
Learn to Code Advanced

HTML & CSS

Lesson 4

Responsive Web Design

4
In this Lesson

HTML

Responsive Overview

Viewport

CSS

Flexible Layouts

Media Queries

Mobile First

Flexible Media

SHARE

The Internet took off quicker than anyone would have predicted, growing like crazy.

Now, for the past few years, mobile growth has exploded onto the scene. The growth of

mobile Internet usage is also far out pacing that of general Internet usage growth.

These days it is hard to find someone who doesn’t own a mobile device, or multiple,

connected to the Internet. In the UK there are more mobile phones than people, and

should trends continue mobile Internet usage will surpass that of desktop Internet

usage within the year.

With the growth in mobile Internet usage comes the question of how to build websites

suitable for all users. The industry response to this question has become responsive

web design, also known as RWD.

Responsive Overview

Responsive web design is the practice of building a website suitable to work on every

device and every screen size, no matter how large or small, mobile or desktop.

Responsive web design is focused around providing an intuitive and gratifying

experience for everyone. Desktop computer and cell phone users alike all benefit from

responsive websites.

The responsive web design term itself was coined, and largely developed, by Ethan

Marcotte. A lot of what is covered in this lesson was first talked about by Ethan online

and in his book Responsive Web Design, which is worth a read.

https://learn.shayhowe.com/advanced-html-css/
https://twitter.com/share?text=Responsive%20Web%20Design%20-&url=http://learn.shayhowe.com/advanced-html-css/responsive-web-design/&via=shayhowe&related=shayhowe
http://www.facebook.com/sharer.php?u=http://learn.shayhowe.com/advanced-html-css/responsive-web-design/
https://plus.google.com/share?url=http://learn.shayhowe.com/advanced-html-css/responsive-web-design/
http://www.gpmd.co.uk/blog/2012-mobile-internet-statistics/
http://www.digitalbuzzblog.com/2011-mobile-statistics-stats-facts-marketing-infographic/
http://www.alistapart.com/articles/responsive-web-design/
https://www.abookapart.com/products/responsive-web-design/

Fig. 4.01

Food Sense has a beautiful website, responsive to all different viewport sizes. No matter how large or

small the viewport may be the Food Sense website adjust, creating a natural user experience.

Responsive vs. Adaptive vs. Mobile

For some the term responsive may not be new, and others might be even more

acquainted with the terms adaptive or mobile. Which may leave you wondering what

http://foodsense.is/

exactly is the difference between all of them.

Responsive and adaptive web design are closely related, and often transposed as one in

the same. Responsive generally means to react quickly and positively to any change,

while adaptive means to be easily modified for a new purpose or situation, such as

change. With responsive design websites continually and fluidly change based on

different factors, such as viewport width, while adaptive websites are built to a group of

preset factors. A combination of the two is ideal, providing the perfect formula for

functional websites. Which term is used specifically doesn’t make a huge difference.

Mobile, on the other hand, generally means to build a separate website commonly on a

new domain solely for mobile users. While this does occasionally have its place, it

normally isn’t a great idea. Mobile websites can be extremely light but they do come

with the dependencies of a new code base and browser sniffing, all of which can

become an obstacle for both developers and users.

Currently the most popular technique lies within responsive web design, favoring design

that dynamically adapts to different browser and device viewports, changing layout and

content along the way. This solution has the benefits of being all three, responsive,

adaptive, and mobile.

Flexible Layouts

Responsive web design is broken down into three main components, including flexible

layouts, media queries, and flexible media. The first part, flexible layouts, is the practice

of building the layout of a website with a flexible grid, capable of dynamically resizing to

any width. Flexible grids are built using relative length units, most commonly

percentages or em units. These relative lengths are then used to declare common grid

property values such as width, margin, or padding.

