
Learn to Code Advanced

HTML & CSS

Lesson 10

Extending Semantics &
Accessibility

10
In this Lesson

HTML

Semantic Motivation

Structural Semantics

Text Level Semantics

Microdata

WAI-ARIA

SHARE

Semantics and accessibility are naturally part of HTML by design, however they are not

fully leveraged unless used accordingly. Knowing how to write semantic and accessible

code properly takes an understanding of how semantics and accessibility work, and

how users and machines interpret them. Writing semantic and accessible code isn’t

incredibly difficult, but it can be time consuming. In the long run, however, the benefits

win out.

One of the more important parts to remember when writing semantic and accessible

code is to do your best to leverage the standard markup language. Do your best to write

the cleanest code possible, and take pride in your work. Generally speaking, don’t use a

meaningless element where another element might make more semantic sense, using a

div where a h1 would be better fitted for example. Use semantic elements and

attributes, as well as microdata and WAI-ARIA to extend the value of your code.

Additionally, be an advocate for semantics and accessibility. Tell others why you’ve

written certain code, and provide reasoning why certain modules of content are marked

up in a specific way. Outline goals and objectives within your code, and explain how

those goals and objectives are being accomplished. The practice of writing semantic

and accessible code is growing, however adoption at large has not yet been achieved.

Be an advocate for the code you write.

Semantic Motivation

Occasionally, one may ask if semantics really make a difference. You may hear they

slow down development, are poorly supported, or that they are even opinionated. While

this may have some validity, you still need to retain integrity and continue to write the

best code possible, for semantics provide a larger meaning in writing code.

The fact of the matter is, semantics largely benefit everyone. For starters, semantics

provide a shared and unambiguous meaning to content. Semantics give content solid

structure and value, while also favoring accessibility, providing better user interfaces

and more defined information to assistive technologies. Search and globalization is

https://learn.shayhowe.com/advanced-html-css/
https://twitter.com/share?text=Extending%20Semantics%20%26amp%3B%20Accessibility%20-&url=http://learn.shayhowe.com/advanced-html-css/semantics-accessibility/&via=shayhowe&related=shayhowe
http://www.facebook.com/sharer.php?u=http://learn.shayhowe.com/advanced-html-css/semantics-accessibility/
https://plus.google.com/share?url=http://learn.shayhowe.com/advanced-html-css/semantics-accessibility/
http://www.vanseodesign.com/web-design/semantic-html/

more permanent with semantics, making it easier to serve content internationally and

making it more search engine friendly. Should that not be enough, semantics also

promote interoperability, allowing the exchange and use of information across different

platforms and devices.

It’s safe to say semantics are important, and here to stay. To briefly recap, semantics

provide:

Unambiguous, shared meaning within content

Accessibility

Search and globalization

Interoperability

Structural Semantics

Within the beginner’s guide we discuss the use of structural semantics, specifically

using the header, nav, article, section, aside, and footer elements. These elements

are used to provide additional background context to the content within them,

communicating their core meaning to web browsers and other devices. This is

important, as it provides a better way to outline and structure pages, not to mention a

more meaningful solution than divisions.

Hiding Content

Every now and then you may want to hide a block of content on the page, perhaps

showing or hiding an element depending on a user’s state. For example, having a

success message hidden from a user until they complete a desired action. Most

commonly, this is accomplished with the display: none; CSS declaration. While this

does work, it is semantically incorrect.

A better option is to use the hidden Boolean attribute, which is a global attribute

available to all elements for use. Functionally it performs the same way as the CSS

declaration, but semantically it represents an element that should be hidden, or ignored,

for the time being. Screen readers and other devices will recognize this, temporarily

skipping it, where they may not done so with the CSS declaration.

<!-- Good -->

<div hidden>...</div>

<!-- Not good -->

<div style="display: none;">...</div>

1

2

3

4

5

6

Imagine a blind user attempting to fill out a form and the first piece of content, before

even filling out the form, is a success message. This is a poor user experience, and one

that can easily be fixed using proper semantics.

Text Level Semantics

The majority of content on the web lives within text, and we primarily browse the

Internet looking for this content. Using the proper semantic markup for text makes it

easier for users to find what they need.

