
Learn to Code Advanced

HTML & CSS

Lesson 8

Transitions & Animations

8
In this Lesson

CSS

Transitions

Shorthand Transitions

Animations

Customizing Animations

Shorthand Animations

SHARE

  

One evolution with CSS3 was the ability to write behaviors for transitions and

animations. Front end developers have been asking for the ability to design these

interactions within HTML and CSS, without the use of JavaScript or Flash, for years. Now

their wish has come true.

With CSS3 transitions you have the potential to alter the appearance and behavior of an

element whenever a state change occurs, such as when it is hovered over, focused on,

active, or targeted.

Animations within CSS3 allow the appearance and behavior of an element to be altered

in multiple keyframes. Transitions provide a change from one state to another, while

animations can set multiple points of transition upon different keyframes.

Transitions

As mentioned, for a transition to take place, an element must have a change in state,

and different styles must be identified for each state. The easiest way for determining

styles for different states is by using the :hover, :focus, :active, and :target
pseudo-classes.

There are four transition related properties in total, including transition-property,

transition-duration, transition-timing-function, and transition-delay. Not

all of these are required to build a transition, with the first three are the most popular.

In the example below the box will change its background color over the course of 1
second in a linear fashion.

.box { 

  background: #2db34a; 

  transition-property: background; 

  transition-duration: 1s; 

  transition-timing-function: linear; 

1

2

3

4

5

https://learn.shayhowe.com/advanced-html-css/
https://twitter.com/share?text=Transitions%20%26amp%3B%20Animations%20-&url=http://learn.shayhowe.com/advanced-html-css/transitions-animations/&via=shayhowe&related=shayhowe
http://www.facebook.com/sharer.php?u=http://learn.shayhowe.com/advanced-html-css/transitions-animations/
https://plus.google.com/share?url=http://learn.shayhowe.com/advanced-html-css/transitions-animations/
http://www.alistapart.com/articles/understanding-css3-transitions/


} 

.box:hover { 

  background: #ff7b29; 

} 

             

6

7

8

9

10

Transition Demo

Box

Resources

HTML CSS
E D I T  O N

RESULT

1× 0.5× 0.25× Rerun

Vendor Prefixes

The code above, as with the rest of the code samples in this lesson, are not

vendor prefixed. This is intentionally un-prefixed in the interest of keeping the

code snippet small and comprehensible. For the best support across all

browsers, use vendor prefixes.

For reference, the prefixed version of the code above would look like the

following.

.box { 

    background: #2db34a; 

    -webkit-transition-property: background; 

       -moz-transition-property: background; 

         -o-transition-property: background; 

            transition-property: background; 

    -webkit-transition-duration: 1s; 

       -moz-transition-duration: 1s; 

         -o-transition-duration: 1s; 

            transition-duration: 1s; 

    -webkit-transition-timing-function: linear; 

       -moz-transition-timing-function: linear; 

         -o-transition-timing-function: linear; 

            transition-timing-function: linear; 

} 

.box:hover { 

  background: #ff7b29; 

} 

                

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Transitional Property

The transition-property property determines exactly what properties will be altered

in conjunction with the other transitional properties. By default, all of the properties

https://codepen.io/shayhowe/pen/aCwcK


within an element’s different states will be altered upon change. However, only the

properties identified within the transition-property value will be affected by any

transitions.

In the example above, the background property is identified in the transition-
property value. Here the background property is the only property that will change

over the duration of 1 second in a linear fashion. Any other properties included when

changing an element’s state, but not included within the transition-property value,

will not receive the transition behaviors as set by the transition-duration or

transition-timing-function properties.

If multiple properties need to be transitioned they may be comma separated within the

transition-property value. Additionally, the keyword value all may be used to

transition all properties of an element.