Relative Viewport Lengths

CSS3 introduced some new relative length units, specifically related to the

viewport size of the browser or device. These new units include vw, vh, vmin,

and vmax. Overall support for these new units isn’t great, but it is growing. In

time they look to play a large roll in building responsive websites.

vw

Viewports width

vh

Viewports height

vmin

Minimum of the viewport’s height and width

vmax

Maximum of the viewport’s height and width

Flexible layouts do not advocate the use of fixed measurement units, such as pixels or

inches. Reason being, the viewport height and width continually change from device to

device. Website layouts need to adapt to this change and fixed values have too many

constraints. Fortunately, Ethan pointed out an easy formula to help identify the

proportions of a flexible layout using relative values.

The formula is based around taking the target width of an element and dividing it by the

width of it’s parent element. The result is the relative width of the target element.

https://dev.w3.org/csswg/css3-values/#viewport-relative-lengths

target ÷ context = result

1

2

Flexible Grid

Let’s see how this formula works inside of a two column layout. Below we have a parent

division with the class of container wrapping both the section and aside elements.

The goal is to have have the section on the left and the aside on the right, with equal

margins between the two. Normally the markup and styles for this layout would look a

bit like the following.

HTML

<div class="container">

 <section>...</section>

 <aside>...</aside>

</div>

1

2

3

4

5

CSS

.container {

 width: 538px;

}

section,

aside {

 margin: 10px;

}

section {

 float: left;

 width: 340px;

}

aside {

 float: right;

 width: 158px;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Fixed Grid Demo

Using the flexible grid formula we can take all of the fixed units of length and turn them

into relative units. In this example we’ll use percentages but em units would work

equally as well. Notice, no matter how wide the parent container becomes, the

section and aside margins and widths scale proportionally.

section,

aside {

 margin: 1.858736059%; /* 10px ÷ 538px = .018587361 */

}

section {

 float: left;

 width: 63.197026%; /* 340px ÷ 538px = .63197026 */

}

aside {

 float: right;

 width: 29.3680297%; /* 158px ÷ 538px = .293680297 */

}

1

2

3

4

5

6

7

8

9

10

11

12

13

Flexible Grid Demo

Taking the flexible layout concept, and formula, and reapplying it to all parts of a grid

will create a completely dynamic website, scaling to every viewport size. For even more

control within a flexible layout, you can also leverage the min-width, max-width, min-
height, and max-height properties.

The flexible layout approach alone isn’t enough. At times the width of a browser

viewport may be so small that even scaling the the layout proportionally will create

columns that are too small to effectively display content. Specifically, when the layout

gets too small, or too large, text may become illegible and the layout may begin to

break. In this event, media queries can be used to help build a better experience.

Media Queries

Media queries were built as an extension to media types commonly found when

targeting and including styles. Media queries provide the ability to specify different

styles for individual browser and device circumstances, the width of the viewport or

https://css-tricks.com/css-media-queries/

device orientation for example. Being able to apply uniquely targeted styles opens up a

world of opportunity and leverage to responsive web design.

Initializing Media Queries

There are a couple different ways to use media queries, using the @media rule inside of

an existing style sheet, importing a new style sheet using the @import rule, or by linking

to a separate style sheet from within the HTML document. Generally speaking it is

recommend to use the @media rule inside of an existing style sheet to avoid any

additional HTTP requests.

HTML

<!-- Separate CSS File -->

<link href="styles.css" rel="stylesheet" media="all and (max-width: 1024px)">

1

2

3

CSS

/* @media Rule */

@media all and (max-width: 1024px) {...}

/* @import Rule */

@import url(styles.css) all and (max-width: 1024px) {...}

1

2

3

4

5

6

Each media query may include a media type followed by one or more expressions.

Common media types include all, screen, print, tv, and braille. The HTML5

specification includes new media types, even including 3d-glasses. Should a media

type not be specified the media query will default the media type to screen.

The media query expression that follows the media type may include different media

features and values, which then allocate to be true or false. When a media feature and

value allocate to true, the styles are applied. If the media feature and value allocate to

false the styles are ignored.

Logical Operators in Media Queries

Logical operators in media queries help build powerful expressions. There are three

different logical operators available for use within media queries, including and, not,

and only.