Bolding Text

http://www.vanseodesign.com/web-design/semantic-html/
https://learn.shayhowe.com/html-css/getting-to-know-html/
https://developers.whatwg.org/text-level-semantics.html

There are a few different ways to make text bold, including multiple elements and the

font weight CSS property. The two main elements used in this case include strong and

b. While these two elements have the same presentation they have completely different

semantic meanings.

The strong element outlines text that has a strong importance. On the contrasting

side, the b element identifies text that is to be stylistically offset, without importance.

Generally speaking, the b element should be used solely as a styling hook to change the

presentation of an element, where the strong element should be used to identify

significantly important text.

<!-- Strong importance -->

Caution: Falling rocks.

<!-- Stylistically offset -->

This recipe calls for bacon and baconnaise.

1

2

3

4

5

6

Bolding Text Demo

Caution: Falling rocks.

Resources

HTML CSS
E D I T O N

RESULT

1× 0.5× 0.25× Rerun

Italicizing Text

Italicizing text falls in line with that of bolding text, where we can use multiple elements

or the font style CSS property to achieve a desired presentation. When italicizing text,

the two elements most commonly used are em and i. Again, these share the same

presentation, yet have completely different semantic meanings.

The em element places a stressed emphasis on text, while the i element identifies text

to be expressed in an alternate voice or tone. Using the em element really drives

prominence with an added importance. On the other hand, the i element is primarily

used within dialog or prose, offsetting text without any added emphasis or importance.

<!-- Stressed emphasis -->

I love Chicago!

<!-- Alternative voice or tone -->

The name <i>Shay</i> means a gift.

1

2

3

4

5

6

Italicizing Text Demo

https://learn.shayhowe.com/html-css/working-with-typography/
https://codepen.io/shayhowe/pen/LJGex
https://learn.shayhowe.com/html-css/working-with-typography/

I love Chicago!

Resources

HTML CSS
E D I T O N

RESULT

1× 0.5× 0.25× Rerun

Using i for Icons

Recently there has been a small movement of front end programmers using

the i element for including icons on a page, specifically as seen within

Bootstrap. The i element is used as a hook, to which a class then determines

which icon background image to apply to the element. Depending on how

closely you wish to follow semantics this may or may not be an acceptable

practices.

Underlining Text

Continuing the pattern of having multiple elements with the same presentation,

underlining text is no different. There are a couple of different elements we can use as

well as the text decoration CSS property. In this case, the two primary elements used to

underline text are ins and u.

The ins element is used to identify text that has been recently added to the document,

and the u element simply refers to an unarticulated annotation.

For more semantic code, the ins element may be used with the cite and datetime
attributes. The datetime attribute identifies when the content was added to the

document, and the cite attribute provides a machine readable source providing

reference for the addition, perhaps documentation or a request ticket.

The u element is typically used to label text as a proper name, often in another

language, or to point out a misspelling.

Underlining text does require a bit of additional care, as it may be confused with a

hyperlink. By default hyperlinks are underlined, and thus have become a standard

design practice. Underlining text that is not a hyperlink can confuse users and cause

quite a bit of frustration. Use underlines with caution.

<!-- Added to the document -->

<ins cite="http://learn.shayhowe.com" datetime="2012-07-01">

 Updated: This website now contains an advanced guide.

</ins>

<!-- Unarticulated annotation -->

<u>Urushihara Yuuji</u> won <u>Sasuke 27</u>.

1

2

3

4

5

6

7

8

Underlining Text Demo

https://codepen.io/shayhowe/pen/aFGBr
https://twitter.github.com/bootstrap/
https://learn.shayhowe.com/html-css/working-with-typography/

Striking Text

Striking text follows the same pattern as before where different elements may be used,

as may the text decoration CSS property. The two properties most commonly used

include del and s.

The del element is used to identify text deleted or removed from the document. As

with the ins element, it may be used with the cite and datetime attributes. Each of

which hold the identical semantic values as before, cite specifying a resource that

explains the change and datetime identifying when the content was removed from the

document.

The s element identifies text that is no longer accurate or relevant.

<!-- Deleted from the document -->

I am an avid cyclist, <del cite="http://shayhowe.com" datetime="2012-07-01">s

<!-- No longer accurate or relevant -->

<s>$24.99</s> $19.99

1

2

3

4

5

6

Striking Text Demo

Highlighting Text

To highlight text for reference purposes the mark element should be used. Added in

HTML5, the mark element provides a clean, semantic way to identify text, specifically

for reference purposes without having to use an un-semantic text level element.