.box { 

    background: #2db34a; 

    border-radius: 6px 

    transition-property: background, border-radius; 

    transition-duration: 1s; 

    transition-timing-function: linear; 

  } 

  .box:hover { 

    background: #ff7b29; 

    border-radius: 50%; 

  } 

             

1

2

3

4

5

6

7

8

9

10

11

12

Transition Property Demo

Box

Resources

HTML CSS
E D I T  O N

RESULT

1× 0.5× 0.25× Rerun

Transitional Properties

It is important to note, not all properties may be transitioned, only properties that have

an identifiable halfway point. Colors, font sizes, and the alike may be transitioned from

one value to another as they have recognizable values in-between one another. The

display property, for example, may not be transitioned as it does not have any

midpoint. A handful of the more popular transitional properties include the following.

background-color
background-position
border-color
border-width
border-spacing
bottom
clip

https://codepen.io/shayhowe/pen/HlgxF


color
crop
font-size
font-weight
height
left
letter-spacing
line-height
margin
max-height
max-width
min-height
min-width
opacity
outline-color
outline-offset
outline-width
padding
right
text-indent
text-shadow
top
vertical-align
visibility
width
word-spacing
z-index

Transition Duration

The duration in which a transition takes place is set using the transition-duration
property. The value of this property can be set using general timing values, including

seconds (s) and milliseconds (ms). These timing values may also come in fractional

measurements, .2s for example.

When transitioning multiple properties you can set multiple durations, one for each

property. As with the transition-property property value, multiple durations can be

declared using comma separated values. The order of these values when identifying

individual properties and durations does matter. For example, the first property

identified within the transition-property property will match up with the first time

identified within the transition-duration property, and so forth.

If multiple properties are being transitioned with only one duration value declared, that

one value will be the duration of all the transitioned properties.

.box { 

  background: #2db34a; 

  border-radius: 6px; 

  transition-property: background, border-radius; 

  transition-duration: .2s, 1s; 

  transition-timing-function: linear; 

} 

.box:hover { 

  background: #ff7b29; 

  border-radius: 50%; 

} 

1

2

3

4

5

6

7

8

9

10



             

11

12

Transition Duration Demo

Transition Timing

The transition-timing-function property is used to set the speed in which a

transition will move. Knowing the duration from the transition-duration property a

transition can have multiple speeds within a single duration. A few of the more popular

keyword values for the transition-timing-function property include linear, ease-
in, ease-out, and ease-in-out.

The linear keyword value identifies a transition moving in a constant speed from one

state to another. The ease-in value identifies a transition that starts slowly and speeds

up throughout the transition, while the ease-out value identifies a transition that starts

quickly and slows down throughout the transition. The ease-in-out value identifies a

transition that starts slowly, speeds up in the middle, then slows down again before

ending.

Each timing function has a cubic-bezier curve behind it, which can be specifically set

using the cubic-bezier(x1, y1, x2, y2) value. Additional values include step-
start, step-stop, and a uniquely identified steps(number_of_steps, direction)
value.

When transitioning multiple properties, you can identify multiple timing functions.

These timing function values, as with other transition property values, may be declared

as comma separated values.

.box { 

  background: #2db34a; 

  border-radius: 6px; 

  transition-property: background, border-radius; 

  transition-duration: .2s, 1s; 

  transition-timing-function: linear, ease-in; 

} 

.box:hover { 

  background: #ff7b29; 

  border-radius: 50%; 

} 

             

1

2

3

4

5

6

7

8

9

10

11

12

Transition Timing Demo

http://www.roblaplaca.com/examples/bezierBuilder/


Transition Delay

On top of declaring the transition property, duration, and timing function, you can also

set a delay with the transition-delay property. The delay sets a time value, seconds

or milliseconds, that determines how long a transition should be stalled before

executing. As with all other transition properties, to delay numerous transitions, each

delay can be declared as comma separated values.

.box { 

  background: #2db34a; 

  border-radius: 6px 

  transition-property: background, border-radius; 

  transition-duration: .2s, 1s; 

  transition-timing-function: linear, ease-in; 

  transition-delay: 0s, 1s; 

} 

.box:hover { 

  background: #ff7b29; 

  border-radius: 50%; 

} 

             

1

2

3

4

5

6

7

8

9

10

11

12

13

Transition Delay Demo

Shorthand Transitions

Declaring every transition property individually can become quite intensive, especially

with vendor prefixes. Fortunately there is a shorthand property, transition, capable of

supporting all of these different properties and values. Using the transition value

alone, you can set every transition value in the order of transition-property,

transition-duration, transition-timing-function, and lastly transition-
delay. Do not use commas with these values unless you are identifying numerous

transitions.



