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Introduction to Memory Management 1

This chapter is a general introduction to memory management on Macintosh computers. 
It describes how the Operating System organizes and manages the available memory, 
and it shows how you can use the services provided by the Memory Manager and other 
system software components to manage the memory in your application partition 
effectively.

You should read this chapter if your application or other software allocates memory 
dynamically during its execution. This chapter describes how to

■ set up your application partition at launch time

■ determine the amount of free memory in your application heap

■ allocate and dispose of blocks of memory in your application heap

■ minimize fragmentation in your application heap caused by blocks of memory that 
cannot move

■ implement a scheme to avoid low-memory conditions

You should be able to accomplish most of your application’s memory allocation and 
management by following the instructions given in this chapter. If, however, your 
application needs to allocate memory outside its own partition (for instance, in the 
system heap), you need to read the chapter “Memory Manager” in this book. If your 
application has timing-critical requirements or installs procedures that execute at 
interrupt time, you need to read the chapter “Virtual Memory Manager” in this book. If 
your application’s executable code is divided into multiple segments, you might also 
want to look at the chapter “Segment Manager” in Inside Macintosh: Processes for 
guidelines on how to divide your code into segments. If your application uses resources, 
you need to read the chapter “Resource Manager” in Inside Macintosh: More Macintosh 
Toolbox for information on managing memory allocated to resources.

This chapter begins with a description of how the Macintosh Operating System 
organizes the available physical random-access memory (RAM) in a Macintosh 
computer and how it allocates memory to open applications. Then this chapter describes 
in detail how the Memory Manager allocates blocks of memory in your application’s 
heap and how to use the routines provided by the Memory Manager to perform the 
memory-management tasks listed above.

This chapter ends with descriptions of the routines used to perform these tasks. The 
“Memory Management Reference” and “Summary of Memory Management” sections 
in this chapter are subsets of the corresponding sections in the remaining chapters in 
this book.
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About Memory 1

A Macintosh computer’s available RAM is used by the Operating System, applications, 
and other software components, such as device drivers and system extensions. This 
section describes both the general organization of memory by the Operating System 
and the organization of the memory partition allocated to your application when 
it is launched. This section also provides a preliminary description of three related 
memory topics:

■ temporary memory

■ virtual memory

■ 24- and 32-bit addressing

For more complete information on these three topics, you need to read the remaining 
chapters in this book.

Organization of Memory by the Operating System 1
When the Macintosh Operating System starts up, it divides the available RAM into two 
broad sections. It reserves for itself a zone or partition of memory known as the system 
partition. The system partition always begins at the lowest addressable byte of memory 
(memory address 0) and extends upward. The system partition contains a system heap 
and a set of global variables, described in the next two sections.

All memory outside the system partition is available for allocation to applications or 
other software components. In system software version 7.0 and later (or when 
MultiFinder is running in system software versions 5.0 and 6.0), the user can have 
multiple applications open at once. When an application is launched, the Operating 
System assigns it a section of memory known as its application partition. In general, an 
application uses only the memory contained in its own application partition.

Figure 1-1 illustrates the organization of memory when several applications are open at 
the same time. The system partition occupies the lowest position in memory. Application 
partitions occupy part of the remaining space. Note that application partitions are 
loaded into the top part of memory first.
1-4 About Memory



 

C H A P T E R  1

 

Introduction to Memory Management

  

1

 

Introduction to M
em

ory M
anagem

ent

   
Figure 1-1 Memory organization with several applications open

In Figure 1-1, three applications are open, each with its own application partition. The 
application labeled Application 1 is the active application. (The labels on the right side of 
the figure are system global variables, explained in “The System Global Variables” on 
page 1-6.)
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The System Heap 1

The main part of the system partition is an area of memory known as the system heap. 
In general, the system heap is reserved for exclusive use by the Operating System and 
other system software components, which load into it various items such as system 
resources, system code segments, and system data structures. All system buffers and 
queues, for example, are allocated in the system heap.

The system heap is also used for code and other resources that do not belong to specific 
applications, such as code resources that add features to the Operating System or that 
provide control of special-purpose peripheral equipment. System patches and system 
extensions (stored as code resources of type 'INIT') are loaded into the system heap 
during the system startup process. Hardware device drivers (stored as code resources of 
type 'DRVR') are loaded into the system heap when the driver is opened.

