
Learn to Code Advanced

HTML & CSS

Lesson 5

Preprocessors

5
In this Lesson

HTML

Haml

CSS

SCSS & Sass

Other Preprocessors

SHARE

In time writing HTML and CSS may feel a bit taxing, requiring a lot of the same tasks to

be completed over and over again. Tasks such as closing tags in HTML or repetitively

having to looking up hexadecimal color values in CSS.

These different tasks, while commonly small, do add up to quite a bit of inefficiency.

Fortunately these, and a handful of other inefficiencies, have been recognized and

preprocessor solutions have risen to the challenge.

A preprocessor is a program that takes one type of data and converts it to another type

of data. In the case of HTML and CSS, some of the more popular preprocessor languages

include Haml and Sass. Haml is processed into HTML and Sass is processed into CSS.

Upon setting out to solve some of the more common problems, Haml and Sass found

many additional ways to empower HTML and CSS, not only by removing the

inefficiencies but also in creating ways to make building websites easier and more

logical. The popularity of preprocessors have also brought along different frameworks

to support them, one of the more popular being Compass.

Haml

Haml, known as HTML abstraction markup language, is a markup language with the

single goal of providing the ability to write beautiful markup. Serving as its own markup

language, code written in Haml is later processed to HTML. Haml promotes DRY and

well structured markup, providing a pleasing experience for anyone having to write or

read it.

Installation

Haml requires Ruby to be compiled to HTML, so the first step to using it is to ensure that

Ruby is installed. Fortunately for those on Mac OS X Ruby comes preinstalled, and those

on a Windows machine may visit Windows Installer for directions. Upon confirming

Ruby is installed the gem install haml command needs to be run from the command

line, using Terminal or the alike command line program, to install Haml.

https://learn.shayhowe.com/advanced-html-css/
https://twitter.com/share?text=Preprocessors%20-&url=http://learn.shayhowe.com/advanced-html-css/preprocessors/&via=shayhowe&related=shayhowe
http://www.facebook.com/sharer.php?u=http://learn.shayhowe.com/advanced-html-css/preprocessors/
https://plus.google.com/share?url=http://learn.shayhowe.com/advanced-html-css/preprocessors/
http://haml.info/
http://sass-lang.com/
http://haml.info/docs/yardoc/file.REFERENCE.html
http://rubyinstaller.org/

gem install haml

1

2

Files written in the Haml markup should be saved with the file extension of .haml. To

then convert these files from Haml to HTML the haml command below needs to be run

to compile each individual file.

haml index.haml index.html

1

2

In the example above, the file index.haml is converted to HTML and saved as

index.html within the same directory. This command has to be run within the same

directory the files reside in. Should the command be run outside this directory the path

where the files reside need to be included within the command. At any time the

command haml --help may be run to see a list of different available options.

Watching a File or Directory

Unfortunately Haml doesn’t provide a way to watch a file, or directory, for

changes without the use of another dependency.

Inside of a Rails application a Haml dependency may be added in the Gemfile,

thus automatically compiling Haml files to HTML upon any changes. There are

a few desktop applications available for those not using Rails, one of the more

popular being CodeKit.

On top of Haml CodeKit also supports other preprocessors, which may also

come in handy.

Doctype

The first part to writing a document in Haml is knowing what type of doctype is to be

used. When working with HTML documents, the general document type is going to be

the HTML5 doctype. In Haml document types are identified with three exclamation

points, !!! followed by any specifics if necessary.

The default doctype in Haml is the HTML 1.0 Transitional document type so in order to

make this the HTML5 doctype the number five has to be passed in after the

exclamation points, !!! 5.

Haml

!!! 5

1

2

Compiled HTML

<!DOCTYPE html>

1

2

Declaring Elements

http://incident57.com/codekit/

One of the defining features of Haml is its syntax, and how to declare and nest

elements. HTML elements generally have opening and closing tags, however within

Haml elements only have one tag, the opening. Elements are initialized with a percent

sign, %, and then indented to identify nesting. Indentation with Haml can be accomplish

with one or more spaces, however what is important is that the indentation remain

consistent. Hard tabs or spaces cannot be mixes together, and the same number of tabs

or spaces must be the same throughout an entire document.

Removing the need for both opening and closing tags, as well as mandating the

structure with indentation creates an easy to follow outline. At any given time the

markup can be scanned and changed without struggle.

Haml

%body

 %header

 %h1 Hello World

 %section

 %p Lorem ipsum dolor sit amet.

