
The ultimate guide to

JavaScript Error
Monitoring

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 2

Table of Contents

Introduction to JavaScript error monitoring 3

What is an error and how do you create one? 5

Why don’t users report software errors and crashes? 8

Writing error messages in JavaScript 12

Security issues and best practices 16

Source maps 20

Practices to avoid errors in development 22

How to setup basic monitoring of errors in JavaScript 29

Further reading / resources 30

The Ultimate Guide to JavaScript Error Monitoring by Raygun

Published by Raygun.com - www.raygun.com

© 2016 Raygun Limited - First Edition

All rights reserved. No portion of this book may be reproduced in any form without

permission from the publisher, except as permitted by copyright law. For permissions

contact: support@raygun.com

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp
mailto:support%40raygun.com?subject=

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 3

SECTION 1

Introduction to JavaScript error

monitoring

JavaScript, as the default scripting language for websites and web

applications in the browser, is an important part of modern software

development. Due to its history and the open nature of the web, client

browsers can vary wildly with their implementations of basic JavaScript

APIs, even for modern user-agents (let alone legacy versions). As application

code can frequently involve critical business logic including purchasing and

handling sensitive data, or must provide a first-class user experience where

UI jank and latency need to be minimized as much as possible, deploying

robust client-side JavaScript code is a necessity for today’s web.

This, combined with the fact that widely-supported JavaScript (ECMAScript

5) as a language itself is commonly considered to contain several gotchas

that don’t assist in the writing of bug-free code, software developers need all

the help they can get to ensure that no bugs make it through to production

websites/applications. As is common in frameworks and runtimes, most

browsers fortunately implement the window.onerror handler which

receives an Error object. With this, an error tracking tool like Raygun Crash

Reporting can package up the error and send it to a dashboard, where

multiple occurrences of each error are grouped together to minimize noise

and allow developers to fix bugs with a sane workflow.

Further to this, as modern (‘evergreen’) browsers provide additional data

such as column numbers and source maps, tools such as Raygun can use

these to transform production minified stack traces, producing the effect of

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 4

having debugger tools attached locally, but for every error that occurs in end

user’s browsers, every time they use your website/app.

As the browser is an unknown environment, monitoring JavaScript errors in

your code should also take into consideration the effect of extensions and

security policies such as CORS that may disrupt or remove data for errors

that occur. These concerns will be discussed in detail in this guide.

The popularity of client-side frameworks such as Angular, Ember, React and

others, has provided opportunities for structure and guarantees previously

unavailable with lower-level libraries. Various approaches and code snippets

are available throughout this guide to aid in the setup of JavaScript error

monitoring for these frameworks.

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 5

SECTION 2

What is an error and how do you

create one?

The Error object in JavaScript is at the core of raising and handling errors.

Instances of the Error object are created and thrown when runtime errors

occur in your code.

To create a new error in JavaScript, instantiate one with a string message,

then throw it with the throw keyword:

 throw new Error(‘My custom error’);

Besides the generic Error object, there are six other core error types that can

be used in the same way as the generic Error object.

RangeError

The RangeError is thrown when a number is used as an argument to

a function where the number is outside of a valid range. This can be

encountered when attempting to create an array of an illegal length, or when

passing a bad value to methods such as Number.toFixed(). For example, this

method expects a number from 0 to 20. A number outside of this range will

cause a RangeError.

ReferenceError

The ReferenceError is thrown when a non-existent (or misspelled) variable

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 6

is referenced. In the example below we try to call a method on a variable

that does not exist. Note that the variable “brain” does not exist in the

current or global scope.

 function openEyes(){
 brain.trigger(‘eyes.open’);
 }

SyntaxError

A SyntaxError is thrown when the JavaScript engine encounters malformed

JavaScript code. This type of error is only found when the code is executed

and is unique in that you cannot recover from this type of error. The

following example throws a SyntaxError due to the missing function name

before the function parameters.

 function (brain) {
 brain.trigger(‘eyes.open’);
 }

TypeError

A TypeError is thrown when a value is encountered that is not of the

expected type. A common cause of this error is trying to call a method on

an object that does not exist. In the example below we try to call the trigger

method on the brain object, but we have not defined a trigger method on

this object.

 var brain = {};
 brain.trigger(‘eyes.open’);

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 7

URIError

A URIError is thrown when global URI handling functions, such as

encodeURI() and decodeURI(), are passed a malformed URI.

 var uri = decodeURI(‘%’);

EvalError

The EvalError exception is thrown when usage of the eval() function results

in an error. This exception is not thrown in recent versions of JavaScript,

however the EvalError object remains for compatibility.