Most applications don’t need to load anything into the system heap. In certain cases, 
however, you might need to load resources or code segments into the system heap. For 
example, if you want a vertical retrace task to continue to execute even when your 
application is in the background, you need to load the task and any data associated with 
it into the system heap. Otherwise, the Vertical Retrace Manager ignores the task when 
your application is in the background.

The System Global Variables 1

The lowest part of memory is occupied by a collection of global variables called system 
global variables (or low-memory system global variables). The Operating System uses 
these variables to maintain different kinds of information about the operating 
environment. For example, the Ticks global variable contains the number of ticks 
(sixtieths of a second) that have elapsed since the system was most recently started up. 
Similar variables contain, for example, the height of the menu bar (MBarHeight) and 
pointers to the heads of various operating-system queues (DTQueue, FSQHdr, 
VBLQueue, and so forth). Most low-memory global variables are of this variety: they 
contain information that is generally useful only to the Operating System or other 
system software components.

Other low-memory global variables contain information about the current application. 
For example, the ApplZone global variable contains the address of the first byte 
of the active application’s partition. The ApplLimit global variable contains the 
address of the last byte the active application’s heap can expand to include. The 
CurrentA5 global variable contains the address of the boundary between the active 
application’s global variables and its application parameters. Because these global 
variables contain information about the active application, the Operating System 
changes the values of these variables whenever a context switch occurs.

In general, it is best to avoid reading or writing low-memory system global variables. 
Most of these variables are undocumented, and the results of changing their values can 
be unpredictable. Usually, when the value of a low-memory global variable is likely to be 
useful to applications, the system software provides a routine that you can use to read or 
write that value. For example, you can get the current value of the Ticks global variable 
by calling the TickCount function.
1-6 About Memory
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In rare instances, there is no routine that reads or writes the value of a documented 
global variable. In those cases, you might need to read or write that value directly. See 
the chapter “Memory Manager” in this book for instructions on reading and writing the 
values of low-memory global variables from a high-level language.

Organization of Memory in an Application Partition 1
When your application is launched, the Operating System allocates for it a partition of 
memory called its application partition. That partition contains required segments of the 
application’s code as well as other data associated with the application. Figure 1-2 
illustrates the general organization of an application partition.

Figure 1-2 Organization of an application partition

Your application partition is divided into three major parts:

■ the application stack

■ the application heap

■ the application global variables and A5 world
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The heap is located at the low-memory end of your application partition and always 
expands (when necessary) toward high memory. The A5 world is located at the 
high-memory end of your application partition and is of fixed size. The stack begins 
at the low-memory end of the A5 world and expands downward, toward the top of 
the heap.

As you can see in Figure 1-2, there is usually an unused area of memory between the 
stack and the heap. This unused area provides space for the stack to grow without 
encroaching upon the space assigned to the application heap. In some cases, however, 
the stack might grow into space reserved for the application heap. If this happens, it is 
very likely that data in the heap will become corrupted.

The ApplLimit global variable marks the upper limit to which your heap can grow. If 
you call the MaxApplZone procedure at the beginning of your program, the heap 
immediately extends all the way up to this limit. If you were to use all of the heap’s free 
space, the Memory Manager would not allow you to allocate additional blocks above 
ApplLimit. If you do not call MaxApplZone, the heap grows toward ApplLimit 
whenever the Memory Manager finds that there is not enough memory in the heap to fill 
a request. However, once the heap grows up to ApplLimit, it can grow no further. 
Thus, whether you maximize your application heap or not, you can use only the space 
between the bottom of the heap and ApplLimit.

Unlike the heap, the stack is not bounded by ApplLimit. If your application uses 
heavily nested procedures with many local variables or uses extensive recursion, the 
stack could grow downward beyond ApplLimit. Because you do not use Memory 
Manager routines to allocate memory on the stack, the Memory Manager cannot stop 
your stack from growing beyond ApplLimit and possibly encroaching upon space 
reserved for the heap. However, a vertical retrace task checks approximately 60 times 
each second to see if the stack has moved into the heap. If it has, the task, known as the 
“stack sniffer,” generates a system error. This system error alerts you that you have 
allowed the stack to grow too far, so that you can make adjustments. See “Changing the 
Size of the Stack” on page 1-39 for instructions on how to change the size of your 
application stack.

