
Learn to Code Advanced

HTML & CSS

Lesson 7

Transforms

7
In this Lesson

CSS

Transform Syntax

2D Transforms

Combining Transforms

Transform Origin

Perspective

3D Transforms

Transform Style

Backface Visibility

SHARE

With CSS3 came new ways to position and alter elements. Now general layout

techniques can be revisited with alternative ways to size, position, and change

elements. All of these new techniques are made possible by the transform property.

The transform property comes in two different settings, two-dimensional and three-

dimensional. Each of these come with their own individual properties and values.

Within this lesson we’ll take a look at both two-dimensional and three-dimensional

transforms. Generally speaking, browser support for the transform property isn’t great,

but it is getting better every day. For the best support vendor prefixes are encouraged,

however you may need to download the nightly version of Chrome to see all of these

transforms in action.

Transform Syntax

The actual syntax for the transform property is quite simple, including the transform

property followed by the value. The value specifies the transform type followed by a

specific amount inside parentheses.

div {

 -webkit-transform: scale(1.5);

 -moz-transform: scale(1.5);

 -o-transform: scale(1.5);

 transform: scale(1.5);

}

1

2

3

4

5

6

7

Notice how the transform property includes multiple vendor prefixes to gain the best

support across all browsers. The un-prefixed declaration comes last to overwrite the

https://learn.shayhowe.com/advanced-html-css/
https://twitter.com/share?text=Transforms%20-&url=http://learn.shayhowe.com/advanced-html-css/css-transforms/&via=shayhowe&related=shayhowe
http://www.facebook.com/sharer.php?u=http://learn.shayhowe.com/advanced-html-css/css-transforms/
https://plus.google.com/share?url=http://learn.shayhowe.com/advanced-html-css/css-transforms/
https://tools.google.com/dlpage/chromesxs/

prefixed versions, should a browser fully support the transform property.

In the interest of brevity, the remainder of this lesson will not include vendor prefixes.

They are, however, strongly encouraged for any code in a production environment. Over

time we will be able to remove these prefixes, however keeping them in is the safest

approach for the time being.

2D Transforms

Elements may be distorted, or transformed, on both a two-dimensional plane or a three-

dimensional plane. Two-dimensional transforms work on the x and y axes, known as

horizontal and vertical axes. Three-dimensional transforms work on both the x and y
axes, as well as the z axis. These three-dimensional transforms help define not only the

length and width of an element, but also the depth. We’ll start by discussing how to

transform elements on a two-dimensional plane, and then work our way into three-

dimensional transforms.

2D Rotate

The transform property accepts a handful of different values. The rotate value

provides the ability to rotate an element from 0 to 360 degrees. Using a positive value

will rotate an element clockwise, and using a negative value will rotate the element

counterclockwise. The default point of rotation is the center of the element, 50% 50%,

both horizontally and vertically. Later we will discuss how you can change this default

point of rotation.

HTML

<figure class="box-1">Box 1</figure>

<figure class="box-2">Box 2</figure>

1

2

3

CSS

.box-1 {

 transform: rotate(20deg);

}

.box-2 {

 transform: rotate(-55deg);

}

1

2

3

4

5

6

7

Rotate Demo

Box 1 Bo
x 2

Resources

HTML CSS
E D I T O N

RESULT

1× 0.5× 0.25× Rerun

http://www.css3files.com/transform/
https://codepen.io/shayhowe/pen/AKDIp

The gray box behind the rotated element symbolizes the original position of the

element. Additionally, upon hover the box will rotate 360 degrees horizontally. As the

lesson progresses, keep an eye out for the gray box within each demonstration as a

reference to the element’s original position and the horizontal rotation to help

demonstrate an elements alteration and depth.

2D Scale

Using the scale value within the transform property allows you to change the

appeared size of an element. The default scale value is 1, therefore any value between

.99 and .01 makes an element appear smaller while any value greater than or equal to

1.01 makes an element appear larger.

HTML

<figure class="box-1">Box 1</figure>

<figure class="box-2">Box 2</figure>

1

2

3

CSS

.box-1 {

 transform: scale(.75);

}

.box-2 {

 transform: scale(1.25);

}

1

2

3

4

5

6

7

Scale Demo

Box 1 Box 2

Resources

HTML CSS
E D I T O N

RESULT

1× 0.5× 0.25× Rerun

It is possible to scale only the height or width of an element using the scaleX and

scaleY values. The scaleX value will scale the width of an element while the scaleY
value will scale the height of an element. To scale both the height and width of an

element but at different sizes, the x and y axis values may be set simultaneously. To do

so, use the scale transform declaring the x axis value first, followed by a comma, and

then the y axis value.

