
Docker in Production | PACKT Books
In this article by Scott Gallagher, the author of Mastering Docker, we will be
looking at Docker in production, pulling all the pieces together so you can start
using Docker in your production environments and feel comfortable doing so.
Let’s take a peek at what we will be covering in this article:

Setting up hosts and nodes
Managing hosts and container
Using Docker Compose
Extending to external platforms
Security

(For more resources related to this topic, see here.)

When we start thinking about putting Docker into our production environment,
we first need to know where to start. This sometimes can be the hardest part of
any project. We first need to start by setting up our Docker hosts and then start
running containers on them. So, let’s start here!

Setting up hosts

Setting up hosts will require us to tap into our Docker Machine knowledge. We
can deploy these hosts to different environments, including cloud hosting. To take
a job down memory lane, let’s look at how we go about doing this:

$ docker-machine create —driver

 Now, there are two values that we can manipulate: and . The host name can be
whatever you want it to be. But I recommend that it should be something that
would help you understand its purpose. The driver name on the other hand has to
be the location where you want to create the host. If you are looking at doing
something locally, then you can use virtualbox or vmwarefusion. If you are looking
at deploying to a cloud service, you can use something like Amazon EC2, Azure,
or DigitalOcean. Most of these cloud services will require additional details to
authenticate who you are and where to place the host:

For example, for AWS, you would use:

1

http://fivefilters.org
https://www.packtpub.com/books/content/docker-production
https://www.packtpub.com/virtualization-and-cloud/mastering-docker?dg/mastdocker-abr1/1115?utm_source=dg_mastdocker_abr1_1115&utm_medium=content&utm_campaign=darshana
https://www.packtpub.com/books/content/docker-production#more

$ docker-machine create --driver amazonec2

 --amazonec2-access-key --amazonec2-secret-key

 --amazonec2-subnet-id east-1b amazonhost

 You can see that you will need the following:

Amazon access key
Amazon secret key
Amazon subnet ID

Setting up nodes

Next, we want to set up the nodes or containers to run on the hosts that we have
recently created. Again, using a combination of Docker Machine with the Docker
daemon, we can do this. We first must use Docker Machine to point to the Docker
host that we want to deploy some containers on:

$ docker-machine env

$ eval "$(docker-machine env)"

 Now we can run our normal Docker commands against this Docker host. To do
this, we will simply use the Docker command-line tools. To deploy the containers,
we can pull the following images:

$ docker pull

 Or, we can run a container on a host:

$ docker run -d -p 80:80 nginx

 In this section, we will focus on host management, that is, the ways we can
manage our hosts, what we should use to manage our hosts, how we can monitor
our hosts, and container failover, which is very important when something
happens to the host that is running critical containers.

2

Host monitoring

With host monitoring you can do so via the command line using Docker Machine
as also there are some GUI applications out there that can be useful as well. For
Machine, you can use the ls subcommand:

$ docker-machine ls

NAME ACTIVE DRIVER STATE URL

 SWARM

amazonhost amazonec2 Error

swarm-master * virtualbox Running

tcp://192.168.99.102:2376 swarm-master(master)

swarm-node1 virtualbox Running

tcp://192.168.99.103:2376 swarm-master

 You can use some GUI applications out there as well, such as:

Docker Swarm

Another tool that you can use for node management is that of Docker Swarm. We
saw previously how helpful Swarm can be. Remember that you can use Docker
Swarm to manage your hosts as well as to create and list them. The most useful
commands to remember for Swarm is the list subcommand. With the list
subcommand, you can get a view of all the nodes and their statuses:

Remember that you will need either the discovery service IP or the token number
that is used for Swarm:

$ docker run swarm list token://

 Swarm Manager failover

With Docker Swarm, you can set up your manager node to be highly available.
That is, if the manage host dies, you can have it failover to another host. If you
don’t have it set up, there will be a service interruption, as you won’t be able to
communicate to your hosts anymore and will need to reset them up to point to the
new Docker Swarm manager. You can set up as many replicas as you want.