Note
To ensure during debugging that your application generates this system 
error if the stack extends beyond ApplLimit, you should call 
MaxApplZone at the beginning of your program to expand the heap to 
ApplLimit. For more information on expanding the heap, see “Setting 
Up the Application Heap” beginning on page 1-38. ◆

The Application Stack 1

The stack is an area of memory in your application partition that can grow or shrink at 
one end while the other end remains fixed. This means that space on the stack is always 
allocated and released in LIFO (last-in, first-out) order. The last item allocated is always 
the first to be released. It also means that the allocated area of the stack is always 
contiguous. Space is released only at the top of the stack, never in the middle, so there 
can never be any unallocated “holes” in the stack.
1-8 About Memory
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By convention, the stack grows from high memory toward low memory addresses. The 
end of the stack that grows or shrinks is usually referred to as the “top” of the stack, 
even though it’s actually at the lower end of memory occupied by the stack.

Because of its LIFO nature, the stack is especially useful for memory allocation 
connected with the execution of functions or procedures. When your application calls a 
routine, space is automatically allocated on the stack for a stack frame. A stack frame 
contains the routine’s parameters, local variables, and return address. Figure 1-3 
illustrates how the stack expands and shrinks during a function call. The leftmost 
diagram shows the stack just before the function is called. The middle diagram shows 
the stack expanded to hold the stack frame. Once the function is executed, the local 
variables and function parameters are popped off the stack. If the function is a Pascal 
function, all that remains is the previous stack with the function result on top.

Figure 1-3 The application stack

Note
Dynamic memory allocation on the stack is usually handled 
automatically if you are using a high-level development language such 
as Pascal. The compiler generates the code that creates and deletes stack 
frames for each function or procedure call. ◆

The Application Heap 1

An application heap is the area of memory in your application partition in which space 
is dynamically allocated and released on demand. The heap begins at the low-memory 
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end of your application partition and extends upward in memory. The heap contains 
virtually all items that are not allocated on the stack. For instance, your application heap 
contains the application’s code segments and resources that are currently loaded into 
memory. The heap also contains other dynamically allocated items such as window 
records, dialog records, document data, and so forth.

You allocate space within your application’s heap by making calls to the Memory 
Manager, either directly (for instance, using the NewHandle function) or indirectly 
(for instance, using a routine such as NewWindow, which calls Memory Manager 
routines). Space in the heap is allocated in blocks, which can be of any size needed 
for a particular object.

The Memory Manager does all the necessary housekeeping to keep track of blocks in the 
heap as they are allocated and released. Because these operations can occur in any order, 
the heap doesn’t usually grow and shrink in an orderly way, as the stack does. Instead, 
after your application has been running for a while, the heap can tend to become 
fragmented into a patchwork of allocated and free blocks, as shown in Figure 1-4. This 
fragmentation is known as heap fragmentation.

Figure 1-4 A fragmented heap
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One result of heap fragmentation is that the Memory Manager might not be able to 
satisfy your application’s request to allocate a block of a particular size. Even though 
there is enough free space available, the space is broken up into blocks smaller than the 
requested size. When this happens, the Memory Manager tries to create the needed 
space by moving allocated blocks together, thus collecting the free space in a single 
larger block. This operation is known as heap compaction. Figure 1-5 shows the results 
of compacting the fragmented heap shown in Figure 1-4.

Figure 1-5 A compacted heap

Heap fragmentation is generally not a problem as long as the blocks of memory you 
allocate are free to move during heap compaction. There are, however, two situations in 
which a block is not free to move: when it is a nonrelocatable block, and when it is a 
locked, relocatable block. To minimize heap fragmentation, you should use 
nonrelocatable blocks sparingly, and you should lock relocatable blocks only when 
absolutely necessary. See “Relocatable and Nonrelocatable Blocks” starting on page 1-16 
for a description of relocatable and nonrelocatable blocks, and “Heap Fragmentation” on 
page 1-24 for a description of how best to avoid fragmenting your heap.
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The Application Global Variables and A5 World 1

Your application’s global variables are stored in an area of memory near the top of your 
application partition known as the application A5 world. The A5 world contains four 
kinds of data:

■ application global variables

■ application QuickDraw global variables

■ application parameters

■ the application’s jump table

Each of these items is of fixed size, although the sizes of the global variables and of the 
jump table may vary from application to application. Figure 1-6 shows the standard 
organization of the A5 world.