<!-- Highlighted for reference purposes -->

Search results for <mark>'chicago'</mark>.

1

2

3

Highlighting Text Demo

https://learn.shayhowe.com/html-css/working-with-typography/

Abbreviations

Abbreviations, the shortened form of a phrase, can be semantically marked up in HTML

using the abbr element. The abbr element should be used along with the title
attribute, of which includes the full value of the phrase being abbreviated. The acronym
element was originally used to distinguish acronyms from abbreviations but has since

been deprecated, and shouldn’t be used.

<abbr title="HyperText Markup Language">HTML</abbr>

<abbr title="Cascading Style Sheets">CSS</abbr>

1

2

3

Abbreviations Demo

Sub & Superscripts

Subscripts and superscripts may be marked up accordingly using the sub and sup
elements respectively. It is important to note that these elements should be reserved for

typographical conventions, not for presentational purposes.

<!-- Subscript -->

H₂O

<!-- Superscripts -->

1st Place

1

2

3

4

5

6

Sub & Superscripts Demo

Meter & Progress

To gauge scale or indicate progress the meter and progress elements should be used.

The meter element is used to measure a fixed value, one that does not change over

time, while the progress element measures the progress of a increasing measurement.

The meter element may be used with the min, max, low, high, optimum, and value
attributes. The min and max attributes set the lower and upper bounds of the range,

where the value attribute sets the exact measured value. The low and high attributes

identify what is to be considered the lower and higher parts of the range, while the

optimum value identifies the most favorable part of the range, of which may be in the

lower or higher parts.

The progress element indicates progress rather than a fixed measurement. It

specifically represents the completion of a task, either by what is left to be completed or

what has been completed thus far. There are two attributes that may be applied to the

progress element, value and max. The value attributes indicates where the progress

currently stands and the max attribute indicates what progress needs to be reached.

<!-- Meter -->

<meter value="7" max="10">7 stars</meter>

<meter value="47" min="0" max="105" low="5" high="65" optimum="45">The car is

<!-- Progress -->

You are <progress value="50" max="100">50%</progress> complete.

<progress value="50" min="0" max="100">Hold tight, you’re getting there

1

2

3

4

5

6

7

8

Meter & Progress Demo

Time & Address

Representing time and addresses in HTML can be accomplished using the time and

address elements respectively. The time element may be used with, or without, the

datetime attribute, depending on how the text within the element is formatted. If the

content is formatted with the correct time stamp then the datetime attribute may be

omitted. Furthermore, if the time is representing the date or time of a publication the

pubdate Boolean attribute should be used.

The address element may be used to hold any contact information, including a physical

address as well as a website or email address. It should not include any further

information than the contact information, and other content needs to be placed outside

of the address element.

<!-- Time --> 1

<time>2011-08-24</time>

<time datetime="2011-08-24" pubdate>August 24th, 2011</time>

<time datetime="15:00">3pm</time>

<time datetime="2011-08-24T15:00">August 24th, 2011 at 3pm</time>

<!-- Address -->

<address>

 Shay Howe

 http://learn.shayhowe.com

 hello@awesome.com

 600 W. Chicago Ave.

 Suite 620

 Chicago, IL 60654

 USA

</address>

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Time & Address Demo

Presenting Code

Presenting code snippets, or samples, within a page can be accomplished using either

the code or pre elements, or a combination of the two. The code element is commonly

used to represent a fragment of code and is displayed in the default monospace font.

The code element is an inline level element and may be used within paragraphs of text,

or other block and inline level elements.

For large blocks of code, the pre element can be used in conjunction with the code
element. The pre element represent preformatted text and will display text exactly as it

is typed, whitespace included. Nesting the code element within the pre element

semantically identifies larger samples of code, which include whitepsace, displayed in a

block level manner.

<!-- Inline code samples -->

Use the <code>article</code> element.