1

2

3

4

5

6

Compiled HTML

<body>

 <header>

 <h1>Hello World</h1>

 </header>

 <section>

 <p>Lorem ipsum dolor sit amet.</p>

 </section>

</body>

1

2

3

4

5

6

7

8

9

Handling Text

Text within Haml can be placed on the same line as the declared element, or

indented below the element. Text cannot be both on the same line as the

declared element and nested below it, it has to be either or. The example from

above could be rewritten as the following:

%body

 %header

 %h1

 Hello World

 %section

 %p

 Lorem ipsum dolor sit amet.

1

2

3

4

5

6

7

8

Attributes

http://screencasts.org/episodes/introduction-to-haml

Attributes, as with elements, are declared a bit differently in Haml. Attributes are

declared directly after the element in either {} or (), all depending if you wish to use

Ruby or HTML syntax. Ruby style attributes will use the standard hash syntax inside of

{}, while HTML style attributes will use standard HTML syntax inside of ().

Haml

%img{:src => "shay.jpg", :alt => "Shay Howe"}

%img{src: "shay.jpg", alt: "Shay Howe"}

%img(src="shay.jpg" alt="Shay Howe")

1

2

3

4

Compiled HTML

1

2

Classes & IDs

If you wish to, Class and ID attributes may be declared the same as all other attributes,

however they may also be treated a bit differently. Rather than listing out the class or ID

attribute name and value inside {} or () the value can be identified directly after the

element. Using either a . for classes or a # for an ID the value can be added directly

after the element.

Additionally, attributes may be mixed and matched, chaining them together in the

appropriate format. Classes are to be separated with a . and other attributes may be

added using one of the previously outlined formats.

Haml

%section.feature

%section.feature.special

%section#hello

%section#hello.feature(role="region")

1

2

3

4

5

Compiled HTML

<section class="feature"></section>

<section class="feature special"></section>

<section id="hello"></section>

<section class="feature" id="hello" role="region"></section>

1

2

3

4

5

Division Classes & IDs

In the event a class or ID is used on a div the %div may be omitted, and the class or ID

value can be used outright. Again, classes are to be identified with a . and IDs are to be

identified with a #.

Haml

.awesome 1

.awesome.lesson

#getting-started.lesson

2

3

4

Compiled HTML

<div class="awesome"></div>

<div class="awesome lesson"></div>

<div class="lesson" id="getting-started"></div>

1

2

3

4

Boolean Attributes

Boolean attributes are handled just as they would be within Ruby or HTML, all

depending on the syntax being used.

Haml

%input{:type => "checkbox", :checked => true}

%input(type="checkbox" checked=true)

%input(type="checkbox" checked)

1

2

3

4

Compiled HTML

<input type="checkbox" checked>

1

2

Escaping Text

One of the benefits of Haml is the ability to evaluate and run Ruby, however this isn’t

always the desired action. Text, and lines of code, can be escaped by using a backslash,

\, allowing the text to be rendered explicitly without being executed.

In the example below, the first instance of = @author is executed Ruby, pulling the

authors name from the application. The second instance, starting with the backslash, is

escaped text, printing it as is, without execution.

Haml

.author

 = @author

 \= @author

1

2

3

4

Compiled HTML

<div class="author">

 Shay Howe

 = @author

</div>

1

2

3

4

5

Text Escaping Alternatives

Occasionally escaping text doesn’t quite do the job and Ruby is needed to generate the

desired output. One popular instance of this is when trying to include a period directly

after a link, but not as part of the anchor text. Putting the period on a new line isn’t

acceptable as it will be treated as an empty class value, causing a compiling error.

Adding a backslash before the period will escape the character however it places a

blank space between the last word and the period. Again, not producing the desired

output.

In these cases a Ruby helper comes in handy. In the example below, the helper is used

to place a period directly after the last word but still outside of the anchor text.

Haml

%p

 Shay is

 = succeed "." do

 %a{:href => "#"} awesome

1

2

3

4

5

Compiled HTML

<p>Shay is awesome.</p>

1

2

Comments

As with elements and attributes, comments are handled a bit differently in Haml as well.

Simply enough, code can be commented out with the use of a single forward slash, /.

Individual lines may be commented out with the use of a forward slash at the beginning

of the line, and blocks of code can be commented out by being nested underneath a

forward slash.

Haml

%div

 / Commented line

 Actual line

/

 %div

 Commented block

1

2

3

4

5

6

7

8

Compiled HTML

<div>

 <!-- Commented line -->

 Actual line

</div>

<!--

 <div>

1

2

3

4

5

6

7

 Commented block

 </div>

-->

8

9

10

11

Conditional Comments

Conditional comments are also handled differently in Haml. To create a conditional

comment use square brackets, [], around the condition. These square brackets need to

be placed directly after the forward slash.