Figure 1-6 Organization of an application’s A5 world

Note
An application’s global variables may appear either above or below the 
QuickDraw global variables. The relative locations of these two items 
are determined by your development system’s linker. In addition, part 
of the jump table might appear below the boundary pointed to by 
CurrentA5. ◆
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The system global variable CurrentA5 points to the boundary between the 
current application’s global variables and its application parameters. For this reason, 
the application’s global variables are found as negative offsets from the value of 
CurrentA5. This boundary is important because the Operating System uses it to access 
the following information from your application: its global variables, its QuickDraw 
global variables, the application parameters, and the jump table. This information is 
known collectively as the A5 world because the Operating System uses the 
microprocessor’s A5 register to point to that boundary.

Your application’s QuickDraw global variables contain information about its drawing 
environment. For example, among these variables is a pointer to the current 
graphics port.

Your application’s jump table contains an entry for each of your application’s routines 
that is called by code in another segment. The Segment Manager uses the jump table to 
determine the address of any externally referenced routines called by a code segment. 
For more information on jump tables, see the chapter “Segment Manager” in Inside 
Macintosh: Processes.

The application parameters are 32 bytes of memory located above the application global 
variables; they’re reserved for use by the Operating System. The first long word of those 
parameters is a pointer to your application’s QuickDraw global variables.

Temporary Memory 1
In the Macintosh multitasking environment, each application is limited to a particular 
memory partition (whose size is determined by information in the 'SIZE' resource of 
that application). The size of your application’s partition places certain limits on the size 
of your application heap and hence on the sizes of the buffers and other data structures 
that your application uses. In general, you specify an application partition size that is 
large enough to hold all the buffers, resources, and other data that your application is 
likely to need during its execution.

If for some reason you need more memory than is currently available in your application 
heap, you can ask the Operating System to let you use any available memory that is not 
yet allocated to any other application. This memory, known as temporary memory, is 
allocated from the available unused RAM; usually, that memory is not contiguous with 
the memory in your application’s zone. Figure 1-7 shows an application using some 
temporary memory.
About Memory 1-13
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Figure 1-7 Using temporary memory allocated from unused RAM

In Figure 1-7, Application 1 has almost exhausted its application heap. As a result, it has 
requested and received a large block of temporary memory, extending from the top of 
Application 2’s partition to the top of the allocatable space. Application 1 can use the 
temporary memory in whatever manner it desires.

Your application should use temporary memory only for occasional short-term purposes 
that could be accomplished in less space, though perhaps less efficiently. For example, if 
you want to copy a large file, you might try to allocate a fairly large buffer of temporary 
memory. If you receive the temporary memory, you can copy data from the source file 
into the destination file using the large buffer. If, however, the request for temporary 
memory fails, you can instead use a smaller buffer within your application heap. 
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Although using the smaller buffer might prolong the copying operation, the file is 
nonetheless copied.

One good reason for using temporary memory only occasionally is that you cannot 
assume that you will always receive the temporary memory you request. For example, in 
Figure 1-7, all the available memory is allocated to the two open applications; any 
further requests by either one for some temporary memory would fail. For complete 
details on using temporary memory, see the chapter “Memory Manager” in this book.

Virtual Memory 1
In system software version 7.0 and later, suitably equipped Macintosh computers can 
take advantage of a feature of the Operating System known as virtual memory, by which 
the machines have a logical address space that extends beyond the limits of the available 
physical memory. Because of virtual memory, a user can load more programs and data 
into the logical address space than would fit in the computer’s physical RAM.

The Operating System extends the address space by using part of the available 
secondary storage (that is, part of a hard disk) to hold portions of applications and data 
that are not currently needed in RAM. When some of those portions of memory are 
needed, the Operating System swaps out unneeded parts of applications or data to the 
secondary storage, thereby making room for the parts that are needed.

It is important to realize that virtual memory operates transparently to most 
applications. Unless your application has time-critical needs that might be adversely 
affected by the operation of virtual memory or installs routines that execute at interrupt 
time, you do not need to know whether virtual memory is operating. For complete 
details on virtual memory, see the chapter “Virtual Memory Manager” later in this book.

Addressing Modes 1
On suitably equipped Macintosh computers, the Operating System supports 32-bit 
addressing, that is, the ability to use 32 bits to determine memory addresses. Earlier 
versions of system software use 24-bit addressing, where the upper 8 bits of memory 
addresses are ignored or used as flag bits. In a 24-bit addressing scheme, the logical 
address space has a size of 16 MB. Because 8 MB of this total are reserved for I/O space, 
ROM, and slot space, the largest contiguous program address space is 8 MB. When 32-bit 
addressing is in operation, the maximum program address space is 1 GB.