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 8

SECTION 3

Why don’t users report software

errors and crashes?

Remember when you used to encounter those Windows pop up messages

each time your computer crashed? The ones synonymous with the Windows

operating system were regularly popping up every time things imploded.

You lost your work, smashed your keyboard and had a good cry. Just me?

If I click to ‘send this error report’, what actually happens to it? I’m pretty

sure it’ll go one of two ways.

What I think will happen when I click on ‘Send Error Report’

A friendly employee will get notified of my error and pass this information

onto an eagerly awaiting development team who will take this problem

extremely seriously. Next up I’ll get an email from these lovely people. They’ll

apologize, tell me not to worry, I am important to them. They make me feel

amazing. I’m awash with kind thoughts and positive things to say about their

company and their customer service. I’ll never use anyone else. They care

about me and I actually helped them make better software by reporting this

issue!

What actually happens when I click on ‘Send Error Report’

Nothing.

This behaviour and expectation has become embedded in software user’s

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 9

minds for many years. Usual responses from people when they encounter

software errors and crashes are:

What’s the point of submitting a bug report? They never go anywhere.

• That’s a hassle, I can’t be bothered. They don’t care.

• I don’t have time to explain it all. They will just ignore it.

Usually this is the case for the developer too. Why should they spend their

time going back and forth with customers over email to get screenshots,

operating systems, browsers and associated versions, all to end up with a

bug they can’t replicate!

What could happen in the future (right now actually)

By plugging an automatic error monitoring solution like Raygun into your

application, you don’t need the user to report the issue. Raygun monitors

your software for problems and notifies you in real time, so without the

need for the user to do anything, you can see who was affected, what

browser they were using, what operating system and even what line of code

the error happened on!

You can even reach out to the user from the Raygun app to say ‘Hey, I saw

you had that issue yesterday, we just wanted to let you know that we’re sorry

about that and have fixed the issue now.’ See? It’s the future, but right now.

Real world, real problems

So I’ll tell you a story, a real world example of this phenomenon. About six

months ago the management at my partner’s school (where she is a teacher)

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp
http://Raygun.com

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 10

implemented a new software system to create, collaborate and send out

reports to parents.

It was designed to take the hassle out of report writing and showed great

promise. The school was perhaps their tenth or so school to implement the

system, so it was kind of in a Beta format and they were encouraged to give

feedback.

All was good until bugs started appearing. They encountered several big

issues with the system ranging from photos disappearing, posts not saving,

clicking save and things disappearing, inviting users to the account and no

invitation emails showing up – you get the picture.

This went on for months and I was hearing of all these frustrations and

problems with the system.

‘Have you reported these problems?”, I asked. “Well, no, actually. What’s the

point?”

It seemed amazing to me that these people were having all these problems

yet never took the step to report the problems to the developer, and it turns

out this is far more common than you’d think.

Here at Raygun, we obviously get real time error reports from our own

software. We have found that only 1% of users actually report to us the

errors that we know they experienced, and these poor teachers (and they

can’t be the only ones who do this), had found novel ways to navigate

around the errors from occurring rather than report them, by navigating

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 11

through different screens to do the tasks or saving their writing to their

clipboard before hitting the save button just incase it lost it all, rather than

report the problems and face the hassle.

The developer on the other hand had no idea that these problems were

happening. Absolutely no clue. We found this out when we emailed him to

see if he’d like to try Raygun to fix the issues the teachers were having. He

was almost taken aback that someone was suggesting the software had

errors, and in hindsight you can see how he would be. You won’t know about

things that are happening in your software if you’re not told about them, and

you certainly can’t expect your users to be the ones to tell you. They won’t.

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 12

SECTION 4

Writing error messages in

JavaScript

In the modern development shop, back and front end developers are

expected to do a lot more than they ever did before: tooling, unit testing and

even functional testing. At the same time, the release cycles are reduced

and the number of feature requests are increasing. Is it possible to maintain

quality and performance with all these new burdens?

The answer is yes. It is possible, and some teams are already doing it.

Great tools allow more to be done with less effort, especially when QA and

operations teams are transitioned or reduced and the responsibilities of

development starts growing quickly. But a tools first approach can quickly

become a problem.

Tools solve nothing if the perception of how they will be adopted is wrong.

For example, jumping on an analytics tool as a method to track errors is

not only a misuse of the technology but has some serious technical and

operational limitations. In this case, there will be long delays before errors

can be identified, and the developer who needs to use the analytics tool will

not have ownership.