Using the and logical operator within a media query allows an extra condition to be

added, making sure that a browser or devices does both a, b, c, and so forth. Multiple

individual media queries can be comma separated, acting as an unspoken or operator.

The example below selects all media types between 800 and 1024 pixels wide.

@media all and (min-width: 800px) and (max-width: 1024px) {...}

1

2

The not logical operator negates the query, specifying any query but the one identified.

In the example below the expression applies to any device that does not have a color

screen. Black and white or monochrome screens would apply here for example.

https://css-tricks.com/css-media-queries/

@media not screen and (color) {...}

1

2

The only logical operator is a new operator and is not recognized by user agents using

the HTML4 algorithm, thus hiding the styles from devices or browsers that don’t

support media queries. Below, the expression selects only screens in a portrait

orientation that have a user agent capable of rending media queries.

@media only screen and (orientation: portrait) {...}

1

2

Omitting a Media Type

When using the not and only logical operators the media type may be left off.

In this case the media type is defaulted to all.

Media Features in Media Queries

Knowing the media query syntax and how logical operators work is a great introduction

to media queries but the true work comes with media features. Media features identify

what attributes or properties will be targeted within the media query expression.

Height & Width Media Features

One of the most common media features revolves around determining a height or width

for a device or browser viewport. The height and width may be found by using the

height and width media features. Each of these media features may then also be

prefixed with the min or max qualifiers, building a feature such as min-width or max-
width.

The height and width features are based off the height and width of the viewport

rendering area, the browser window for example. Values for these height and width

media features may be any length unit, relative or absolute.

@media all and (min-width: 320px) and (max-width: 780px) {...}

1

2

Within responsive design the most commonly used features include min-width and

max-width. These help build responsive websites on desktops and mobile devices

equally, avoiding any confusion with device features.

Using Minimum & Maximum Prefixes

The min and max prefixes can be used on quite a few media features. The min
prefix indicates a values of greater than or equal to while the max prefix

indicates a value of less than or equal to. Using min and max prefixes avoid any

conflict with the general HTML syntax, specifically not using the < and >
symbols.

Orientation Media Feature

The orientation media feature determines if a device is in the landscape or portrait
orientation. The landscape mode is triggered when the display is wider than taller, and

the portrait mode is triggered when the display is taller than wider. This media

feature plays a large part with mobile devices.

@media all and (orientation: landscape) {...}

1

2

Aspect Ratio Media Features

The aspect-ratio and device-aspect-ratio features specifies the width/height
pixel ratio of the targeted rendering area or output device. The min and max prefixes are

available to use with the different aspect ratio features, identifying a ratio above or

below that of which is stated.

The value for the aspect ratio feature consist of two positive integers separated by a

forward slash. The first integer identifies the width in pixels while the second integer

identifies the height in pixels.

@media all and (min-device-aspect-ratio: 16/9) {...}

1

2

Pixel Ratio Media Features

In addition to the aspect ratio media features there are also pixel-ratio
media features. These features do include the device-pixel-ratio feature as

well as min and max prefixes. Specifically, the pixel ratio feature is great for

identifying high definition devices, including retina displays. Media queries for

doing so look like the following.

@media only screen and (-webkit-min-device-pixel-ratio: 1.3)1

2

Resolution Media Feature

The resolution media feature specifies the resolution of the output device in pixel

density, also known as dots per inch or DPI. The resolution media feature does accept

the min and max prefixes. Additionally, the resolution media feature will accept dots

per pixel (1.3dppx), dots per centimeter (118dpcm), and other length based resolution

values.

@media print and (min-resolution: 300dpi) {...}

1

2

Other Media Features

Other media features include identifying available output colors with use of the color,

color-index, and monochrome features, identifying bitmap devices with the grid
feature, and identifying the scanning process of a television with the scan feature.

These features are less common but equally as helpful when needed.