The ability to operate with 32-bit addressing is available only on certain Macintosh 
models, namely those with systems that contain a 32-bit Memory Manager. (For 
compatibility reasons, these systems also contain a 24-bit Memory Manager.) In order for 
your application to work when the machine is using 32-bit addressing, it must be 32-bit 
clean, that is, able to run in an environment where all 32 bits of a memory address are 
significant. Fortunately, writing applications that are 32-bit clean is relatively easy if you 
follow the guidelines in Inside Macintosh. In general, applications are not 32-bit clean 
because they manipulate flag bits in master pointers directly (for instance, to mark the 
associated memory blocks as locked or purgeable) instead of using Memory Manager 
About Memory 1-15



C H A P T E R  1

Introduction to Memory Management
routines to achieve the desired result. See “Relocatable and Nonrelocatable Blocks” on 
page 1-16 for a description of master pointers.

▲ W A R N I N G

You should never make assumptions about the contents of Memory 
Manager data structures, including master pointers and zone headers. 
These structures have changed in the past and they are likely to change 
again in the future. ▲

Occasionally, an application running when 24-bit addressing is enabled might need to 
modify memory addresses to make them compatible with the 24-bit Memory Manager. 
In addition, drivers or other code might need to use 32-bit addresses, even when running 
in 24-bit mode. See the descriptions of the routines StripAddress and 
Translate24to32 in the chapter “Memory Management Utilities” for details.

Heap Management 1

Applications allocate and manipulate memory primarily in their application heap. As 
you have seen, space in the application heap is allocated and released on demand. When 
the blocks in your heap are free to move, the Memory Manager can often reorganize the 
heap to free space when necessary to fulfill a memory-allocation request. In some cases, 
however, blocks in your heap cannot move. In these cases, you need to pay close 
attention to memory allocation and management to avoid fragmenting your heap and 
running out of memory.

This section provides a general description of how to manage blocks of memory in your 
application heap. It describes

■ relocatable and nonrelocatable blocks

■ properties of relocatable blocks

■ heap purging and compaction

■ heap fragmentation

■ dangling pointers

■ low-memory conditions

For examples of specific techniques you can use to implement the strategies discussed in 
this section, see “Using Memory” beginning on page 1-38.

Relocatable and Nonrelocatable Blocks 1
You can use the Memory Manager to allocate two different types of blocks in your heap: 
nonrelocatable blocks and relocatable blocks. A nonrelocatable block is a block of 
memory whose location in the heap is fixed. In contrast, a relocatable block is a block 
of memory that can be moved within the heap (perhaps during heap compaction). 
1-16 Heap Management
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The Memory Manager sometimes moves relocatable blocks during memory operations 
so that it can use the space in the heap optimally.

The Memory Manager provides data types that reference both relocatable and 
nonrelocatable blocks. It also provides routines that allow you to allocate and release 
blocks of both types.

To reference a nonrelocatable block, you can use a pointer variable, defined by the Ptr 
data type.

TYPE

SignedByte = –128..127;

Ptr = ^SignedByte;

A pointer is simply the address of an arbitrary byte in memory, and a pointer to a 
nonrelocatable block of memory is simply the address of the first byte in the block, as 
illustrated in Figure 1-8. After you allocate a nonrelocatable block, you can make copies 
of the pointer variable. Because a pointer is the address of a block of memory that cannot 
be moved, all copies of the pointer correctly reference the block as long as you don’t 
dispose of it.

Figure 1-8 A pointer to a nonrelocatable block
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The pointer variable itself occupies 4 bytes of space in your application partition. 
Often the pointer variable is a global variable and is therefore contained in 
your application’s A5 world. But the pointer can also be allocated on the stack 
or in the heap itself.

To reference relocatable blocks, the Memory Manager uses a scheme known as 
double indirection. The Memory Manager keeps track of a relocatable block internally 
with a master pointer, which itself is part of a nonrelocatable master pointer block 
in your application heap and can never move.

Note
The Memory Manager allocates one master pointer block (containing 
64 master pointers) for your application at launch time, and you can 
call the MoreMasters procedure to request that additional master 
pointer blocks be allocated. See “Setting Up the Application Heap” 
beginning on page 1-38 for instructions on allocating master pointer 
blocks. ◆

When the Memory Manager moves a relocatable block, it updates the master pointer 
so that it always contains the address of the relocatable block. You reference the block 
with a handle, defined by the Handle data type.