To set numerous transitions at once, set each individual group of transition values, then

use a comma to separate each additional group of transition values.

.box { 

  background: #2db34a; 

  border-radius: 6px; 

  transition: background .2s linear, border-radius 1s ease-in 1s; 

} 

.box:hover { 

  color: #ff7b29; 

  border-radius: 50%; 

} 

             

1

2

3

4

5

6

7

8

9

10

Shorthand Transitions Demo

Transitional Button

HTML

CSS

<button>Awesome Button</button> 

                

1

2

button { 

  border: 0; 

  background: #0087cc; 

  border-radius: 4px; 

  box-shadow: 0 5px 0 #006599; 

  color: #fff; 

  cursor: pointer; 

  font: inherit; 

  margin: 0; 

  outline: 0; 

  padding: 12px 20px; 

  transition: all .1s linear; 

} 

button:active { 

  box-shadow: 0 2px 0 #006599; 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16



Demo

  transform: translateY(3px); 

} 

                

17

18

Card Flip

HTML

CSS

<div class="card-container"> 

  <div class="card"> 

    <div class="side">...</div> 

    <div class="side back">...</div> 

  </div> 

</div> 

                

1

2

3

4

5

6

7

.card-container { 

  height: 150px; 

  perspective: 600; 

  position: relative; 

  width: 150px; 

} 

.card { 

  height: 100%; 

  position: absolute; 

  transform-style: preserve-3d; 

  transition: all 1s ease-in-out; 

  width: 100%; 

} 

.card:hover { 

  transform: rotateY(180deg); 

} 

.card .side { 

  backface-visibility: hidden; 

  height: 100%; 

  position: absolute; 

  width: 100%; 

} 

.card .back { 

  transform: rotateY(180deg); 

} 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24



Demo

                

25

26

Animations

Transitions do a great job of building out visual interactions from one state to another,

and are perfect for these kinds of single state changes. However, when more control is

required, transitions need to have multiple states. In return, this is where animations

pick up where transitions leave off.

Animations Keyframes

To set multiple points at which an element should undergo a transition, use the

@keyframes rule. The @keyframes rule includes the animation name, any animation

breakpoints, and the properties intended to be animated.

@keyframes slide { 

  0% { 

    left: 0; 

    top: 0; 

  } 

  50% { 

    left: 244px; 

    top: 100px; 

  } 

  100% { 

    left: 488px; 

    top: 0; 

  } 

} 

             

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Vendor Prefixing the Keyframe Rule

The @keyframes rule must be vendor prefixed, just like all of the other

transition and animation properties. The vendor prefixes for the

@keyframes rule look like the following:

http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/


@-moz-keyframes
@-o-keyframes
@-webkit-keyframes

The animation above is named slide, stated directly after the opening @keyframes
rule. The different keyframe breakpoints are set using percentages, starting at 0% and

working to 100% with an intermediate breakpoint at 50%. The keywords from and to
could be used in place of 0% and 100% if wished. Additional breakpoints, besides 50%,

may also be stated. The element properties to be animated are listed inside each of the

breakpoints, left and top in the example above.

It is important to note, as with transitions only individual properties may be animated.

Consider how you might move an element from top to bottom for example. Trying to

animate from top: 0; to bottom: 0; will not work, because animations can only apply

a transition within a single property, not from one property to another. In this case, the

element will need to be animated from top: 0; to top: 100%;.

Animations Keyframes Demo

Hover over the ball below to see the animation in action.

Animation Name

Once the keyframes for an animation have been declared they need to be assigned to an

element. To do so, the animation-name property is used with the animation name,

identified from the @keyframes rule, as the property value. The animation-name
declaration is applied to the element in which the animation is to be applied to.

.stage:hover .ball { 

  animation-name: slide; 

} 

             

1

2

3

4

Using the animation-name property alone isn’t enough though. You also need to

declare an animation-duration property and value so that the browser knows how

long an animation should take to complete.