Haml

/[if lt IE 9]

 %script{:src => "html5shiv.js"}

1

2

3

Compiled HTML

<!--[if lt IE 9]>

 <script src="html5shiv.js"></script>

<![endif]-->

1

2

3

4

Silent Comments

Haml also provides the ability to create Haml specific comments, or silent comments.

Silent comments differ from general HTML comments in that upon being complied any

content within a silent comment is completely removed from the page, and is not

displayed in the output. Silent comments are initialized with a dash then the number

sign, -#. As with other comments, silent comments may be used to remove one line or

multiple lines with the use of nesting.

Haml

%div

 -# Removed line

 Actual line

1

2

3

4

Compiled HTML

<div>

 Actual line

</div>

1

2

3

4

Filters

Haml provides a handful of filters, allowing different types of input to be used inside of

Haml. Filters are identified with a colon followed by the name of the filter, :markdown
for example, with all of the content to be filtered nested underneath.

Common Filters

Below are some of the more common filters, with the more popular ones of the group

being :css and :javascript.

:cdata
:coffee
:css
:erb
:escaped
:javascript
:less
:markdown
:maruku
:plain
:preserve
:ruby
:sass
:scss
:textile

Javascript Filter

Haml

:javascript

 $('button').on('click', function(event) {

 $('p').hide('slow');

 });

1

2

3

4

5

Compiled HTML

<script>

 $('button').on('click', function(event) {

 $('p').hide('slow');

 });

</script>

1

2

3

4

5

6

CSS & Sass Filters

Haml

:css

 .container {

 margin: 0 auto;

 width: 960px;

 }

:sass

 .container

 margin: 0 auto

 width: 960px

1

2

3

4

5

6

7

8

9

10

11

Compiled HTML

<style>

 .container {

 margin: 0 auto;

 width: 960px;

 }

</style>

1

2

3

4

5

6

7

Ruby Interpolation

As previously mentioned Haml can evaluate Ruby, and there may occasionally be times

where Ruby needs to be evaluated inside of plain text. In this event Ruby needs to be

interpolated, accomplished by wrapping the necessary Ruby code inside .

Below is an example of Ruby being interpolated as part of a class name.

Haml

%div{:class => "student-#{@student.name}"}

1

2

Compiled HTML

<div class="student-shay">

1

2

SCSS & Sass

SCSS and Sass are preprocessing languages which are compiled to CSS, resembling

Haml a bit in that they make writing code easier, and provide quite a bit of leverage in

doing so. Individually SCSS and Sass come from the same origin however they are

technical different syntaxes.

Sass, Syntactically Awesome Stylesheets, came first and is a strict indented syntax.

SCSS, Sassy CSS, followed shortly after providing the same firing power of Sass but with

a more flexible syntax, including the ability to write plain CSS.

Installation

As with Haml, SCSS and Sass are compiled using Ruby therefore Ruby needs to be

installed to produce CSS files. Please follow the directions from before to install, or

ensure Ruby is installed.

Once Ruby is installed the gem install sass command needs to be run from the

command line to install SCSS and Sass.

gem install sass

1

2

Files written in SCSS or Sass need to have the .scss or .sass file extensions

respectively. To convert either of these file types to .css the following sass command

needs to be run.

http://sass-lang.com/docs/yardoc/file.SASS_REFERENCE.html
http://sassmeister.com/

sass styles.sass styles.css

1

2

The command above takes the styles.sass Sass file and compiles it to the

styles.css file. As with Haml, these file names are paths and need to be executed

respectively. The above command works when those files reside within the directory

from which the command is run, should the files reside outside of the directory their

path needs to be explicitly stated within the command.

Should changes to a file be ongoing Sass can watch the file and recompile the CSS every

time a change takes place. To watch a Sass file the following sass command may be

run.

sass --watch styles.sass:styles.css

1

2

Additionally, instead of compiling or watching individual files, Sass is capable of

compiling and watching entire directories of files. For example, to watch an entire

directory of Sass files and convert them to CSS the sass command below may be run.

sass --watch assets/sass:public/css

1

2

Converting Files from SCSS to Sass & Vice Versa

On top of being able to convert SCSS and Sass files to CSS you can also convert

files from SCSS to Sass and vice versa. To do so the sass commands below

may be used to convert a SCSS file to Sass, and then a Sass file to SCSS

respectively.