HTML

<figure class="box-1">Box 1</figure>

<figure class="box-2">Box 2</figure>

<figure class="box-3">Box 3</figure>

1

2

https://codepen.io/shayhowe/pen/khtnm

3

4

CSS

.box-1 {

 transform: scaleX(.5);

}

.box-2 {

 transform: scaleY(1.15);

}

.box-3 {

 transform: scale(.5, 1.15);

}

1

2

3

4

5

6

7

8

9

10

Multiple Scaling Demo

2D Translate

The translate value works a bit like that of relative positioning, pushing and pulling an

element in different directions without interrupting the normal flow of the document.

Using the translateX value will change the position of an element on the horizontal

axis while using the translateY value will change the position of an element on the

vertical axis.

As with the scale value, to set both the x and y axis values at once, use the translate
value and declare the x axis value first, followed by a comma, and then the y axis value.

The distance values used within the translate value may be any general length

measurement, most commonly pixels or percentages. Positive values will push an

element down and to the right of its default position while negative values will pull an

element up and to the left of its default position.

HTML

<figure class="box-1">Box 1</figure>

<figure class="box-2">Box 2</figure>

<figure class="box-3">Box 3</figure>

1

2

3

4

CSS

.box-1 {

 transform: translateX(-10px);

}

.box-2 {

 transform: translateY(25%);

}

.box-3 {

 transform: translate(-10px, 25%);

}

1

2

3

4

5

6

7

8

9

10

Translate Demo

2D Skew

The last transform value in the group, skew, is used to distort elements on the

horizontal axis, vertical axis, or both. The syntax is very similar to that of the scale and

translate values. Using the skewX value distorts an element on the horizontal axis

while the skewY value distorts an element on the vertical axis. To distort an element on

both axes the skew value is used, declaring the x axis value first, followed by a comma,

and then the y axis value.%p

The distance calculation of the skew value is measured in units of degrees. Length

measurements, such as pixels or percentages, do not apply here.

HTML

<figure class="box-1">Box 1</figure>

<figure class="box-2">Box 2</figure>

<figure class="box-3">Box 3</figure>

1

2

3

4

CSS

.box-1 {

 transform: skewX(5deg);

}

.box-2 {

 transform: skewY(-20deg);

}

.box-3 {

1

2

3

4

5

6

7

8

 transform: skew(5deg, -20deg);

}

9

10

Skew Demo

Combining Transforms

It is common for multiple transforms to be used at once, rotating and scaling the size of

an element at the same time for example. In this event multiple transforms can be

combined together. To combine transforms, list the transform values within the

transform property one after the other without the use of commas.

Using multiple transform declarations will not work, as each declaration will overwrite

the one above it. The behavior in that case would be the same as if you were to set the

height of an element numerous times.

HTML

<figure class="box-1">Box 1</figure>

<figure class="box-2">Box 2</figure>

1

2

3

CSS

.box-1 {

 transform: rotate(25deg) scale(.75);

}

.box-2 {

 transform: skew(10deg, 20deg) translateX(20px);

}

1

2

3

4

5

6

7

Combining Transforms Demo

Behind every transform there is also a matrix explicitly defining the behavior of the

transform. Using the rotate, scale, transition, and skew values provide an easy way

to establish this matrix. However, should you be mathematically inclined, and prefer to

take a deeper dive into transforms, try your hand at using the matrix property.

2D Cube Demo

HTML

CSS

Demo

<div class="cube">

 <figure class="side top">1</figure>

 <figure class="side left">2</figure>

 <figure class="side right">3</figure>

</div>

1

2

3

4

5

6

.cube {

 position: relative;

}

.side {

 height: 95px;

 position: absolute;

 width: 95px;

}

.top {

 background: #9acc53;

 transform: rotate(-45deg) skew(15deg, 15deg);

}

.left {

 background: #8ec63f;

 transform: rotate(15deg) skew(15deg, 15deg) translate(-50

}

.right {

 background: #80b239;

 transform: rotate(-15deg) skew(-15deg, -15deg) translate(

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

https://dev.opera.com/articles/view/understanding-the-css-transforms-matrix/

Transform Origin

As previously mentioned, the default transform origin is the dead center of an element,

both 50% horizontally and 50% vertically. To change this default origin position the

transform-origin property may be used.