<!-- Larger, block level code snippets -->

1

2

3

4

<pre><code>body {

 color: #666;

 font: 14px/20px Arial, sans-serif;

}</code></pre>

5

6

7

8

9

Presenting Code Demo

Line & Word Breaks

Occasionally you may want to include a line break within a line of text, in which case the

br element may be used. The br element does not have a closing tag, simply a

beginning. In XHTML the br element is self closing, including a trailing forward slash,

.

Line breaks are not to be used for thematic grouping of content. Paragraphs or other

elements are better suited for thematic grouping. Line breaks are specifically to be used

where line breaks exist as part of the content, for example as within addresses and

poems.

In addition to line breaks, you may also specify word breaking opportunities with the

wbr element. Using the wbr element in the middle of a word ensures that, should the

word need to wrap two lines, it does in a legible fashion.

<!-- Line break -->

600 W. Chicago Ave.

Chicago, IL 60654

USA

<!-- Word break -->

http://shay<wbr>howe.com

1

2

3

4

5

6

7

8

Line & Word Breaks Demo

Side Comments

Originally the small element was used to render text as one font size smaller than the

default, purely for presentational purposes. As we are aware, presentation and style

should only live within CSS, not HTML. Within HTML5, the small element preserves the

presentation of being displayed at a smaller font size, however it semantically means to

be rendered as a side comments or small print. This often includes copyright

information or legal print.

<!-- Side comments or small print -->

<small>© 2012 Shay Howe</small>

1

2

3

Side Comments Demo

Citations & Quotes

The beginner’s guide discusses citations and quotes, and when to use the cite, q, and

blockquote elements accordingly. As a quick reminder, the cite element refers to a

title of work, the q element identifies dialog or prose, and the blockquote element is

used to code longer formed quotes, commonly from external sources.

Hyperlink Attributes

The beginner’s guide also outlines hyperlinks, and some of their different behaviors.

What is not covered, however, is some of the semantic benefits to hyperlinks,

specifically with the use of the download and rel attributes.

Download Attribute

The download attribute tells the browser to prompt a download for a file, rather than

the default behavior of navigation to the file. As an example, if the hyperlink reference

attribute, href, is pointing to an image, the browser will prompt a user to download the

image instead of opening the image within the browser.

The download attribute can serve as a Boolean attribute, downloading the file as is, or it

may contain a value, of which becomes the file name once downloaded. Using a specific

value here lets you name the file as you wish on your server while still providing users

with a meaningful name.

https://learn.shayhowe.com/html-css/working-with-typography/
https://learn.shayhowe.com/html-css/getting-to-know-html/

<!-- Boolean -->

Twitter Logo

<!-- With a value -->

Twitter Logo

1

2

3

4

5

6

Download Attribute Demo

Relationship Attribute

For any hyperlinks including a reference attribute, href, you may also include the

relationship attribute, rel. The rel attribute identifies the relationship between the

current document and the document being referenced. For example, when linking to a

copyright statement the rel attribute value of copyright should be used.

Terms of Use

Table of Contents

1

2

3

A few popular rel attribute values include:

alternate
author
bookmark
help
license
next
nofollow
noreferrer
prefetch
prev
search
tag

Microdata

Microdata is HTML extended with nested groups of name-value pairs that allow

machines, including browsers and search engines, to pick up additional semantics and

information for rich content. Adding microdata to your website is accomplished by

using predetermined attributes and values. These attributes and values will then be

interpreted, and extended, as intended. Currently, the more popular uses of microdata

reside within coding contact information and calendar events, however there are

encoding models for products, reviews, and more.

http://microformats.org/wiki/existing-rel-values
https://www.w3.org/TR/microdata/
https://schema.org/docs/schemas.html

One example of microdata at work is within Google, where microdata is interpreted and

used within search results to display more relevant data. Often performing a search for

a business location yields the address and sub sequential contact information within the

results. Chances are this information is being pulled from microdata written on an

existing website.

Fig. 10.01

Google uses microdata to identify business locations, contact information, hours, pricing, ratings, and

more.

Microdata vs. Microformats vs. RDFa

There are actually a handful of rich, structured data standards, including

microdata, microformats, and RDFa. All of these have their pros and cons, and

all of which are still viable to practice.

Microdata is the recommended format from Google, and other search engines,

as well as part of the HTML5 specification. It uses findings from both

microformats and RDFa to base it’s design around, thus looking to be a solid

choice, and the one covered here. It is, however, recommended you do your

research, take the pulse of the community, find what works best for your

situation, and use that. Using one of these standards is substantially better

than not using any. Find what will provide the best benefit for your users.