Convert Sass to SCSS

sass-convert styles.sass styles.scss

Convert SCSS to Sass

sass-convert styles.scss styles.sass

1

2

3

4

5

6

Syntax

As previously mentioned the primary difference between SCSS and Sass is their syntax,

and their difference in severity. The syntax of SCSS isn’t much different than that of

regular CSS. In fact, standard CSS will run inside of SCSS. Sass on the other hand is fairly

strict, and any indenting or character errors will prohibit the styles from compiling. Sass

omits all curly brackets, {}, and semicolons, ;, relying on indentation and clear line

breaks for formatting.

SCSS

.new {

 color: #ff7b29;

1

2

 font-weight: bold;

 span {

 text-transform: uppercase;

 }

}

3

4

5

6

7

8

Sass

.new

 color: #ff7b29

 font-weight: bold

 span

 text-transform: uppercase

1

2

3

4

5

6

Compiled CSS

.new {

 color: #ff7b29;

 font-weight: bold;

}

.new span {

 text-transform: uppercase;

}

1

2

3

4

5

6

7

8

Using SCSS vs. Sass

Deciding on whether to use SCSS or Sass boils down to personal preference,

and is a decision to be made based on what is best for a specific team and

project. There are pros and cons to each syntax, all of which are fair.

Personally, I prefer the Sass syntax as it requires less characters and provides, I

believe, a cleaner syntax. Sass will not allow straight CSS input as SCSS does,

and will not put up with any composition errors. Sass has a bit more of a

learning curve, however a learning curve I see well worth the ease of

manageable styles.

Moving forward the examples in this lesson will use Sass, however they may

also all be accomplished with SCSS.

Nesting

In the syntax example above you will notice how selectors may be nested inside of one

another to create compound selectors. The nesting quickly outlines identifiable

selectors, however it is important not to go overboard. Do not nest selectors for

unapparent reasons or go overboard nesting one selector under the prior one. Using

specific selectors without raising specificity is important.

Sass

.portfolio

 border: 1px solid #9799a7

 ul

 list-style: none

 li

 float: left

1

2

3

4

5

6

7

Compiled CSS

.portfolio {

 border: 1px solid #9799a7;

}

.portfolio ul {

 list-style: none;

}

.portfolio li {

 float: left;

}

1

2

3

4

5

6

7

8

9

10

Nesting Properties

On top of nesting selectors it is also possible to nest properties. Some of the most

popular uses of this may be seen with font, margin, padding, and border properties.

As with the decision of SCSS versus Sass, this is very much a personal decision. Many

feel that shorthand values are fine and breaking out values in this longer format is

unnecessary. Ultimately your decision is up to personal preference.

Sass

div

 font:

 family: Baskerville, Palatino, serif

 style: italic

 weight: normal

1

2

3

4

5

6

Compiled CSS

div {

 font-family: Baskerville, Palatino, serif;

 font-style: italic;

 font-weight: normal;

}

1

2

3

4

5

6

Nested Media Queries

Individual media queries may also be nested inside of a selector, changing property

values based off a media condition.

Sass

.container

 width: 960px

 @media screen and (max-width: 960px)

 width: 100%

1

2

3

4

5

Compiled CSS

.container {

 width: 960px;

}

@media screen and (max-width: 960px) {

 .container {

 width: 100%;

 }

}

1

2

3

4

5

6

7

8

9

Parent Selector

Sass provides a way to add styles to a previous selector with the use of the parent

selector, implemented by using an ampersand, &. Most commonly the parent selector is

used in conjunction with a pseudo class, such as :hover, however it doesn’t have to be.

Additionally the parent selector could be used to bind additional selectors to its parent,

such as &.featured.

Sass

a

 color: #0087cc

 &:hover

 color: #ff7b29

1

2

3

4

5

Compiled CSS

a {

 color: #0087cc;

}

 a:hover {

 color: #ff7b29;

}

1

2

3

4

5

6

7

Parent Key Selector

The parent selector may also be used as the key selector, adding qualifying selectors to

make compound selectors. There are an abundance of ways to use the parent selector

as the key selector but perhaps one of the most beneficial is inside of feature detection.

Sass

.btn 1

 background: linear-gradient(#fff, #9799a7)

 .no-cssgradients &

 background: url("gradient.png") 0 0 repeat-x

2

3

4

5

Compiled CSS

.btn {

 background: linear-gradient(#fff, #9799a7);

}

.no-cssgradients .btn {

 background: url("gradient.png") 0 0 repeat-x;

}

1

2

3

4

5

6

7

Comments

Sass handles comments very similar to that of Haml. The standard CSS syntax, /* ...
*/, for comments works as intended within Sass however there is also a syntax for

silent comments to completely remove a comment or lines of code from being

compiled.