The transform-origin property can accept one or two values. When only one value is

specified, that value is used for both the horizontal and vertical axes. If two values are

specified, the first is used for the horizontal axis and the second is used for the vertical

axis.

Individually the values are treated like that of a background image position, using either

a length or keyword value. That said, 0 0 is the same value as top left, and 100%
100% is the same value as bottom right. More specific values can also be set, for

example 20px 50px would set the origin to 20 pixels across and 50 pixels down the

element.

HTML

<figure class="box-1">Box 1</figure>

<figure class="box-2">Box 2</figure>

<figure class="box-3">Box 3</figure>

<figure class="box-4">Box 3</figure>

1

2

3

4

5

CSS

.box-1 {

 transform: rotate(15deg);

 transform-origin: 0 0;

}

.box-2 {

 transform: scale(.5);

 transform-origin: 100% 100%;

}

.box-3 {

 transform: skewX(20deg);

 transform-origin: top left;

}

.box-4 {

1

2

3

4

5

6

7

8

9

10

11

12

13

 transform: scale(.75) translate(-10px, -10px);

 transform-origin: 20px 50px;

}

14

15

16

17

Transform Origin Demo

Notably, the transform-origin property does run into some issues when also using

the translate transform value. Since both of them are attempting to position the

element, their values can collide. Use the two of these with caution, always checking to

make sure the desired outcome is achieved.

Perspective

In order for three-dimensional transforms to work the elements need a perspective

from which to transform. The perspective for each element can be thought of as a

vanishing point, similar to that which can be seen in three-dimensional drawings.

The perspective of an element can be set in two different ways. One way includes using

the perspective value within the transform property on individual elements, while the

other includes using the perspective property on the parent element residing over

child elements being transformed.

Using the perspective value within the transform property works great for

transforming one element from a single, unique perspective. When you want to

transform a group of elements all with the same perspective, or vanishing point, apply

the perspective property to their parent element.

The example below shows a handful of elements all transformed using their individual

perspectives with the perspective value.

HTML

<figure class="box">Box 1</figure>

<figure class="box">Box 2</figure>

<figure class="box">Box 3</figure>

1

2

3

4

CSS

.box {

 transform: perspective(200px) rotateX(45deg);

}

1

2

3

4

Perspective Value Demo

The following example shows a handful of elements, side by side, all transformed using

the same perspective, accomplished by using the perspective property on their direct

parent element.

HTML

<div class="group">

 <figure class="box">Box 1</figure>

 <figure class="box">Box 2</figure>

 <figure class="box">Box 3</figure>

</div>

1

2

3

4

5

6

CSS

.group {

 perspective: 200px;

}

.box {

 transform: rotateX(45deg);

}

1

2

3

4

5

6

7

Perspective Property Demo

Perspective Depth Value

The perspective value can be set as none or a length measurement. The none value

turns off any perspective, while the length value will set the depth of the perspective.

The higher the value, the further away the perspective appears, thus creating a fairly

low intensity perspective and a small three-dimensional change. The lower the value

the closer the perspective appears, thus creating a high intensity perspective and a

large three-dimensional change.

Imagine yourself standing 10 feet away from a 10 foot cube as compared to standing

1,000 feet away from the same cube. At 10 feet, your distance to the cube is the same as

the dimensions of the cube, therefore the perspective shift is much greater than it will

be at 1,000 feet, where the dimensions of the cube are only one one-hundredth of your

distance to the cube. The same thinking applies to perspective depth values.

HTML

<figure class="box-1">Box 1</figure>

<figure class="box-2">Box 2</figure>

1

2

3

CSS

.box-1 {

 transform: perspective(100px) rotateX(45deg);

}

.box-2 {

 transform: perspective(1000px) rotateX(45deg);

}

1

2

3

4

5

6

7

Perspective Depth Value Demo

Perspective Origin

As with setting a transform-origin you can also set a perspective-origin. The

same values used for the transform-origin property may also be used with the

perspective-origin property, and maintain the same relationship to the element. The

large difference between the two falls where the origin of a transform determines the

coordinates used to calculate the change of a transform, while the origin of a

perspective identifies the coordinates of the vanishing point of a transform.