Outlining Microdata

Microdata is identified using three main attributes, itemscope, itemtype, and

itemprop.

The itemscope Boolean attribute declares the scope of each microdata item. Place this

attribute on the parent element where all of the microdata information pertaining to

this item should reside.

Once you have determined the scope, use the itemtype attribute to identify what

microdata vocabulary should be used. Generally speaking, some of the more popular

microdata item types have been outlined at Schema.org. There are, however, other

websites which outline additional, and different, item types. You may also write your

own item types should you find the need.

<section itemscope itemtype="http://schema.org/Person">

 ...

</section>

1

2

3

4

Once the scope and type of the item have been determined, properties may then be set.

These properties are identified by different elements which include the itemprop
attribute. The value of this attribute determines what property is being referenced, and

the content within the element itself most commonly determines the value of the

property.

<section itemscope itemtype="http://schema.org/Person">

 <h1 itemprop="name">Shay Howe</h1>

</section>

1

2

3

4

Some elements, however, do not get their itemprop value from the content within the

element. Instead, their value is determined from the value of another attribute on the

element. The table below outlines these one-off elements and what attribute is used for

their property value.

Element: <meta>
Value: content attribute

https://www.w3.org/TR/microdata/
http://microformats.org/wiki/Main_Page
https://www.w3.org/TR/xhtml-rdfa-primer/
https://support.google.com/webmasters/bin/answer.py?hl=en&answer=99170
https://schema.org/docs/schemas.html

Element: <audio>, <embed>, <iframe>, , <source>, <video>
Value: src attribute

Element: <a>, <area>, <link>
Value: href attribute

Element: <object>
Value: data attribute

Element: <time>
Value: datetime attribute

Person Microdata

When referring to a person the person microdata library should be used. Below is an

example of what a person microdata item might look like. Please notice, the person item

type is used, as is the postal address item type within it. Also, please notice the different

item properties and their corresponding values.

<section itemscope itemtype="http://schema.org/Person">

 <strong itemprop="name">Shay Howe

 <div itemprop="jobTitle">Designer and Front-end Developer</div>

 shayhowe.com

 <div itemprop="telephone">(555) 123-4567</div>

 shay@awesome.com

 <address itemprop="address" itemscope itemtype="http://schema.org/PostalAd

 600 W. Chicago Ave.

 Chicago,

 <abbr itemprop="addressRegion" title="Illinois">IL</abbr>

 60654

 </address>

</section>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Person Microdata Demo

https://schema.org/Person

Please keep in mind, this code is for an individual person. Should you wish to refer to an

organization, a more specific organization microdata library should be followed.

Event Microdata

The event microdata is very similar to that of the person microdata, however it uses the

event microdata library instead. Common property similarities between the two can be

identified, as can some of the nested item types.

<section itemscope itemtype="http://schema.org/Event">

 Styles Conference

 <time itemprop="startDate" datetime="2014-08-2409:00">Sunday, August 24, 2

 <div itemprop="location" itemscope itemtype="http://schema.org/Place">

 Chicago Theat

 <address itemprop="address" itemscope itemtype="http://schema.org/Postal

 <div itemprop="streetAddress">175 N. State St.</div>

 Chicago,

 <abbr itemprop="addressRegion" title="Illinois">IL</abbr>

 60601

 </address>

 </div>

</section>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Event Microdata Demo

https://schema.org/Organization
https://schema.org/Event

Microdata provides a lot of ways to further extend the content of a page. We have only

touched the surface here. Further information on microdata may be found at Dive Into

HTML5 Microdata and WHATWG Microdata.

WAI-ARIA

WAI-ARIA, also know as Web Accessibility Initiative — Accessible Rich Internet

Applications, is a specification that helps make web pages and applications more

accessible to those with disabilities. Specifically, WAI-ARIA helps define roles (for what

blocks of content do), states (for how blocks of content are configured), and additional

properties to support assistive technologies.

Roles

Setting WAI-ARIA roles is accomplished using the role attribute. These roles then

specify what certain elements and blocks of content do on a page.