The syntax for silent comments is two forward slashes, //, and any content on that line

or nested below it will be omitted from computation. Notice in the example below how

the // Omitted comment line is not rendered in the compiled CSS.

Sass

/* Normal comment */

div

 background: #333

// Omitted comment

strong

 display: block

1

2

3

4

5

6

7

Compiled CSS

/* Normal comment */

div {

 background: #333;

}

strong {

 display: block;

}

1

2

3

4

5

6

7

8

9

Variables

Variables are one of the more sought after features of CSS that Sass provides. With Sass

you can define variables and then reuse them as necessary.

Variables are defined with a dollar sign, $, followed by the variable name. Between the

variable name and value is a colon followed by an empty space, such as $font-base:
1em. As for the value of the variable, it may be a number, string, color, boolean, null, or a

list of values separated by spaces or commas.

Sass

$font-base: 1em

$serif: "Helvetica Neue", Arial, "Lucida Grande", sans-serif

p

 font: $font-base $serif

1

2

3

4

5

6

Compiled CSS

p {

 font: 1em "Helvetica Neue", Arial, "Lucida Grande", sans-serif;

}

1

2

3

4

Variable Interpolation

For the most part variables may be used anywhere inside of a Sass document. However,

they may occasionally need to be interpolated using the syntax. A few instances of

where variables need to be interpolated include when being used in a class name,

property name, or inside a string of plain text.

Sass

$location: chicago

$offset: left

.#{$location}

 #{$offset}: 20px

1

2

3

4

5

6

Compiled CSS

.chicago {

 left: 20px;

}

1

2

3

4

Calculations

Sass also has the ability to do calculations in a variety of different manners. Calculations

can handle most problems, such as addition, subtraction, division, multiplication, and

rounding.

Addition can be done by using the plus sign, +, and may be completed with or without

units of measurement. When done with units, the unit tied to the first number in the

equation is the unit that will be used in the computed value. For example, ten pixels plus

one inch will equal 106 pixels. Subtraction is handled the same way as addition but with

the minus sign, -, instead.

Multiplication is completed with the asterisk sign, *, however only one of the numbers,

if any, may include a unit of measurement. Using the percent sign, %, will return the

remainder of the two numbers upon being divided, and as with multiplication, only

allows one number, if any, to have a unit.

Sass

width: 40px + 6

width: 40px - 6

width: 40px * 6

width: 40px % 6

1

2

3

4

5

Compiled CSS

width: 46px;

width: 34px;

width: 240px;

width: 4px;

1

2

3

4

5

Division

Division is a bit trickier in Sass as the forward slash, /, used to perform division is

already used in some CSS property values. Generally speaking, division will take place

when any part of the value uses a variable, if the value is wrapped in parentheses, or if

the value is used as part of another equation.

When using one unit of measurement in division the value will reside in that unit. When

using two units of measurement, however, the resulting value will be unitless.

Sass

width: 100px / 10

width: (100px / 10)

width: (100px / 10px)

$width: 100px

width: $width / 10

width: 5px - 100px / 10

1

2

3

4

5

6

7

Compiled CSS

width: 100px/10;

width: 10px;

width: 10;

width: 10px;

width: -5px;

1

2

3

4

5

6

Detailed Math

As one may expect, Sass is also capable of combining multiple math operations. Sass

also recognizes which operations to execute first based on the use of parentheses.

Sass

$grid: 16

$column: 40px

$gutter: 20px

$container: ($column * $grid) + ($gutter * $grid)

width: $container

1

2

3

4

5

6

7

Compiled CSS

width: 960px;

1

2

Number Functions

By default Sass includes a handful of built in functions, many of which are used to

manipulate number values as wished.

The percentage() function turns a value into a percentage. The round() function

rounds a value to the closest whole number, defaulting to rounding up where necessary.

The ceil() function rounds a value up to the closest whole number, and the floor()
function rounds a value down to the closest whole number. Lastly, the abs() function

finds the absolute value of a given number.

percentage()
round()
ceil()
floor()
abs()

Sass

width: percentage(2.5)

width: round(2.5px)

width: ceil(2.5px)

width: floor(2.5px)

width: abs(-2.5px)

1

2

3

4

5

6

Compiled CSS

width: 250%;

width: 3px;

width: 3px;

width: 2px;

width: 2.5px;

1

2

3

4

5

6

Color

http://sass-lang.com/docs/yardoc/Sass/Script/Functions.html

Sass provides quite a bit of assistance in working with colors, providing a handful of

different features to alter and manipulate colors. One of the more popular color features

in Sass is the ability to change a hexadecimal color, or variable, and convert it into an

RGBa value.