To set this up, you will need to use the —replication and —advertise flags. This

3

https://192.168.99.102:2376/
https://192.168.99.103:2376/

tells Swarm that there will be other managers for failover. It will also tell Swarm
what address to advertise on, so the other managers know on what IP address to
connect for other Swarm managers.

Now, let’s look at container management. This includes questions such as where
to store the images that we will be creating, how to use these images, and what
commands and GUI applications we can use. It also covers how we can easily
monitor our running containers, automatically restart containers upon a failure,
and how to roll the updates of our containers.

Container image storage

Remember that there are three major locations to store the images you are
creating:

Docker Hub: A location that is run by Docker and can contain public and
private repositories
Docker Trusted Registry: A location that is again run by Docker, but
provides the ability to get support from Docker
The locally run Docker registry: Locally run by yourself to storage images

You will want to consider where you want your images to be stored. If you are
running containers that might contain data that you do not want anybody to be
able to access, such as private code, you may want to run your own Docker
registry to keep the data locked. If you are testing, then you may only want to use
Docker Hub. If you are in an enterprise environment where uptime is necessary,
then the second option of having Docker there for support would be immensely
beneficial. Again, it all depends on your setup and needs. The best thing is that no
matter what you choose at first, you can easily change and push your images to
these locations without having to jump through a lot of extra hoops or other
configurations.

Image usage

The most important thing to remember about Docker images is the four Ws:

Who: Who made the image?
What: What is contained in the image?

4

Why: Why are these things created?
Where: Where are the items such as the Dockerfile or the other code for the
image?

The Docker commands and GUIs

Remember that there are many commands that you can use to control your
containers. With tools such as the Docker daemon, Docker Machine, Docker
Compose, and Docker Swarm, there is almost nothing that can stop you from
achieving the goal you want. Remember, however, that some of these tools are
not available on all the platforms yet. I stress yet as I assume that Docker will
eventually have their tools available for all the environments. Be sure to use the
—help flag on all the commands to see the additional switches that might be
available. I myself am always finding new switches to use every day on various
commands.

There are also many GUI applications out there; they can be beneficial to your
container’s management needs. One that has been on the forefront of this since
the beginning is Panamax. Panamax provides the ability to set up your
environments in a GUI-based application for you to deploy, monitor, and
manipulate your container environments. With the popularity of Docker growing
each day, there will be many, many, many others that you can use to help set up
and tune your environment.

Container monitoring

We can also monitor our containers using methods similar to monitoring hosts:
using Docker commands as well as GUIs that are built by others.

First, the Docker commands that you can use:

docker stats
docker port
docker logs
docker inspect
docker events

In the Host monitoring section, you can see that the same GUI applications can

5

monitor both your Docker hosts and your containers. It is a double bonus as you
don’t need separate applications to monitor each service.

Automatic restarts

Another great thing you can do with your Docker images is you can set them to
automatically restart upon a failure or a reboot of a Docker host. There is a flag
that can be set at runtime: the —restart flag. There are three options you can set,
one of which is set by default by not setting the flag.

These three options are:

no: The default by not using the flag.
on-failure:max_retires: Sets the container to restart, but not indefinitely if
there is a major problem. It will try to restart the container a number of
times based on the value set for max_retires. After it has passed that value, it
will not try to restart anymore.
always: Will always restart the container. It could cause a looping issue if the
container continues to just restart.

Rolling updates

One of the benefits I have learned to love about Docker is the ability to control it
the same way I control the code that I write. Just like Git, remember that your
Docker images are version-controlled as well. This being said, you can do things
such a rolling updates to them. There are two ways you can go about doing it. You
can keep your images as a hosted code on something like GitHub. You can then
update your code, build your image, and deploy your containers. If something
goes wrong, you can simply use another version of that image to redeploy. There
is also another way you can do this. You can get the new image up and running;
when you are ready, stop the old container from running and then start up the
new one. If you use items such as discovery services, it becomes even easier; you
can roll your newly updated images into the discovery service while rolling out
the old images. This makes for seamless upgrades and a great peace of mind for
zero downtime.