Animation Duration, Timing Function, & Delay

Once you have declared the animation-name property on an element, animations

behave similarly to transitions. They include a duration, timing function, and delay if



desired. To start, animations need a duration declared using the animation-duration
property. As with transitions, the duration may be set in seconds or milliseconds.

.stage:hover .ball { 

  animation-name: slide; 

  animation-duration: 2s; 

} 

             

1

2

3

4

5

A timing function and delay can be declared using the animation-timing-function
and animation-delay properties respectively. The values for these properties mimic

and behave just as they do with transitions.

.stage:hover .ball { 

  animation-name: slide; 

  animation-duration: 2s; 

  animation-timing-function: ease-in-out; 

  animation-delay: .5s; 

} 

             

1

2

3

4

5

6

7

The animation below should cause the ball to bounce once while moving to the left,

however only when hovering over the stage.

HTML

<div class="stage"> 

  <figure class="ball"></figure> 

</div> 

             

1

2

3

4

CSS

@keyframes slide { 

  0% { 

    left: 0; 

    top: 0; 

  } 

  50% { 

    left: 244px; 

    top: 100px; 

  } 

  100% { 

    left: 488px; 

    top: 0; 

  } 

} 

.stage { 

  height: 150px; 

  position: relative; 

} 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18



.ball { 

    height: 50px; 

    position: absolute; 

    width: 50px; 

} 

.stage:hover .ball { 

  animation-name: slide; 

  animation-duration: 2s; 

  animation-timing-function: ease-in-out; 

  animation-delay: .5s; 

} 

             

19

20

21

22

23

24

25

26

27

28

29

30

Animation Demo

Hover over the ball below to see the animation in action.

Customizing Animations

Animations also provide the ability to further customize an element’s behavior,

including the ability to declare the number of times an animation runs, as well as the

direction in which an animation completes.

Animation Iteration

By default, animations run their cycle once from beginning to end and then stop. To have

an animation repeat itself numerous times the animation-iteration-count property

may be used. Values for the animation-iteration-count property include either an

integer or the infinite keyword. Using an integer will repeat the animation as many

times as specified, while the infinite keyword will repeat the animation indefinitely in

a never ending fashion.

.stage:hover .ball { 

  animation-name: slide; 

  animation-duration: 2s; 

  animation-timing-function: ease-in-out; 

  animation-delay: .5s; 

  animation-iteration-count: infinite; 

} 

             

1

2

3

4

5

6

7

8



Animation Iteration Demo

Hover over the ball below to see the animation in action.

Animation Direction

On top of being able to set the number of times an animation repeats, you may also

declare the direction an animation completes using the animation-direction
property. Values for the animation-direction property include normal, reverse,

alternate, and alternate-reverse.

The normal value plays an animation as intended from beginning to end. The reverse
value will play the animation exactly opposite as identified within the @keyframes rule,

thus starting at 100% and working backwards to 0%.

The alternate value will play an animation forwards then backwards. Within the

keyframes that includes running forward from 0% to 100% and then backwards from

100% to 0%. Using the animation-iteration-count property may limit the number of

times an animation runs both forwards and backwards. The count starts at 1 running an

animation forwards from 0% to 100%, then adds 1 running an animation backwards from

100% to 0%. Combining for a total of 2 iterations. The alternate value also inverses any

timing functions when playing in reverse. If an animation uses the ease-in value going

from 0% to 100%, it then uses the ease-out value going from 100% to 0%.

Lastly, the alternate-reverse value combines both the alternate and reverse
values, running an animation backwards then forwards. The alternate-reverse value

starts at 100% running to 0% and then back to 100% again.

.stage:hover .ball { 

  animation-name: slide; 

  animation-duration: 2s; 

  animation-timing-function: ease-in-out; 

  animation-delay: .5s; 

  animation-iteration-count: infinite; 

  animation-direction: alternate; 

} 

             

1

2

3

4

5

6

7

8

9

Animation Direction Demo

Hover over the ball below to see the animation in action.



Animation Play State

The animation-play-state property allows an animation to be played or paused using

the running and paused keyword values respectively. When you play a paused

animation, it will resume running from its current state rather than starting from the

very beginning again.