<header role="banner">...</header>

1

2

WAI-ARIA roles break down into four different categories, including abstract, widget,

document structure, and landmark roles. For this lesson we will focus primarily on the

document structure and landmark roles. Document structure roles define the

organizational structure of content on a page, while landmark roles define the regions

of a page. Specific role values for each of these categories are broken out below.

Document Structure Roles

article
columnheader
definition
directory
document
group
heading
img
list
listitem
math
note
presentation
region
row
rowheader
separator
toolbar

http://diveintohtml5.info/extensibility.html
https://developers.whatwg.org/links.html#microdata
https://www.w3.org/WAI/intro/aria
https://www.w3.org/TR/wai-aria/roles

Landmark Roles

application
banner
complementary
contentinfo
form
main
navigation
search

HTML5 introduced a handful of new structural elements which commonly match up

against the document structure and landmark roles. Exactly how these roles match up

against specific elements may be seen below. Please notice, the header and footer
elements do not have an implied role, and the acceptable roles for these elements may

only be used once per page. That said, if you have multiple header and footer
elements on a page the banner and contentinfo roles should be applied on the

elements directly tied to the document from a top level perspective, not elements

nested within other regions of the document structure.

Element: article
Implied Role: article
Acceptable Roles: application, article, document, or main

Element: aside
Implied Role: complementary
Acceptable Roles: complementary, note, or search

Element: footer
Implied Role: —

Acceptable Roles: contentinfo (Only once per page)

Element: header
Implied Role: —

Acceptable Roles: banner (Only once per page)

Element: nav
Implied Role: navigation
Acceptable Roles: navigation

Element: section
Implied Role: region
Acceptable Roles: alert, alertdialog, application, contentinfo, dialog,

document, log, main, marquee, region, search, or status

Combining the elements with their matched roles in HTML5 would look like the

following code snippet.

<header role="banner"> 1

 <nav role="navigation">...</nav>

</header>

<article role="article">

 <section role="region">...</section>

</article>

<aside role="complementary">...</aside>

<footer role="contentinfo">...</footer>

2

3

4

5

6

7

8

9

States & Properties

In combination with WAI-ARIA roles there are also states and properties which help

inform assistive technologies how content is configured. Like roles, the states and

properties are broken into four categories, including widget attributes, live region

attributes, drag-and-drop attributes, and relationship attributes

The widget attributes support widget roles and are specific to the user interface and

where users take actions. The live region attributes may be applied to any element and

are used to indicate content changes for assistive technologies, on page alerts and

notifications for example. Drag-and-drop attributes supply information about drag-

and-drop interface elements and provide alternate behaviors to assistive technologies.

Lastly, relationship attributes outline the relationship between elements when the

document structure cannot be determined.

Resources & Links

Text-Level Semantics via WHATWG

Existing rel Values via Microformats.org

Organization of Schemas via Schema.org

Microdata via Dive Into HTML5

WAI-ARIA Overview via W3.org

The Roles Model via W3.org

Lesson 9

Feature Support & Polyfills

Learn More HTML & CSS or Study Other Topics

Learning how to code HTML & CSS and building successful websites can be challenging,

and at times additional help and explanation can go a long way. Fortunately there are

plenty of online schools, boot camps, workshops, and the alike, that can help.

Select your topic of interest below and I will recommend a course I believe will provide

the best learning opportunity for you.

Select Your Topic of Interest:

Design & Product
Front-end

Development

Web

Development

https://www.w3.org/TR/wai-aria/states_and_properties
https://developers.whatwg.org/text-level-semantics.html
http://microformats.org/wiki/existing-rel-values
https://schema.org/docs/schemas.html
http://diveintohtml5.info/extensibility.html
https://www.w3.org/WAI/intro/aria
https://www.w3.org/TR/wai-aria/roles
https://twitter.com/share?text=Extending%20Semantics%20%26amp%3B%20Accessibility%20-&url=http://learn.shayhowe.com/advanced-html-css/semantics-accessibility/&via=shayhowe&related=shayhowe
http://www.facebook.com/sharer.php?u=http://learn.shayhowe.com/advanced-html-css/semantics-accessibility/
https://plus.google.com/share?url=http://learn.shayhowe.com/advanced-html-css/semantics-accessibility/
https://learn.shayhowe.com/advanced-html-css/feature-support-polyfills/