Despite this, log analysis tools are often pitched as a way to advance the

team, help in unit testing and handle bugs without additional work. Both

of these processes take quite a bit of energy. They are at the front end of

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 13

development and on the first line of defense for bugs, but often developers

don’t realize that effort spent here saves time and angry team members at

their desk later.

For front-end developers working on new functionality, unit tests are not

only annoying, but they also take up brain-cycles. While the premise around

test-driven development is fantastic, it’s also a mental distraction, requiring

the creativity to both code the feature and develop the methods of testing.

Detailed tests should be written for each function/class, but they require a

great deal of coding and thinking about test cases. If done correctly, this can

be a very complex process because developers naturally have a tendency to

write tests so they pass—which obviously drives release managers crazy!

Test driven development (TDD) is not new, but it is as an addition to

functional testing. If developers code unit tests, and then selenium code

when features are complete, they have now crossed three different

activities. Not surprisingly, this may require testing efforts that exceed the

amount of time spent on development.

The key to performance in this scenario is to keep both tools and log

analysis. Asking developers to do the testing and the QA team to facilitate

and automate is extremely beneficial for catching bugs and responding to

them more quickly. And by reducing the complexity of the test cases, time

will be saved in the long run. One way to reduce complexity is to pick tools

that have a great interface, notify you instantly on commits or releases and

allow you to quickly prioritize issues without doing anything special.

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp
http://agiledata.org/essays/tdd.html

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 14

Error monitoring - a line of code that never changes and is put in every error

handling block - is a great example of this type of tool. The cloud interface

associated with error monitoring identifies critical errors and pushes those

errors out to users instantly. Common errors, the ones that pop up in every

release but have little impact, will be low priority whereas a net new error

type would be highlighted.

There is no way to avoid the burden that necessary testing early in the

delivery pipeline puts on the developers. The issue must be addressed

but not by choosing tools on a whim or making an existing tool do the job.

Picking purpose-built tools that back up the increasing testing load will

reduce the complexity of testing cases and allow developers the freedom

to code rather than spend their time contemplating how they will catch and

respond to bugs.

As errors are frequently due to some invalid state or data, it is tempting

to concatenate this data onto the end of the error message string. There

are problems with this approach, namely that it removes the type of the

data by stringifying it, removing it from its separate variable, making it

unnecessarily difficult to manipulate. This is fine when logging to console

during debugging, but for proper development, staging and production

usage, extra state data should be delivered separately to the error message.

For instance with Raygun:

 var error = new Error(“My custom error”);
 Raygun.send(error, { custom_state: ‘From user 01’, dateTime: new
 Date() });

The data can then be displayed separately, and more accurate error

grouping can be conducted.

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 15

Handling unhandled errors

When using an automatic error monitoring solution, you are able to catch all

errors (whether handled or not) in your codebase.

Applying a custom global error handler:

 window.onerror = function (message, source, lineno, colno, error) {
 // Add your custom final error handling logic here
 }

Raygun4JS contains a reliable global error handler out-of-the-box, and can

also automatically catch errors in jQuery Ajax callback functions.

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp
https://raygun.com/docs/languages/javascript

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 16

SECTION 5

Security issues and best

practices

An important concern for practically all software, besides being feature-

complete, maintainable and performant, is security. This is especially so for

software that exists in networked environments, and this includes client-side

code running in the browser.

Due to the huge scope of the internet and the potential for adversaries to

compromise your application code in order to extract sensitive data that can

cause huge damage to your clients/customers as well as your business or

reputation, developing JS code in a security-minded manner is as important

as code running on the server.

Just like writing maintainable, scalable code requires architectural discipline,

and building fast applications requires a constant eye towards performance,

creating secure applications requires developers to be mindful of security at

all times.

Teams should foster an environment where topics around security can and

should be discussed, as well as peer reviews considering how secure a piece

of code is or how it could be improved. If such a culture is created, processes

for building more secure web applications will naturally fall out, reducing

the likelihood of damaging events. Like many of the trickier problems in

information science, security practices aren’t always apparent or easy to

bestow on team members. It may also be difficult to justify adding time

on projects to accommodate security as a separate requirement, but as

mentioned above this can be avoided if it is part of the culture to begin with.