Sass

color: rgba(#8ec63f, .25)

$green: #8ec63f

color: rgba($green, .25)

1

2

3

4

5

Compiled CSS

color: rgba(142, 198, 63, .25);

1

2

Color Operations

On top of numbers, math may additionally be performed on colors using addition,

subtraction, multiplication, and division. These computations are performed on the red,

green, and blue components, changing them as intended.

Sass

color: #8ec63f + #666

color: #8ec63f * 2

color: rgba(142, 198, 63, .75) / rgba(255, 255, 255, .75)

1

2

3

4

Compiled CSS

color: #f4ffa5;

color: #ffff7e;

color: rgba(0, 0, 0, .75);

1

2

3

4

Color Alterations

Using color operators to perform calculations is helpful but can be a bit challenging as

well. In this case color alterations may be a better option. Color alterations provide the

ability to inverse colors, find complementary colors, mix colors together, or find the

grayscale value of a color.

invert()
complement()
mix()
grayscale()

Sass

color: invert(#8ec63f)

color: complement(#8ec63f)

1

2

color: mix(#8ec63f, #fff)

color: mix(#8ec63f, #fff, 10%)

color: grayscale(#8ec63f)

3

4

5

6

Compiled CSS

color: #7139c0;

color: #773fc6;

color: #c6e29f;

color: #f3f9eb;

color: #838383;

1

2

3

4

5

6

HSLa Color Alterations

HSLa color alterations take things a step further, adding in even more alterations. Some

of the more popular HSLa color alterations include lighten(), darken(), saturate(),

and desaturate().

lighten()
darken()
saturate()
desaturate()
adjust-hue()
fade-in()
fade-out()

Sass

color: lighten(#8ec63f, 50%)

color: darken(#8ec63f, 30%)

color: saturate(#8ec63f, 75%)

color: desaturate(#8ec63f, 25%)

color: adjust-hue(#8ec63f, 30)

color: adjust-hue(#8ec63f, -30)

color: fade-in(rgba(142, 198, 63, 0), .4)

color: fade-out(#8ec63f, .4)

1

2

3

4

5

6

7

8

9

Compiled CSS

color: white;

color: #3b5319;

color: #98ff06;

color: #89a75e;

color: #4ac63f;

color: #c6bb3f;

color: rgba(142, 198, 63, 0.4);

color: rgba(142, 198, 63, 0.6);

1

2

3

4

5

6

7

8

9

Color Manipulation

http://sassme.arc90.com/

Outside of altering colors Sass can also directly manipulate colors. Manipulating colors

provides the most control over how to finely tune specific color properties. With this

control also comes complexity, which is why color manipulations are a bit less common

than color alterations.

change-color() — Set any property of a color

$color, [$red], [$green], [$blue], [$hue], [$saturation],
[$lightness], [$alpha]

adjust-color() — Incrementally manipulate any property of a color

$color, [$red], [$green], [$blue], [$hue], [$saturation],
[$lightness], [$alpha]

scale-color() — Fluidly scale any percentage based on property of a color

$color, [$red], [$green], [$blue], [$saturation], [$lightness],
[$alpha]

Sass

color: change-color(#8ec63f, $red: 60, $green: 255)

color: adjust-color(#8ec63f, $hue: 300, $lightness: 50%)

color: scale-color(#8ec63f, $lightness: 25%, $alpha: 30%)

1

2

3

4

Compiled CSS

color: #3cff3f;

color: white;

color: #aad46f;

1

2

3

4

Extends

Extends provide a way to easily share and reuse styles without having to explicitly

repeat code or use additional classes, providing a perfect way to keep code modular.

Both elements and class selectors may be used as an extend, and there is even a

placeholder selector built just for extends.

Extends are established by using the @extend rule followed by the selector to extend.

Instead of duplicating the property and values, the original selector receives and

additional selector, that of which is from the selector calling the extend.

In all, this provides a way to quickly reuse code without driving up code weight.

Additionally, extends parley nicely with OOCSS and SMACSS.

Sass

.alert

 border-radius: 10px

 padding: 10px 20px

.alert-error

 @extend .alert

 background: #f2dede

 color: #b94a48

1

2

3

4

5

6

7

8

9

Compiled CSS

.alert,

.alert-error {

 border-radius: 10px;

 padding: 10px 20px;

}

.alert-error {

 background: #f2dede;

 color: #b94a48;

}

1

2

3

4

5

6

7

8

9

10

Placeholder Selector Extend

To avoid building a bunch of unused classes purely for extends we can use what is

known as a placeholder selector. The placeholder selector is initialized with a

percentage sign, %, and is never directly compiled into CSS. Instead, it is used to attach

selectors to when it is called with an extend. In the refined example below notice how

the .alert selector never makes its way into the CSS.

