install	certbot

You	can	also	install	Certbot	on	a	Mac	to	test:

brew	install	certbot

but	you	will	need	to	link	that	to	a	real	domain	name,	in	order	for	it	to	be	useful.

Generate	the	SSL	certificate	using	Certbot
Now	that	Certbot	is	installed,	you	can	invoke	it	to	generate	the	certificate.	You	must	run	this	as
root:

Setup	Let's	Encrypt	for	Express

56

https://letsencrypt.org
https://certbot.eff.org/
https://www.eff.org/

certbot	certonly	--manual

or	call	sudo

sudo	certbot	certonly	--manual

The	installer	will	ask	you	the	domain	of	your	website.

This	is	the	process	in	detail.

It	asks	for	the	email

➜	sudo	certbot	certonly	--manual
Password:	XXXXXXXXXXXXXXXXXX

Saving	debug	log	to	/var/log/letsencrypt/letsencrypt.log

Plugins	selected:	Authenticator	manual,	Installer	None

Enter	email	address	(used	for	urgent	renewal	and	security	notices)	(Enter	'c'	to

cancel):	flavio@flaviocopes.com

It	asks	to	accept	the	ToS:

Please	read	the	Terms	of	Service	at

https://letsencrypt.org/documents/LE-SA-v1.2-November-15-2017.pdf.	You	must

agree	in	order	to	register	with	the	ACME	server	at

https://acme-v02.api.letsencrypt.org/directory

(A)gree/(C)ancel:	A

It	asks	to	share	the	email	address

Would	you	be	willing	to	share	your	email	address	with	the	Electronic	Frontier

Foundation,	a	founding	partner	of	the	Let's	Encrypt	project	and	the	non-profit

organization	that	develops	Certbot?	We'd	like	to	send	you	email	about	our	work

encrypting	the	web,	EFF	news,	campaigns,	and	ways	to	support	digital	freedom.

-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(Y)es/(N)o:	Y

And	finally	we	can	enter	the	domain	where	we	want	to	use	the	SSL	certificate:

Please	enter	in	your	domain	name(s)	(comma	and/or	space	separated)		(Enter	'c'

to	cancel):	copesflavio.com

It	asks	if	it's	ok	to	log	your	IP:

Obtaining	a	new	certificate

Performing	the	following	challenges:

Setup	Let's	Encrypt	for	Express

57

http-01	challenge	for	copesflavio.com

-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

NOTE:	The	IP	of	this	machine	will	be	publicly	logged	as	having	requested	this

certificate.	If	you're	running	certbot	in	manual	mode	on	a	machine	that	is	not

your	server,	please	ensure	you're	okay	with	that.

Are	you	OK	with	your	IP	being	logged?

-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(Y)es/(N)o:	y

And	finally	we	get	to	the	verification	phase!

-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Create	a	file	containing	just	this	data:

TS_oZ2-ji23jrio3j2irj3iroj_U51u1o0x7rrDY2E.1DzOo_voCOsrpddP_2kpoek2opeko2pke-UAPb21sW1c

And	make	it	available	on	your	web	server	at	this	URL:

http://copesflavio.com/.well-known/acme-challenge/TS_oZ2-ji23jrio3j2irj3iroj_U51u1o0x7rrDY

2E

Now	let's	leave	Certbot	alone	for	a	couple	minutes.

We	need	to	verify	we	own	the	domain,	by	creating	a	file	named	 	TS_oZ2-
ji23jrio3j2irj3iroj_U51u1o0x7rrDY2E		in	the	 	.well-known/acme-challenge/		folder.	Pay	attention!
The	weird	string	I	just	pasted	change	every	single	time.

You'll	need	to	create	the	folder	and	the	file,	since	they	do	not	exist	by	default.

In	this	file	you	need	to	put	the	content	that	Certbot	printed:

TS_oZ2-ji23jrio3j2irj3iroj_U51u1o0x7rrDY2E.1DzOo_voCOsrpddP_2kpoek2opeko2pke-UAPb21sW1c

As	for	the	filename,	this	string	is	unique	each	time	you	run	Certbot.

Allow	Express	to	serve	static	files
In	order	to	serve	that	file	from	Express,	you	need	to	enable	serving	static	files.	You	can	create
a	 	static		folder,	and	add	there	the	 	.well-known		subfolder,	then	configure	Express	like	this:

const	express	=	require('express')

const	app	=	express()

//...