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 17

Practically, there are several areas and aspects to consider when building

safe and secure web applications. Many of these techniques aren’t difficult

to apply to new or existing code as the code paths they apply to are often

localized (e.g to authentication flows or template rendering), thus hardening

such code isn’t that time consuming. Listed below are some areas to

investigate and keep in mind when building JS applications, but is by no

means an exhaustive list. We encourage you to keep abreast of industry

developments and best practices, as security pitfalls can pop up rapidly and

potentially be quite problematic (e.g Heartbleed).

An excellent third-party resource we recommend for these topics is OWASP -

the Open Web Application Security Project, at https://www.owasp.org/index.

php/Main_Page.

HTTPS by default

Ensuring that the HTML document that loads your JavaScript files is

delivered by HTTPS only is a highly recommended practice. This applies to

all pages including public, unauthenticated (e.g marketing) ones, and login

pages, before the credentials are entered. This mitigates man-in-the-middle

attacks, and as of 2016 is rewarded and recommended by Google’s ranking

algorithms.

This should be enforced by the HTTP server or reverse proxy using a 301

redirect. These are fairly simple to configure using popular servers such as

Nginx, Apache or IIS. In this way, no insecure HTTP traffic can be sniffed and

the baseline security of your user’s data is higher.

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 18

Cross site scripting

As many modern single page web applications accept and render user input

using templating, sanitizing this user input is key to preventing malicious

script tags from being parsed and executed inside unknowing user’s

browsers, where it can exfiltrate their data.

All inputs should be URL encoded and persisted, then rendered out to the

browser later using the encoded form. If your field accepts some form of

markup, this should be parsed and rendered using a popular library, and

never using a hand-rolled solution (there are many edge cases which clever

casing and unicode characters can exploit to insert real script tags).

If you need to output raw text, ideally you should control it end-to-end and

not have it originating from strings inputted by the user.

Sites should use and respect CORS, and be mindful of how techniques such

as JSONP designed extend and workaround the restrictions implied. In

particular if an API server on another domain is used to receive/send XHR

payloads, that server should be whitelisted in the Access-Control-Allow-

Origin HTTP header, in most cases.

Cookies

If your application use case maps nicely to HTTP cookies, these should have

the ‘secure’ flag set. This is done so at the HTTP server level

- see OWASP for how to do so for many common servers.

The effect of this is to only transmit cookies encrypted, and not in cleartext,

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp
https://www.owasp.org/index.php/SecureFlag

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 19

as they frequently contain sensitive user data. This is naturally available

when the document is served with HTTPS - see ‘HTTPS By Default’ above.

Passwords and authentication

Passwords should never be persisted in the backend in cleartext

(unencrypted). Hand-rolling your own encryption library for encrypting

passwords is also very highly discouraged, as they can and will contain many

subtle bugs and backdoors which an adversary could crack easily. Popular,

verified implementation libraries of secure encryption algorithms are

available for all code bases.

As of 2016, we recommend using the bcrypt library (which uses the Blowfish

algorithm) to encrypt cleartext passwords, then persisting the hash only

for later login verification. This should be implemented server-side, with

cleartext credentials only delivered to it via a secure HTTPS session. If you

are writing server-side JS using Node, you may look into bcrypt-nodejs from

NPM for a good, easy-to-use implementation.

After login, a session token should be generated, persisted then delivered

back to the client for storage (e.g in-memory, with Local Storage or similar).

This token should then be the piece of data that is checked and sent back

with every action to the server, and never the password or its hash.

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 20

SECTION 6

Source maps

When dealing with minified JavaScript, the information supplied by an

error’s stack trace does not provide useful line/column information and

enable you to track down the source of an error. To deal with this you can

utilize a source map which will provide the translation between the minified

JavaScript and the original source code.

Source Maps are a JSON based mapping format which can be used by any

processed file to create a mapping relationship between source and the

processed output. Source maps can be utilized for minified JavaScript,

CoffeeScript, Less and Sass!

With source maps in place, when an error occurs, instead of a difficult

to interpret error on line 1, the browser will take the following actions to

provide you with an interpreted stack trace.

Here is a quick overview of what the browser is doing to make this happen:

1. Your browser loads the initial page and downloads source.min.js as it is

referenced

2. An error occurs in the JavaScript contained within source.min.js, typically

this will be handled by window.onError

3. The developer console goes to render out this error and the associated

stack trace. On inspection of source.min.js it notices there is an end of

file comment which conforms to the format to indicate a source map file

is present

4. Your browser now downloads source.min.js.map, if this file exists the

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 21

map file will be processed and we will start attempting to decode the

stack based on the mappings contained in this file. If there is a successful

mapping, the updated reference will point to a line number, column

number and symbol in source.js rather than source.min.js

UglifyJS 2 will generate sources maps during minification when provided

with the --source-map flag and a specified output file.