TYPE

Handle = ^Ptr;

A handle contains the address of a master pointer. The left side of Figure 1-9 shows 
a handle to a relocatable block of memory located in the middle of the application 
heap. If necessary (perhaps to make room for another block of memory), the 
Memory Manager can move that block down in the heap, as shown in the right 
side of Figure 1-9.
1-18 Heap Management
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Figure 1-9 A handle to a relocatable block

Master pointers for relocatable objects in your heap are always allocated in your 
application heap. Because the blocks of masters pointers are nonrelocatable, it is best to 
allocate them as low in your heap as possible. You can do this by calling the 
MoreMasters procedure when your application starts up.

Whenever possible, you should allocate memory in relocatable blocks. This gives the 
Memory Manager the greatest freedom when rearranging the blocks in your application 
heap to create a new block of free memory. In some cases, however, you may be forced to 
allocate a nonrelocatable block of memory. When you call the Window Manager function 
NewWindow, for example, the Window Manager internally calls the NewPtr function to 
allocate a new nonrelocatable block in your application partition. You need to exercise 
care when calling Toolbox routines that allocate such blocks, lest your application heap 
become overly fragmented. See “Allocating Blocks of Memory” on page 1-44 for specific 
guidelines on allocating nonrelocatable blocks.
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Using relocatable blocks makes the Memory Manager more efficient at managing 
available space, but it does carry some overhead. As you have seen, the Memory 
Manager must allocate extra memory to hold master pointers for relocatable blocks. It 
groups these master pointers into nonrelocatable blocks. For large relocatable blocks, this 
extra space is negligible, but if you allocate many very small relocatable blocks, the cost 
can be considerable. For this reason, you should avoid allocating a very large number of 
handles to small blocks; instead, allocate a single large block and use it as an array to 
hold the data you need.

Properties of Relocatable Blocks 1
As you have seen, a heap block can be either relocatable or nonrelocatable. The 
designation of a block as relocatable or nonrelocatable is a permanent property of that 
block. If relocatable, a block can be either locked or unlocked; if it’s unlocked, a block can 
be either purgeable or unpurgeable. These attributes of relocatable blocks can be set and 
changed as necessary. The following sections explain how to lock and unlock blocks, and 
how to mark them as purgeable or unpurgeable.

Locking and Unlocking Relocatable Blocks 1

Occasionally, you might need a relocatable block of memory to stay in one place. To 
prevent a block from moving, you can lock it, using the HLock procedure. Once you 
have locked a block, it won’t move. Later, you can unlock it, using the HUnlock 
procedure, allowing it to move again.

In general, you need to lock a relocatable block only if there is some danger that it might 
be moved during the time that you read or write the data in that block. This might 
happen, for instance, if you dereference a handle to obtain a pointer to the data and 
(for increased speed) use the pointer within a loop that calls routines that might 
cause memory to be moved. If, within the loop, the block whose data you are accessing 
is in fact moved, then the pointer no longer points to that data; this pointer is said 
to dangle.

Note
Locking a block is only one way to prevent a dangling pointer. See 
“Dangling Pointers” on page 1-29 for a complete discussion of how to 
avoid dangling pointers. ◆
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Using locked relocatable blocks can, however, slow the Memory Manager down as much 
as using nonrelocatable blocks. The Memory Manager can’t move locked blocks. In 
addition, except when you allocate memory and resize relocatable blocks, it can’t move 
relocatable blocks around locked relocatable blocks (just as it can’t move them around 
nonrelocatable blocks). Thus, locking a block in the middle of the heap for long periods 
of time can increase heap fragmentation.

Locking and unlocking blocks every time you want to prevent a block from moving can 
become troublesome. Fortunately, the Memory Manager moves unlocked, relocatable 
blocks only at well-defined, predictable times. In general, each routine description in 
Inside Macintosh indicates whether the routine could move or purge memory. If you do 
not call any of those routines in a section of code, you can rely on all blocks to remain 
stationary while that code executes. Note that the Segment Manager might move 
memory if you call a routine located in a segment that is not currently resident 
in memory. See “Loading Code Segments” on page 1-31 for details.