HTML

<div class="original original-1"> 1

 <figure class="box">Box 1</figure>

</div>

<div class="original original-2">

 <figure class="box">Box 2</figure>

</div>

<div class="original original-3">

 <figure class="box">Box 3</figure>

</div>

2

3

4

5

6

7

8

9

10

CSS

.original {

 perspective: 200px;

}

.box {

 transform: rotateX(45deg);

}

.original-1 {

 perspective-origin: 0 0;

}

.original-2 {

 perspective-origin: 75% 75%;

}

.original-3 {

 perspective-origin: 20px 40px;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Perspective Origin Demo

3D Transforms

Working with two-dimensional transforms we are able to alter elements on the

horizontal and vertical axes, however there is another axis along which we can

transform elements. Using three-dimensional transforms we can change elements on

the z axis, giving us control of depth as well as length and width.

3D Rotate

So far we’ve discussed how to rotate an object either clockwise or counterclockwise on

a flat plane. With three-dimensional transforms we can rotate an element around any

https://24ways.org/2010/intro-to-css-3d-transforms

axes. To do so, we use three new transform values, including rotateX, rotateY, and

rotateZ.

Using the rotateX value allows you to rotate an element around the x axis, as if it were

being bent in half horizontally. Using the rotateY value allows you to rotate an element

around the y axis, as if it were being bent in half vertically. Lastly, using the rotateZ
value allows an element to be rotated around the z axis.

As with the general rotate value before, positive values will rotate the element around

its dedicated axis clockwise, while negative values will rotate the element

counterclockwise.

HTML

<figure class="box-1">Box 1</figure>

<figure class="box-2">Box 2</figure>

<figure class="box-3">Box 3</figure>

1

2

3

4

CSS

.box-1 {

 transform: perspective(200px) rotateX(45deg);

}

.box-2 {

 transform: perspective(200px) rotateY(45deg);

}

.box-3 {

 transform: perspective(200px) rotateZ(45deg);

}

1

2

3

4

5

6

7

8

9

10

3D Rotate Demo

3D Scale

By using the scaleZ three-dimensional transform elements may be scaled on the z axis.

This isn’t extremely exciting when no other three-dimensional transforms are in place,

as there is nothing in particular to scale. In the demonstration below the elements are

being scaled up and down on the z axis, however the rotateX value is added in order to

see the behavior of the scaleZ value. When removing the rotateX in this case, the

elements will appear to be unchanged.

HTML

<figure class="box-1">Box 1</figure>

<figure class="box-2">Box 2</figure>

1

2

3

CSS

.box-1 {

 transform: perspective(200px) scaleZ(1.75) rotateX(45deg);

}

.box-2 {

 transform: perspective(200px) scaleZ(.25) rotateX(45deg);

}

1

2

3

4

5

6

7

3D Scale Demo

3D Translate

Elements may also be translated on the z axis using the translateZ value. A negative

value here will push an element further away on the z axis, resulting in a smaller

element. Using a positive value will pull an element closer on the z axis, resulting in a

larger element.

While this may appear to be very similar to that of the two-dimensional transform

scale value, it is actually quite different. The transform is taking place on the z axis, not

the x or y axes. When working with three-dimensional transforms, being able to move

an element on the z axis does have great benefits, like when building the cube below for

example.

HTML

<figure class="box-1">Box 1</figure>

<figure class="box-2">Box 2</figure>

1

2

3

CSS

.box-1 {

 transform: perspective(200px) translateZ(-50px);

}

1

2

3

.box-2 {

 transform: perspective(200px) translateZ(50px);

}

4

5

6

7

3D Translate Demo

3D Skew

Skew is the one two-dimensional transform that cannot be transformed on a three-

dimensional scale. Elements may be skewed on the x and y axis, then transformed

three-dimensionally as wished, but they cannot be skewed on the z axis.

Shorthand 3D Transforms

As with combining two-dimensional transforms, there are also properties to write out

shorthand three-dimensional transforms. These properties include rotate3d, scale3d,

transition3d, and matrix3d. These properties do require a bit more math, as well as a

strong understanding of the matrices behind each transform. Should you be interested

in looking a bit deeper into them, please do!