In the example below the animation-play-state property is set to paused when

making the stage active by clicking on it. Notice how the animation will temporarily

pause until you let up on the mouse.

.stage:hover .ball { 

  animation-name: slide; 

  animation-duration: 2s; 

  animation-timing-function: ease-in-out; 

  animation-delay: .5s; 

  animation-iteration-count: infinite; 

  animation-direction: alternate; 

} 

.stage:active .ball { 

  animation-play-state: paused; 

} 

             

1

2

3

4

5

6

7

8

9

10

11

12

Animation Play State Demo

Hover over the ball below to see the animation in action. Click to pause the

animation.

Animation Fill Mode



The animation-fill-mode property identifies how an element should be styled either

before, after, or before and after an animation is run. The animation-fill-mode
property accepts four keyword values, including none, forwards, backwards, and both.

The none value will not apply any styles to an element before or after an animation has

been run.

The forwards value will keep the styles declared within the last specified keyframe.

These styles may, however, be affected by the animation-direction and animation-
iteration-count property values, changing exactly where an animation ends.

The backwards value will apply the styles within the first specified keyframe as soon as

being identified, before the animation has been run. This does include applying those

styles during any time that may be set within an animation delay. The backwards value

may also be affected by the animation-direction property value.

Lastly, the both value will apply the behaviors from both the forwards and backwards
values.

.stage:hover .ball { 

  animation-name: slide; 

  animation-duration: 2s; 

  animation-timing-function: ease-in-out; 

  animation-delay: .5s; 

  animation-fill-mode: forwards; 

} 

.stage:active .ball { 

  animation-play-state: paused; 

} 

             

1

2

3

4

5

6

7

8

9

10

11

Animation Fill Mode Demo

Hover over the ball below to see the animation in action. Click to pause the

animation.

Shorthand Animations

Fortunately animations, just like transitions, can be written out in a shorthand format.

This is accomplished with one animation property, rather than multiple declarations.

The order of values within the animation property should be animation-name,

animation-duration, animation-timing-function, animation-delay, animation-

https://developer.mozilla.org/en-US/docs/CSS/Using_CSS_animations


iteration-count, animation-direction, animation-fill-mode, and lastly

animation-play-state.

.stage:hover .ball { 

  animation: slide 2s ease-in-out .5s infinite alternate; 

} 

.stage:active .ball { 

  animation-play-state: paused; 

} 

             

1

2

3

4

5

6

7

Shorthand Animations Demo

Hover over the ball below to see the animation in action. Click to pause the

animation.

Resources & Links

Understanding CSS3 Transitions via A List Apart

CSS Cubic-Bezier Builder via Rob LaPlaca

The Guide To CSS Animation: Principles and Examples via Smashing Magazine

Using CSS Animations via Mozilla Developer Network

  

Lesson 7

Transforms

Lesson 9

Feature Support & Polyfills

Learn More HTML & CSS or Study Other Topics

Learning how to code HTML & CSS and building successful websites can be challenging,

and at times additional help and explanation can go a long way. Fortunately there are

plenty of online schools, boot camps, workshops, and the alike, that can help.

Select your topic of interest below and I will recommend a course I believe will provide

the best learning opportunity for you.

Select Your Topic of Interest:

https://developer.mozilla.org/en-US/docs/CSS/Using_CSS_animations
http://www.alistapart.com/articles/understanding-css3-transitions/
http://www.roblaplaca.com/examples/bezierBuilder/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
https://developer.mozilla.org/en-US/docs/CSS/Using_CSS_animations
https://twitter.com/share?text=Transitions%20%26amp%3B%20Animations%20-&url=http://learn.shayhowe.com/advanced-html-css/transitions-animations/&via=shayhowe&related=shayhowe
http://www.facebook.com/sharer.php?u=http://learn.shayhowe.com/advanced-html-css/transitions-animations/
https://plus.google.com/share?url=http://learn.shayhowe.com/advanced-html-css/transitions-animations/
https://learn.shayhowe.com/advanced-html-css/css-transforms/
https://learn.shayhowe.com/advanced-html-css/feature-support-polyfills/