Purging and Reallocating Relocatable Blocks 1

One advantage of relocatable blocks is that you can use them to store information that 
you would like to keep in memory to make your application more efficient, but that you 
don’t really need if available memory space becomes low. For example, your application 
might, at the beginning of its execution, load user preferences from a preferences file into 
a relocatable block. As long as the block remains in memory, your application can access 
information from the preferences file without actually reopening the file. However, 
reopening the file probably wouldn’t take enough time to justify keeping the block in 
memory if memory space were scarce.

By making a relocatable block purgeable, you allow the Memory Manager to free 
the space it occupies if necessary. If you later want to prohibit the Memory Manager 
from freeing the space occupied by a relocatable block, you can make the block 
unpurgeable. You can use the HPurge and HNoPurge procedures to change back 
and forth between these two states. A block you create by calling NewHandle is 
initially unpurgeable.

Once you make a relocatable block purgeable, you should subsequently check 
handles to that block before using them if you call any of the routines that could 
move or purge memory. If a handle’s master pointer is set to NIL, then the 
Operating System has purged its block. To use the information formerly in the block, 
you must reallocate space for it (perhaps by calling the ReallocateHandle procedure) 
and then reconstruct its contents (for example, by rereading the preferences file). 
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Figure 1-10 illustrates the purging and reallocating of a relocatable block. When the block 
is purged, its master pointer is set to NIL. When it is reallocated, the handle correctly 
references a new block, but that block’s contents are initially undefined.

Figure 1-10 Purging and reallocating a relocatable block

Memory Reservation 1
The Memory Manager does its best to prevent situations in which nonrelocatable blocks 
in the middle of the heap trap relocatable blocks. When it allocates new nonrelocatable 
blocks, it attempts to reserve memory for them as low in the heap as possible. The 
Memory Manager reserves memory for a nonrelocatable block by moving unlocked 
relocatable blocks upward until it has created a space large enough for the new block. 
When the Memory Manager can successfully pack all nonrelocatable blocks into the 
bottom of the heap, no nonrelocatable block can trap a relocatable block, and it has 
successfully prevented heap fragmentation.

Figure 1-11 illustrates how the Memory Manager allocates nonrelocatable blocks. 
Although it could place a block of the requested size at the top of the heap, it instead 
reserves space for the block as close to the bottom of the heap as possible and then puts 
the block into that reserved space. During this process, the Memory Manager might even 
move a relocatable block over a nonrelocatable block to make room for another 
nonrelocatable block.
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Figure 1-11 Allocating a nonrelocatable block

When allocating a new relocatable block, you can, if you want, manually reserve space 
for the block by calling the ReserveMem procedure. If you do not, the Memory Manager 
looks for space big enough for the block as low in the heap as possible, but it does not 
create space near the bottom of the heap for the block if there is already enough space 
higher in the heap.

Heap Purging and Compaction 1
When your application attempts to allocate memory (for example, by calling either the 
NewPtr or NewHandle function), the Memory Manager might need to compact or 
purge the heap to free memory and to fuse many small free blocks into fewer large free 
blocks. The Memory Manager first tries to obtain the requested amount of space by 
compacting the heap; if compaction fails to free the required amount of space, the 
Memory Manager then purges the heap.

When compacting the heap, the Memory Manager moves unlocked, relocatable blocks 
down until they reach nonrelocatable blocks or locked, relocatable blocks. You can 
compact the heap manually, by calling either the CompactMem function or the MaxMem 
function.
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In a purge of the heap, the Memory Manager sequentially purges unlocked, purgeable 
relocatable blocks until it has freed enough memory or until it has purged all such 
blocks. It purges a block by deallocating it and setting its master pointer to NIL.

If you want, you can manually purge a few blocks or an entire heap in anticipation of a 
memory shortage. To purge an individual block manually, call the EmptyHandle 
procedure. To purge your entire heap manually, call the PurgeMem procedure or the 
MaxMem function.

Note
In general, you should let the Memory Manager purge and compact 
your heap, instead of performing these operations yourself. ◆

Heap Fragmentation 1
Heap fragmentation can slow your application by forcing the Memory Manager to 
compact or purge your heap to satisfy a memory-allocation request. In the worst cases, 
when your heap is severely fragmented by locked or nonrelocatable blocks, it might be 
impossible for the Memory Manager to find the requested amount of contiguous free 
space, even though that much space is actually free in your heap. This can have 
disastrous consequences for your application. For example, if the Memory Manager 
cannot find enough room to load a required code segment, your application will crash.