Setup	Let's	Encrypt	for	Express

58

app.use(express.static(__dirname	+	'/static',	{	dotfiles:	'allow'	}))

//...

The	 	dotfiles		option	is	mandatory	otherwise	 	.well-known	,	which	is	a	dotfile	as	it	starts	with	a
dot,	won't	be	made	visible.	This	is	a	security	measure,	because	dotfiles	can	contain	sensitive
information	and	they	are	better	off	preserved	by	default.

Confirm	the	domain
Now	run	the	application	and	make	sure	the	file	is	reachable	from	the	public	internet,	and	go
back	to	Certbot,	which	is	still	running,	and	press	ENTER	to	go	on	with	the	script.

Obtain	the	certificate
That's	it!	If	all	went	well,	Certbot	created	the	certificate,	and	the	private	key,	and	made	them
available	in	a	folder	on	your	computer	(and	it	will	tell	you	which	folder,	of	course).

Now	copy/paste	the	paths	into	your	application,	to	start	using	them	to	serve	your	requests:

const	fs	=	require('fs')

const	https	=	require('https')

const	app	=	express()

app.get('/',	(req,	res)	=>	{

		res.send('Hello	HTTPS!')

})

https.createServer({

		key:	fs.readFileSync('/etc/letsencrypt/path/to/key.pem'),

		cert:	fs.readFileSync('/etc/letsencrypt/path/to/cert.pem'),

		ca:	fs.readFileSync('/etc/letsencrypt/path/to/chain.pem')

},	app).listen(443,	()	=>	{

		console.log('Listening...')

})

Note	that	I	made	this	server	listen	on	port	443,	so	you	need	to	run	it	with	root	permissions.

Also,	the	server	is	exclusively	running	in	HTTPS,	because	I	used	 	https.createServer()	.	You
can	also	run	an	HTTP	server	alongside	this,	by	running:

http.createServer(app).listen(80,	()	=>	{

		console.log('Listening...')

})

https.createServer({

Setup	Let's	Encrypt	for	Express

59

		key:	fs.readFileSync('/etc/letsencrypt/path/to/key.pem'),

		cert:	fs.readFileSync('/etc/letsencrypt/path/to/cert.pem'),

		ca:	fs.readFileSync('/etc/letsencrypt/path/to/chain.pem')

},	app).listen(443,	()	=>	{

		console.log('Listening...')

})

Setup	the	renewal
The	SSL	certificate	is	not	going	to	be	valid	for	90	days.	You	need	to	set	up	an	automated
system	for	renewing	it.

How?	Using	a	cron	job.

A	cron	job	is	a	way	to	run	tasks	every	interval	of	time.	It	can	be	eery	week,	every	minute,	every
month.

In	our	case	we'll	run	the	renewal	script	twice	per	day,	as	recommended	in	the	Certbot
documentation.

First	find	out	the	absolute	path	of	 	certbot		on	you	system.	I	use	 	type	certbot		on	macOS	to
get	it,	and	in	my	case	it's	 	/usr/local/bin/certbot	.

Here's	the	script	we	need	to	run:

	certbot	renew	

This	is	the	cron	job	entry:

0	*/12	*	*	*	root	/usr/local/bin/certbot	renew	>/dev/null	2>&1

It	means	run	it	every	12	hours,	every	day:	at	00:00	and	at	12:00.

Tip:	I	generated	this	line	using	https://crontab-generator.org/

Add	this	script	to	your	crontab,	by	using	the	command:

env	EDITOR=pico	crontab	-e

This	opens	the	 	pico		editor	(you	can	choose	the	one	you	prefer).	You	enter	the	line,	save,
and	the	cron	job	is	installed.

Once	this	is	done,	you	can	see	the	list	of	cron	jobs	active	using

crontab	-l

Setup	Let's	Encrypt	for	Express

60

https://crontab-generator.org/

Setup	Let's	Encrypt	for	Express

61

	The Express Handbook
	Express overview
	Request parameters
	Sending a response
	Sending a JSON response
	Manage Cookies
	Work with HTTP headers
	Redirects
	Routing
	CORS
	Templating
	The Pug Guide
	Middleware
	Serving static files
	Send files
	Sessions
	Validating input
	Sanitizing input
	Handling forms
	File uploads in forms
	An Express HTTPS server with a self-signed certificate
	Setup Let's Encrypt for Express