Raygun Crash Reporting provides a service which maps minified stack

traces for errors reported to the service from the JavaScript provider. Assets

required for the mapping are downloaded automatically from the locations

specified in the stack trace, minified and map files.

As an alternative to automatic asset retrieval Raygun can additionally utilize

minified JavaScript and map files uploaded into the Raygun Source Map

Center, this is provided as a means for users who do not wish for their code

to be publicly accessible to use the source mapping capabilities.

In addition to mapping file names, method names and line numbers for

the stack trace, Raygun can inject source code snippets to give additional

context to errors. This feature is afforded to anyone who generates their

source maps with the sourcesContent array populated. UglifyJS 2 will

populate the sourcesContent array when provided the --source-map-

include-sources flag.

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp
https://raygun.com/products/crash-reporting

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 22

SECTION 7

Practices to avoid errors in

development

Semicolons

Automatic Semicolon Insertion is a controversial feature of JavaScript which

allows programmers to omit semicolons from terminating statements. This

feature makes learning JavaScript easier for developers learning their first

programming language.

Example without Semicolons

 var i = 0
 i++
 alert(i)

Example with Semicolons

 var i = 0;
 i++;
 alert(i);

New line characters in the first example are treated as line terminators and so

the Interpreter will terminate the previous statement.

Whilst ASI is stable with browsers implementing it as stated in ECMAScript

specification it is commonly recommended not to be relied upon because:

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp
http://www.ecma-international.org/ecma-262/5.1/#sec-7.9
http://www.ecma-international.org/ecma-262/5.1/#sec-7.9

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 23

• The JavaScript interpreter will insert semicolons automatically in some

circumstances

• Bugs can be introduced which are harder to locate and debug

Eval

Eval is a global function allowing strings passed to be executed as

code. Whilst not directly related to error prevention, use of eval isn’t

recommended as it can open up your website to malicious third parties.

Example

 eval(‘alert(“Hello World”)’);

Alternatives

There are cases where injecting strings of code into a JavaScript environment

may be needed. In this case it maybe good to look into the JS Interpreter

project which helps isolate the script from the main environment.

Dynamic Typing

JavaScript is a loosely typed language and so a variable can have different

types assigned.

Example

 var age = “25”;
 if(age > 21) { // True

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp
https://github.com/NeilFraser/JS-Interpreter

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 24

 // Allowed to drink!
 }
 var age = 25;
 if(age > 21) { // True
 // Allowed to drink!
 }

While this is powerful feature often it needlessly complicates the code, and

that in turn often leads to more bugs in the future.

Remembering Data Types

It can hard to recall a variable’s type when you have been jumping around

a large codebase. A variable naming scheme to help solve this issue is

Hungarian Notation, where you prefix the variable name with its data type.

Example

 var iAge = 25;
 var sName = “Jill”;
 var bIsAwesome = true;

Type Coercion

Type Coercion issues can appear when you are evaluating variables of

different types. Generally these occur when you are doing comparison

operations and can lead to hard to find, subtle errors later in your code.

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp
https://en.wikipedia.org/wiki/Hungarian_notation

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 25

Example

 if(5 == “5”) { } // true
 if(5 === “5”) { } // false
 if(1 == true) { } // true
 if(1 === true) { } // false
 if(undefined == null) { } // true
 if(undefined === null) { } // false

Browser Support

API’s are constantly being added to JavaScript and while it is tempting to use

them, you may find that not all of your users use the latest version of Google

Chrome or Firefox, meaning if you are developing an app using the latest

ECMAScript 6 features, whilst supporting a legacy version of IE, some of your

users are bound to encounter errors.

It isn’t recommended to enable/disable features based on browser detection

scripts because new browsers/versions are created all the time. So having

a robust browser detection library isn’t practical. Instead, enable features

using feature detection scripts.

Feature Detection

One approach to stop such issues is to use a feature detection library like

Modernizr where you can then enable the feature if it is supported.

Example

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp
https://modernizr.com/

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 26

 if(Modernizr.awesomeNewFeature) {
 showOffAwesomeNewFeature();
 } else {
 getTheOldLameExperience();
 }

Modernizr (and others) can have custom builds, enabling you to only include

detection scripts for the features you use. Saving on bandwidth for your

users.

Polyfills

Another option is to include a Polyfill. A Polyfill is a piece of code which

enables features, by providing a fallback alternative in browsers when it

detects a particular feature isn’t supported.