Media Query Browser Support

Unfortunately media queries do not work within Internet Explorer 8 and below,

as well as other legacy browsers. There are, however, a couple suitable

polyfills written in Javascript.

Respond.js is a lightweight polyfill that only looks for min/max-width media

types, which is perfect should those be the only media query types used. CSS3-

MediaQueries.js is a more developed, and heavier, polyfill offering support for

a larger array of more complex media queries. Additionally, keep in mind any

polyfill can have performance concerns, and potentially slow down websites.

Make sure that any given polyfill is worth the performance trade off.

Media Queries Demo

Using media queries we will now rewrite the flexible layout we built previously. One of

the current problems within the demo appears when the aside width becomes uselessly

small within smaller viewports. Adding a media query for viewports under 420 pixels

wide we can change the layout by turning off the floats and changing the widths of the

section and aside.

@media all and (max-width: 420px) {

 section, aside {

 float: none;

 width: auto;

 }

}

1

2

3

4

5

6

7

Fig. 4.02

Without any media queries the section and aside become quite small. Perhaps too small to even

contain any real content.

Fig. 4.03

Using media queries to remove the floats and change their widths, the section and aside are now

able to span the full width of the viewport, allowing breathing room for any existing content.

https://github.com/scottjehl/Respond/
https://code.google.com/p/css3-mediaqueries-js/

Identifying Breakpoints

Your instinct might be to write media query breakpoints around common

viewport sizes as determined by different device resolutions, such as 320px,

480px, 768px, 1024px, 1224px, and so forth. This is a bad idea.

When building a responsive website it should adjust to an array of different

viewport sizes, regardless of the device. Breakpoints should only be introduced

when a website starts to break, look weird, or the experience is being

hampered.

Additionally, new devices and resolutions are being released all of the time.

Trying to keep up with these changes could be an endless process.

Mobile First

One popular technique with using media queries is called mobile first. The mobile first

approach includes using styles targeted at smaller viewports as the default styles for a

website, then use media queries to add styles as the viewport grows.

The operating belief behind mobile first design is that a user on a mobile device,

commonly using a smaller viewport, shouldn’t have to load the styles for a desktop

computer only to have them over written with mobile styles later. Doing so is a waste of

bandwidth. Bandwidth that is precious to any users looking for a snappy website.

The mobile first approach also advocates designing with the constraints of a mobile

user in mind. Before too long, the majority of Internet consumption will be done on a

mobile device. Plan for them accordingly and develop intrinsic mobile experiences.

A breakout of mobile first media queries might look at bit like the following.

/* Default styles first then media queries */

@media screen and (min-width: 400px) {...}

@media screen and (min-width: 600px) {...}

@media screen and (min-width: 1000px) {...}

@media screen and (min-width: 1400px) {...}

1

2

3

4

5

6

Additionally, downloading unnecessary media assets can be stopped by using media

queries. Generally speaking, avoiding CSS3 shadows, gradients, transforms, and

animations within mobile styles isn’t a bad idea either. When used excessively, they

cause heavy loading and can even reduce a device’s battery life.

/* Default media */

body {

 background: #ddd;

}

/* Media for larger devices */

@media screen and (min-width: 800px) {

 body {

 background-image: url("bg.png") 50% 50% no-repeat;

1

2

3

4

5

6

7

8

http://www.lukew.com/presos/preso.asp?26

 }

}

9

10

11

Mobile First Demo

Adding media queries to our previous example, we overwrote a handful of styles in

order to have a better layout on viewports under 420 pixels wide. Rewriting this code to

use the mobile styles first by default then adding media queries to adjust for viewports

over 420 pixels wide we build the following:

section,

aside {

 margin: 1.858736059%;

}

@media all and (min-width: 420px) {

 .container {

 max-width: 538px;

 }

 section {

 float: left;

 width: 63.197026%;

 }

 aside {

 float: right;

 width: 29.3680297%;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Mobile First Demo

Notice, this is the same amount of code as before. The only exception here is that

mobile devices only have to render only one CSS declaration. All of the other styles are

deferred, only loading on larger viewports and done so without overwriting any initial

styles.