Sass

%alert

 border-radius: 10px

 padding: 10px 20px

.alert-error

 @extend %alert

 background: #f2dede

 color: #b94a48

1

2

3

4

5

6

7

8

9

Compiled CSS

.alert-error {

 border-radius: 10px;

 padding: 10px 20px;

}

.alert-error {

 background: #f2dede;

 color: #b94a48;

}

1

2

3

4

5

6

7

8

9

Element Selector Extend

As with classes, extends also work with standard element selectors too.

Sass

h2

 color: #9c6

 span

 text-decoration: underline

.sub-heading

 @extend h2

1

2

3

4

5

6

7

8

Compiled CSS

h2, .sub-heading {

 color: #9c6;

}

h2 span, .sub-heading span {

 text-decoration: underline;

}

1

2

3

4

5

6

7

Mixins

Mixins provide a way to easily template properties and values, then share them

amongst different selectors. Mixins differ from extends as mixins allow arguments to be

passed in where extends are fixed values.

Mixins are identified using the @mixin rule followed by any potential arguments, then

any styles are outlined below the rule. To call a mixin from within a selector use the plus

sign, +, followed by the name of the mixin and any desired argument values if needed.

It is worth nothing that SCSS handles mixins a bit different. Instead of using a plus sign

to call a mixin SCSS use an @include rule.

Sass

@mixin btn($color, $color-hover)

 color: $color

 &:hover

 color: $color-hover

.btn

 +btn($color: #fff, $color-hover: #9799a7)

1

2

3

4

5

6

7

8

Compiled CSS

.btn {

 color: #fff;

}

.btn:hover {

 color: #9799a7;

}

1

2

3

4

5

6

7

Default Arguments

Using the same example from above we can also specify default argument values,

which may be over written if wished.

Sass

@mixin btn($color: #fff, $color-hover: #9799a7)

 color: $color

 &:hover

 color: $color-hover

.btn

 +btn($color-hover: #9799a7)

1

2

3

4

5

6

7

8

Compiled CSS

.btn {

 color: #fff;

}

.btn:hover {

 color: #9799a7;

}

1

2

3

4

5

6

7

Variable Arguments

When one or more values need to be passed to an argument the variable name may end

with ... inside of the mixin. In the example below with box shadows we can pass in

comma separated values to the mixin.

@mixin box-shadow($shadow...)

 -webkit-box-shadow: $shadow

 -moz-box-shadow: $shadow

 box-shadow: $shadow

.shadows

 +box-shadow(0 1px 2px #cecfd5, inset 0 0 5px #cecfd5)

1

2

3

4

5

6

7

8

Compiled CSS

.shadows {

 -moz-box-shadow: 0 1px 2px #cecfd5, inset 0 0 5px #cecfd5;

 -webkit-box-shadow: 0 1px 2px #cecfd5, inset 0 0 5px #cecfd5;

 box-shadow: 0 1px 2px #cecfd5, inset 0 0 5px #cecfd5;

}

1

2

3

4

5

6

Imports

One of nicest parts of Sass is its ability to import multiple .scss or .sass files and

condense them into one single file. Condensing all of the files into one allows for

multiple stylesheets to be used for better organization without the worry of numerous

HTTP request.

Instead of referencing all of the different stylesheets within an HTML document only

reference the one Sass file importing all of the other stylesheets.

In the following examples, all three files _normalize.sass, _grid.sass, and

_typography.sass are all compiled into one file. In the event that the Sass file

importing all the other files is named styles.sass, and it is compiled into styles.css,

then only styles.css needs to be referenced within the HTML document.

Sass

@import "normalize"

@import "grid", "typography"

1

2

3

Compiled HTML

<link href="styles.css" rel="stylesheet">

1

2

Loops & Conditionals

For a bit more intricate styling Sass supports different control directives. Its important

to understand these directives are not intended for everyday styling but for creating

detailed mixins and helpers. Many of these will look familiar as they are borrowed from

other programming languages.

Operators

Some loops and conditionals will require operators to determine their behavior, of

which can be broken down into relational and comparison operators. Relational

operators looks at the relationship between two entities, while comparison operators

determine equality or different between to entities.