One of the more useful tools, and one I find myself using a lot, is Docker
Compose. Compose has a lot of powerful usage, which in turn is great for you. In
this section, we will look at two of its usages:

6

Developer environments
Scaling environments

Developer environments

You can use Docker Compose to set up your development environments. How is
this any different from setting up a virtual machine for them to use or letting
them use their own setup? With Docker Compose, you control the setup, you
control what is linked to what, and you know how the environment is set up. So,
there is no more “well it works on my system” or need to troubleshoot error
messages that are appearing on one system setup but not another.

Scaling environments

Docker Compose also allows you to scale containers that are located in the
docker-compose.yml file. For example, let’s say our Compose file looks as follows:

varnish:

 image: jacksoncage/varnish

 ports:

 - "82:80"

 links:

 - web

environment:

 VARNISH_BACKEND_PORT: 80

 VARNISH_BACKEND_IP: web

 VARNISH_PORT: 80

web:

 image: scottpgallagher/php5-mysql-apache2

 volumes:

 - .:/var/www/html/

 With the Compose setup, you can easily scale the containers from your
docker-compose.yml file. For instance, if you need more web containers to help
with the backend load, you can do so with Docker Compose. Be sure that you are
in the folder where your docker-compose.yml file is located:

7

$ docker-compose scale web=3

 This will add three extra web containers and do all the linking as well as the
traffic forwarding from the varnish server that is necessary. This can be
immensely helpful if you are looking at figuring out how many instances you
might need to help scale for load or service usage.

We looked at how we can extend to some other external platforms such as cloud
services like AWS, Microsoft Azure, and DigitalOcean before. In this section, we
will focus on extending Docker to the Heroku platform. Heroku is more a little
different than those cloud services; it is a considered a Platform as a Service (
PaaS). Instead of deploying containers to it, you can link your containers to the
Heroku platform from which it is running a service, such as PHP, Java, Node.js,
Python, or many others. So, you can run your rails application on Heroku and
then attach your Docker container to that platform.

Heroku

The way you can use Docker and Heroku together is by creating your application
on the Heroku platform. Then, in your code, you will have something similar to
the following:

{

 "name": "Application Name",

 "description": "Application to run code in a Docker

 container",

 "image": ":",

 "addons": ["heroku-postgresql"]

}

 To take a step back, we first need to install a plugin to be able to get this
functionality working. To install it, we will simply run:

$ heroku plugins:install heroku-docker

 Now, if you are wondering what image you can or should be using from Docker
Hub, Heroku maintains a lot of images you can use in the preceding code. They
are as follows:

8

heroku/nodejs

heroku/ruby

heroku/jruby

heroku/python

heroku/scala

heroku/clojure

heroku/gradle

heroku/java

heroku/go

heroku/go-gb

 Lastly, let’s take a look at the security aspect of putting Docker into production.
This is probably one of the most talked about aspect of not only Docker, but any
technology out there. What security risks exist? What security advantages exist?
We will take a look at both of these aspects as well as cover the best practices for
your overall Docker setup.

Security best practices

These are the things to keep in mind when you are setting up your production
environment:

Whoever has access to your Docker host has access to every single Docker
container that is running on that host and has the ability to stop them, delete
them, or even start up new containers.
Remember that you can run Docker containers or attach containers to
Docker volumes using the read-only modes. This can be done by adding the
:ro option to the volume:

$ docker run -d -v /opt/uploads:ro nginx

$ docker run -d —volumes-from data:ro nginx

Remember to utilize the Docker security benchmark application to help tune
your environments.
Utilize the Docker command-line tools to your capability to see what has
changed in a particular image:

$ docker diff

9

$ docker inspect

$ docker history

DockerUI is a tool written by Michael Crosby, who at the time of writing this book
worked for Docker. DockerUI is a simple way to view what is going on inside your
Docker host.

This is a screenshot of the GitHub repository, where the code for DockerUI is
kept. You can view the content yourself by navigating to
https://github.com/crosbymichael/dockerui.