Viewport

Mobile devices generally do a pretty decent job of displaying websites these days.

Sometimes they could use a little assistance though, particularly around identifying the

viewport size, scale, and resolution of a website. To remedy this, Apple invented the

viewport meta tag.

https://dev.opera.com/articles/view/an-introduction-to-meta-viewport-and-viewport/

Fig. 4.04

Although this demo has media queries, many mobile devices still do not know the initial width or scale

of the website. Therefore, they may not interrupt media queries.

Viewport Height & Width

Using the viewport meta tag with either the height or width values will define the

height or width of the viewport respectively. Each value accepts either a positive integer

or keyword. For the height property the keyword device-height value is accepted,

and for the width property the keyword device-width is accepted. Using these

keywords will inherit the device’s default height and width value.

For the best results, and the best looking website, it is recommend that you use the

device defaults by applying the device-height and device-width values.

<meta name="viewport" content="width=device-width">

1

2

Fig. 4.05

Letting devices know the intended width of the website, device-width in this case, allows the

website to be sized properly and to pick up any qualifying media queries.

Viewport Scale

To control how a website is scaled on a mobile device, and how users can continue to

scale a website, use the minimum-scale, maximum-scale, initial-scale, and user-
scalable properties.

The initial-scale of a website should be set to 1 as this defines the ratio between

the device height, while in a portrait orientation, and the viewport size. Should a device

be in landscape mode this would be the ratio between the device width and the

viewport size. Values for initial-scale should always be a positive integer between 0
and 10.

<meta name="viewport" content="initial-scale=2">

1

2

Fig. 4.06

Using an integer above 1 will zoom the website to be larger than the default scale. Generally speaking,

this value will most commonly be set to 1.

The minimum-scale and maximum-scale values determine how small and how large a

viewport may be scaled. When using minimum-scale the value should be a positive

integer lower than or equal to the initial-scale. Using the same reasoning, the

maximum-scale value should be a positive integer greater than or equal to the

initial-scale. Values for both of these must also be between 0 and 10.

<meta name="viewport" content="minimum-scale=0">

1

2

Generally speaking, these values should not be set to the same value as the initial-
scale. This would disable any zooming, which can be accomplished instead by using

the user-scalable value. Setting the user-scalable value to no will disable any

zooming. Alternatively, setting the user-scalable value to yes will turn on zooming.

Turning off the ability to scale a website is a bad idea. It harms accessibility and

usability, preventing those with disabilities from viewing a website as desired.

<meta name="viewport" content="user-scalable=yes">

1

2

Viewport Resolution

Letting the browser decide how to scale a website based off any viewport scale values

usually does the trick. When more control is needed, specifically over the resolution of a

device, the target-densitydpi value may be used. The target-densitydpi viewport

accepts a handful of values including device-dpi, high-dpi, medium-dpi, low-dpi, or

an actual DPI number.

Using the target-densitydpi viewport value is rare, but extremely helpful when pixel

by pixel control is needed.

<meta name="viewport" content="target-densitydpi=device-dpi">

1

2

Combining Viewport Values

The viewport meta tag will accept individual values as well as multiple values, allowing

multiple viewport properties to be set at once. Setting multiple values requires comma

separating them within the content attribute value. One of the recommended viewport

values is outlined below, using both the width and initial-scale properties.

<meta name="viewport" content="width=device-width, initial-scale=1">

1

2

Fig. 4.07

A combination of width=device-width and initial-scale=1 provide the initial size and

zoom commonly required.

CSS Viewport Rule

Since the viewport meta tag revolves so heavily around setting the styles of

how a website should be rendered it has been recommend to move the

viewport from a meta tag with HTML to an @ rule within CSS. This helps keep

the style separated from content, providing a more semantic approach.

Currently some browsers have already implemented the @viewport rule,

however support isn’t great across the board. The previously recommended

viewport meta tag would look like the following @viewport rule in CSS.