Transform Style

On occasion three-dimensional transforms will be applied on an element that is nested

within a parent element which is also being transformed. In this event, the nested,

transformed elements will not appear in their own three-dimensional space. To allow

nested elements to transform in their own three-dimensional plane use the transform-
style property with the preserve-3d value.

The transform-style property needs to be placed on the parent element, above any

nested transforms. The preserve-3d value allows the transformed children elements to

appear in their own three-dimensional plane while the flat value forces the

transformed children elements to lie flat on the two-dimensional plane.

HTML

<div class="rotate three-d">

 <figure class="box">Box 1</figure>

</div>

<div class="rotate">

 <figure class="box">Box 2</figure>

</div>

1

2

3

4

5

6

7

https://developer.mozilla.org/en/CSS/transform-function

CSS

.rotate {

 transform: perspective(200px) rotateY(45deg);

}

.three-d {

 transform-style: preserve-3d;

}

.box {

 transform: rotateX(15deg) translateZ(20px);

 transform-origin: 0 0;

}

1

2

3

4

5

6

7

8

9

10

11

Transform Style Demo

To see an additional example of the transform-style property in action check out the

WebKit explanation.

Backface Visibility

When working with three-dimensional transforms, elements will occasionally be

transformed in a way that causes them to face away from the screen. This may be

caused by setting the rotateY(180deg) value for example. By default these elements

are shown from the back. So if you prefer not to see these elements at all, set the

backface-visibility property to hidden, and you will hide the element whenever it is

facing away from the screen.

The other value to backface-visibility is visible which is the default value, always

displaying an element, no matter which direction it faces.

In the demonstration below notice how the second box isn’t displayed because

backface-visibility: hidden; declaration has been set. The backface-
visibility property takes even more significance when using animations.

HTML

<figure class="box-1">Box 1</figure>

<figure class="box-2">Box 2</figure>

1

2

3

CSS

https://www.webkit.org/blog-files/3d-transforms/transform-style.html
https://css-tricks.com/almanac/properties/b/backface-visibility/

.box-1 {

 transform: rotateY(180deg);

}

.box-2 {

 backface-visibility: hidden;

 transform: rotateY(180deg);

}

1

2

3

4

5

6

7

8

Backface Visibility Demo

3D Cube Demo

HTML

CSS

<div class="cube-container">

 <div class="cube">

 <figure class="side front">1</figure>

 <figure class="side back">2</figure>

 <figure class="side left">3</figure>

 <figure class="side right">4</figure>

 <figure class="side top">5</figure>

 <figure class="side bottom">6</figure>

 </div>

</div>

1

2

3

4

5

6

7

8

9

10

11

.cube-container {

 height: 200px;

 perspective: 300;

 position: relative;

 width: 200px;

}

.cube {

 height: 100%;

 position: absolute;

 transform: translateZ(-100px);

 transform-style: preserve-3d;

1

2

3

4

5

6

7

8

9

10

11

Demo

 width: 100%;

}

.side {

 background: rgba(45, 179, 74, .3);

 border: 2px solid #2db34a;

 height: 196px;

 position: absolute;

 width: 196px;

}

.front {

 transform: translateZ(100px);

}

.back {

 transform: rotateX(180deg) translateZ(100px);

}

.left {

 transform: rotateY(-90deg) translateZ(100px);

}

.right {

 transform: rotateY(90deg) translateZ(100px);

}

.top {

 transform: rotateX(90deg) translateZ(100px);

}

.bottom {

 transform: rotateX(-90deg) translateZ(100px);

}

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Resources & Links

Transform Property via CSS3 Files

Understanding the CSS Transforms Matrix via Dev.Opera

An Introduction to CSS 3-D Transforms via 24 Ways

Transform Function via Mozilla Developer Network

Transform Style via WebKit

Backface Visibility via CSS-Tricks

http://www.css3files.com/transform/
https://dev.opera.com/articles/view/understanding-the-css-transforms-matrix/
https://24ways.org/2010/intro-to-css-3d-transforms
https://developer.mozilla.org/en/CSS/transform-function
https://www.webkit.org/blog-files/3d-transforms/transform-style.html
https://css-tricks.com/almanac/properties/b/backface-visibility/