This page will include screenshots of DockerUI in action as well as the current
features of DockerUI that are available. You can create pull requests against the
code if you have ideas you would like to see in DockerUI and would like to help
contribute to the code. You can also submit issues that you might find with
DockerUI.

The installation of DockerUI is very straightforward with you just running a

10

https://github.com/crosbymichael/dockerui

simple Docker run command to get started:

$ docker run -d -p 9000:9000 --privileged -v

 /var/run/docker.sock:/var/run/docker.sock dockerui/dockerui

After you have run the previous command, you will be able to navigate to the
DockerUI web interface. You should be able to easily breakdown the run
command and see what it is doing and where you need to go to get to the
dashboard. However, in case you are stumped, here is what the command is
doing: it is running the DockerUI container on your Docker host and exposing
port 9000 from the host to the container. So, simply launching a web browser and
pointing to the IP address of the Docker host and then port 9000 will give you to a
screen similar to the previous one. This is the DockerUI web dashboard.

11

This is another view of the dashboard shortly after you have launched the
container and visited the web interface. You can see information such as what
containers are currently running on your Docker host and what their statuses are;
some could be stopped as well. It will also show you the containers that are
created and a timeline for when the images were created.

12

At the top of the web interface, you will see a navigation bar. When you click on
the Containers item, you will be brought to a page that provides you information
on all the containers running on your host. You will see their name, the images
used to run the containers, what command is being executed inside each
container, when they were created, and their statuses. You can take actions
against these containers from here as well. These actions are start, stop, restart,
kill, pause, unpause, and remove.

13

Next up in the navigation bar is Images. Again, like Containers, you can get all
the information on all the images being used on your Docker host here.
Information such as their IDs, what repositories they are from, their virtual sizes,
and when they were created will be displayed here. Again, you can take some
actions on your images. But for images, the only option you have is to remove
them from your Docker host.

14

The last item in the navigation menu is Info. The Info section gives you a general
overview of your Docker host, such as what Docker version it is running and how
many containers and images are there. It also provides system information on the
hardware that is available.

ImageLayers is a great tool, when you are looking at shipping your containers or
images around. It will take into account everything that is going on in every single
layer of a particular Docker image and give you an output of how much weight it
has in terms of actual size or the amount of disk space it will take up.

15

This screenshot is what you will be presented with while navigating to the
ImageLayers website: https://imagelayers.io.

You can search for images that are on Docker Hub to have ImageLayers provide
information on the image back to you. Or, you can load up a sample image set if
you are looking at providing some sample sets or seeing some more complex
setups.

16

https://imagelayers.io

In this example, we are going to search for the wordpress image and select the
latest tag. Now, you can search for any image and it does do autofill and then you
can select any tag as well. This could be useful if you have, say, a staging tag and
are thinking of pushing a new image to your latest tag, but you want to see what
impact it has on the size of the image.

17

So, let’s walk through an example. In this example, we are going to select a mysql
image and the latest tag. We will use this since it is a common image that most
people will use at some point in their Docker experience.

18

Once we click on Save Changes from the previous item, we will be shown
something similar to the preceding screenshot (now, this will vary depending
upon the image you have selected in your search). This displays some information
at the top, such as the total image size, unique layers, the average layer size, and
the largest layer size. This will help you hone in on a particular layer that might
have grown wildly.

19

The layers are broken down on the left-hand side of the previous screenshot. We
can see what action is being done at each level as the size that it adds to the
overall image per layer.

20

Upon hovering on a particular layer, you will be given information on it at the
bottom of the screen in a black box. This will show how each action is layered one
after the other so as to help see the command structure of the image.

21

The preceding screenshot is an example of you might see if you were to click on
the sample image set from the main screen. As you can see, this one is quite
complex; not only does it have a lot of layers, but it also has a lot of images that
are being used. This could be something you would see while adding multiple
images to see your desired output.

In this article, you have learned how to use Docker in a production environment
as well as the key considerations to keep an eye on during the times of and before
implementation.

22