@viewport {

 width: device-width;

 zoom: 1;

}

1

2

3

4

5

Flexible Media

The final, equally important aspect to responsive web design involves flexible media. As

viewports begin to change size media doesn’t always follow suit. Images, videos, and

other media types need to be scalable, changing their size as the size of the viewport

changes.

One quick way to make media scalable is by using the max-width property with a value

of 100%. Doing so ensures that as the viewport gets smaller any media will scale down

according to its containers width.

img, video, canvas {

 max-width: 100%;

}

1

2

3

4

Flexible Media Demo

Flexible Embedded Media

Unfortunately the max-width property doesn’t work well for all instances of media,

specifically around iframes and embedded media. When it comes to third party

websites, such as YouTube, who use iframes for embedded media this is a huge

disappointment. Fortunately, there is a work around.

To get embedded media to be fully responsive, the embedded element needs to be

absolutely positioned within a parent element. The parent element needs to have a

width of 100% so that it may scale based on the width of the viewport. The parent

http://www.alistapart.com/articles/creating-intrinsic-ratios-for-video/

element also needs to have a height of 0 to trigger the hasLayout mechanism within

Internet Explorer.

Padding is then given to the bottom of the parent element, the value of which is set in

the same aspect ratio of the video. This allows the height of the parent element to be

proportionate to that of it’s width. Remember the responsive design formula from

before? If a video has an aspect ratio of 16:9, 9 divided by 16 equals .5625, thus

requiring a bottom padding of 56.25%. Padding on the bottom and not the top is

specifically used to prevent Internet Explorer 5.5 from breaking, and treating the parent

element as an absolutely positioned element.

HTML

<figure>

 <iframe src="https://www.youtube.com/embed/4Fqg43ozz7A"></iframe>

</figure>

1

2

3

4

CSS

figure {

 height: 0;

 padding-bottom: 56.25%; /* 16:9 */

 position: relative;

 width: 100%;

}

iframe {

 height: 100%;

 left: 0;

 position: absolute;

 top: 0;

 width: 100%;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Flexible Embedded Media Demo

For security reasons CodePen doesn’t allow iframes within embedded code

samples, however you may review and edit this code on their website.

100% Wide Container

https://codepen.io/shayhowe/pen/cbmsI

75% Wide Container

50% Wide Container

Resources & Links

Responsive Web Design via A List Apart

Viewport Percentage Lengths via W3C

CSS Media Queries via CSS-Tricks

Mobile First Presentation via Luke Wroblewski

An Introduction to Meta Viewport and @viewport via Dev.Opera

Lesson 3

Complex Selectors

Lesson 5

Preprocessors

Learn More HTML & CSS or Study Other Topics

Learning how to code HTML & CSS and building successful websites can be challenging,

and at times additional help and explanation can go a long way. Fortunately there are

plenty of online schools, boot camps, workshops, and the alike, that can help.

Select your topic of interest below and I will recommend a course I believe will provide

the best learning opportunity for you.

Select Your Topic of Interest:

Design & Product
Front-end

Development

Web

Development

Mobile Data & Business &

http://www.alistapart.com/articles/responsive-web-design/
https://dev.w3.org/csswg/css3-values/#viewport-relative-lengths
https://css-tricks.com/css-media-queries/
http://www.lukew.com/presos/preso.asp?26
https://dev.opera.com/articles/view/an-introduction-to-meta-viewport-and-viewport/
https://twitter.com/share?text=Responsive%20Web%20Design%20-&url=http://learn.shayhowe.com/advanced-html-css/responsive-web-design/&via=shayhowe&related=shayhowe
http://www.facebook.com/sharer.php?u=http://learn.shayhowe.com/advanced-html-css/responsive-web-design/
https://plus.google.com/share?url=http://learn.shayhowe.com/advanced-html-css/responsive-web-design/
https://learn.shayhowe.com/advanced-html-css/complex-selectors/
https://learn.shayhowe.com/advanced-html-css/preprocessors/