<

Less than

>

Greater than

==

Equal to

<=

Less than or equal to

>=

Greather than or equal to

!=

Not equal to

// Relational Operators

6 < 10 // true

4 <= 60 // true

8 > 2 // true

1

2

3

4

10 >= 10 // true

// Comparison Operators

#fff == white // true

10 + 30 == 40 // true

normal != bold // true

5

6

7

8

9

10

11

If Function

The @if rule test an expressions then loads the styles beneath that expression should it

return anything other than false or null. The initial if statement may be proceeded by

several else if statements and one else statement. Once a statement is successful

identified the styles directly tied to it will be applied.

Sass

$shay: awesome

.shay

 @if $shay == awesome

 background: #ff7b29

 @else if $shay == cool

 background: #0087cc

 @else

 background: #333

1

2

3

4

5

6

7

8

9

10

Compiled CSS

.shay {

 background: #ff7b29;

}

1

2

3

4

For Loop

The @for rule outputs different sets of styles based off of a counter variable. There are

two different forms available for for loops, those being to and through. The first, @for
$i from 1 to 3 for example, will output styles up to, but not including, 3. The other

form, @for $i from 1 through 3, will output styles up to, and including, 3.

Sass

@for $col from 1 to 6

 .col-#{$col}

 width: 40px * $col

1

2

3

4

Compiled CSS

.col-1 {

 width: 40px;

1

2

}

.col-2 {

 width: 80px;

}

.col-3 {

 width: 120px;

}

.col-4 {

 width: 160px;

}

.col-5 {

 width: 200px;

}

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Each Loop

Simply enough, the @each rule returns styles for each item in a list. List may include

multiple comma separated items.

Sass

@each $class in uxd, rails, html, css

 .#{$class}-logo

 background: url("/img/#{$class}.jpg")

1

2

3

4

Compiled CSS

.uxd-logo {

 background: url("/img/uxd.jpg");

}

.rails-logo {

 background: url("/img/rails.jpg");

}

.html-logo {

 background: url("/img/html.jpg");

}

.css-logo {

 background: url("/img/css.jpg");

}

1

2

3

4

5

6

7

8

9

10

11

12

13

While Loop

The @while rule repeatedly returns styles until the statement becomes false. The

directive accepts a handful of different operators and the counter variable can be finely

controlled allowing for precise looping.

Sass

$heading: 1

@while $heading <= 6

1

2

 h#{$heading}

 font-size: 2em - ($heading * .25em)

 $heading: $heading + 1

3

4

5

6

Compiled CSS

h1 {

 font-size: 1.75em;

}

h2 {

 font-size: 1.5em;

}

h3 {

 font-size: 1.25em;

}

h4 {

 font-size: 1em;

}

h5 {

 font-size: 0.75em;

}

h6 {

 font-size: 0.5em;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Other Preprocessors

Haml and Sass are far from the only preprocessing languages available, including

JavaScript preprocessors as well. Some of the other popular preprocessors including

Jade, Slim, LESS, Stylus, and CoffeeScript.

In the interest of brevity Haml and Sass were the only preprocessors covered in this

lesson. They were also chosen because they are built using Ruby and fit right into Ruby

on Rails applications. They’ve also got tremendous community support.

When it comes to choosing which, if any, preprocessor to use it is important to consider

what is best for your team and project. Projects built in Node.js may likely better benefit

from Jade and Stylus. The most important aspect to consider, though, is what your team

is accustomed to using. Do your research for each project and make the most educated

decision.

Resources & Links

Haml — HTML Abstraction Markup Language

Sass — Syntactically Awesome Stylesheets

Haml Documentation Reference

Sass Documentation Reference

Sass Playground via SassMeister

SassScript Function via Sass Documentation

HSLa Color Function Visualization via SassMe

http://jade-lang.com/
http://slim-lang.com/
http://lesscss.org/
https://learnboost.github.com/stylus/
http://coffeescript.org/
http://haml.info/
http://sass-lang.com/
http://haml.info/docs/yardoc/file.REFERENCE.html
http://sass-lang.com/docs/yardoc/file.SASS_REFERENCE.html
http://sassmeister.com/
http://sass-lang.com/docs/yardoc/Sass/Script/Functions.html
http://sassme.arc90.com/
https://twitter.com/share?text=Preprocessors%20-&url=http://learn.shayhowe.com/advanced-html-css/preprocessors/&via=shayhowe&related=shayhowe
http://www.facebook.com/sharer.php?u=http://learn.shayhowe.com/advanced-html-css/preprocessors/
https://plus.google.com/share?url=http://learn.shayhowe.com/advanced-html-css/preprocessors/