A useful list of Polyfills can be found here.

The Global Namespace

Multiple JavaScript files can be included in a single page, which is a great

thing, but an issue not obvious to developers are that variables declared

outside of a function will be global in scope.

Example

 pizza = ‘Meat lovers’;
 alert(window.pizza); // Result: Meat lovers

 var burger = ‘Cheese’;

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 27

 alert(window.burger); // Result: Cheese
 window.pasta = ‘Rotelle’;
 alert(pasta); // Result: Rotelle

Note: Make sure you also declare variables using `var̀ . The example above is

only added to show that undeclared variables are added to the window object.

This may not seem a big deal when dealing with small websites, but it can

become an issue in large apps since they can include external JavaScript

libraries and a multiple of scripts for each page.

Issues with global variables are:

1. Global namespace can get polluted. Meaning you may accidentally

override variables used in other files

2. Stops the Garbage Collector from removing variables because it can’t be

sure if it will ever be used again or not

3. They are slower to lookup than local variables

4. Naming collisions with libraries

Immediately-invoked function expression

An immediately-invoked function is a function which is executed straight

away. This is a JavaScript design pattern many programmers implement to

prevent pollution of the global namespace.

Example

 (function() {

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 28

 var pizza = “Meat lovers”;
 alert(window.pizza); //
 })();

Namespace

Whilst keeping scripts modular is good approach to take, it is inevitable that

you will need to use some data across files. We still don’t want to declare

lots of global variables, so to solve this issue you can create a single global

object for your app and have all the functions/variables as properties of that

object.

Example

 var MyApp = {
 propertyA: true,
 propertyB: false,
 init: function() {
 // Insert code here
 }
 // Continue function/variable declarations
};

Strict mode

Example

 function awesome() {
 “use strict”;
 //Strict mode enforced
 }

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 29

SECTION 8

How to setup basic monitoring of

errors in JavaScript

With just a single, short code snippet, every error that occurs in your

software can be detected and instantly diagnosed with an automatic error

monitoring tool like Raygun.

The most basic way to handle an error in JavaScript is to wrap your code in

a try - catch - finally block. This will catch the error and prevent it from

‘bubbling’ up to the top-level window.onerror handler:

 try {
 throw new Error(“My custom error”);
 } catch (err) {
 // Handle the cause of the error, potentially by returning default
--data, or send the error to Raygun:
 Raygun.send(err);
 }
 finally {
 // code that always gets executed
 }

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 30

About Raygun Crash Reporting

Raygun’s error and crash reporting software silently monitors your web and

mobile applications, collecting all error and crash events that are affecting

your customers. When issues are found they are presented on your crash

reporting dashboard, with detailed diagnostic reports about every single

error and crash, making digging through log files and trying to replicate

issues a thing of the past.

Contextual information about the problem is made available to your entire

team instantly, including which specific users of your application have

been affected. Raygun then provides your team with a seamless workflow

to solve the problem quickly. Should the inevitable happen and users are

exposed to outages, bugs, errors, crashes or bad deploys, your entire team

will know about it instantly with Raygun’s smart alerts via email or team chat

notifications, giving you all the diagnostic information you need to fix the

problem quickly and efficiently.

“Without Raygun we had no clear window into what errors our

applications were throwing. We only knew by digging through

logs when we got the time, or by our customers letting us know

something was wrong. Raygun takes the unknown and makes it

known”

Daniel Hoenig - Software Architect at Schneider Electric

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp

Raygun.com The Ultimate Guide to JavaScript Error Monitoring 31

SECTION 9

Further reading / resources

Getting started with JavaScript source maps:

https://raygun.com/blog/2014/02/getting-started-with-javascript-source-

maps/

The Error object reference guide:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_

Objects/Error

Exception handling statements, throw, try-catch-finally:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Control_

flow_and_error_handling#Exception_handling_statements

https://raygun.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=innovation-wp
https://raygun.com/blog/2014/02/getting-started-with-javascript-source-maps/
https://raygun.com/blog/2014/02/getting-started-with-javascript-source-maps/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Control_flow_and_error_handling#Exception_handling_statements
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Control_flow_and_error_handling#Exception_handling_statements

	Table of Contents

	Introduction to JavaScript error monitoring
	What is an error and how do you create one?
	Why don’t users report software errors and crashes?
	Writing error messages in JavaScript
	Security issues and best practices
	Source maps
	Practices to avoid errors in development
	How to setup basic monitoring of errors in JavaScript
	Further reading / resources