Obviously, it is best to minimize the amount of fragmentation that occurs in your 
application heap. It might be tempting to think that because the Memory Manager 
controls the movement of blocks in the heap, there is little that you can do to prevent 
heap fragmentation. In reality, however, fragmentation does not strike your application’s 
heap by chance. Once you understand the major causes of heap fragmentation, you can 
follow a few simple rules to minimize it.

The primary causes of heap fragmentation are indiscriminate use of nonrelocatable 
blocks and indiscriminate locking of relocatable blocks. Each of these creates immovable 
blocks in your heap, thus creating “roadblocks” for the Memory Manager when it 
rearranges the heap to maximize the amount of contiguous free space. You can 
significantly reduce heap fragmentation simply by exercising care when you allocate 
nonrelocatable blocks and when you lock relocatable blocks.

Throughout this section, you should keep in mind the following rule: the Memory 
Manager can move a relocatable block around a nonrelocatable block (or a locked 
relocatable block) at these times only:

■ When the Memory Manager reserves memory for a nonrelocatable block (or when 
you manually reserve memory before allocating a block), it can move unlocked, 
relocatable blocks upward over nonrelocatable blocks to make room for the new block 
as low in the heap as possible.

■ When you attempt to resize a relocatable block, the Memory Manager can move that 
block around other blocks if necessary.

In contrast, the Memory Manager cannot move relocatable blocks over nonrelocatable 
blocks during compaction of the heap.
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Deallocating Nonrelocatable Blocks 1

One of the most common causes of heap fragmentation is also one of the most difficult to 
avoid. The problem occurs when you dispose of a nonrelocatable block in the middle of 
the pile of nonrelocatable blocks at the bottom of the heap. Unless you immediately 
allocate another nonrelocatable block of the same size, you create a gap where the 
nonrelocatable block used to be. If you later allocate a slightly smaller, nonrelocatable 
block, that gap shrinks. However, small gaps are inefficient because of the small 
likelihood that future memory allocations will create blocks small enough to occupy 
the gaps.

It would not matter if the first block you allocated after deleting the nonrelocatable block 
were relocatable. The Memory Manager would place the block in the gap if possible. If 
you were later to allocate a nonrelocatable block as large as or smaller than the gap, the 
new block would take the place of the relocatable block, which would join other 
relocatable blocks in the middle of the heap, as desired. However, the new 
nonrelocatable block might be smaller than the original nonrelocatable block, leaving a 
small gap.

Whenever you dispose of a nonrelocatable block that you have allocated, you create 
small gaps, unless the next nonrelocatable block you allocate happens to be the same size 
as the disposed block. These small gaps can lead to heavy fragmentation over the course 
of your application’s execution. Thus, you should try to avoid disposing of and then 
reallocating nonrelocatable blocks during program execution.

Reserving Memory 1

Another cause of heap fragmentation ironically occurs because of a limitation of memory 
reservation, a process designed to prevent it. Memory reservation never makes 
fragmentation worse than it would be if there were no memory reservation. Ordinarily, 
memory reservation ensures that allocating nonrelocatable blocks in the middle of your 
application’s execution causes no problems. Occasionally, however, memory reservation 
can cause fragmentation, either when it succeeds but leaves small gaps in the reserved 
space, or when it fails and causes a nonrelocatable block to be allocated in the middle of 
the heap.

The Memory Manager uses memory reservation to create space for nonrelocatable blocks 
as low as possible in the heap. (You can also manually reserve memory for relocatable 
blocks, but you rarely need to do so.) However, when the Memory Manager moves a 
block up during memory reservation, that block cannot overlap its previous location. 
As a result, the Memory Manager might need to move the relocatable block up more 
than is necessary to contain the new nonrelocatable block, thereby creating a gap 
between the top of the new block and the bottom of the relocated block. (See Figure 1-11 
on page 1-23.)

Memory reservation can also fragment the heap if there is not enough space in the heap 
to move the relocatable block up. In this case, the Memory Manager allocates the new 
nonrelocatable block above the relocatable block. The relocatable block cannot then 
move over the nonrelocatable block, except during the times described previously.
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Locking Relocatable Blocks 1

Locked relocatable blocks present a special problem. When relocatable blocks are locked, 
they can cause as much heap fragmentation as nonrelocatable blocks. One solution is to 
reserve memory for all relocatable blocks that might at some point need to be locked, 
and to leave them locked for as long as they are allocated. This solution has drawbacks, 
however, because then the blocks would lose any flexibility that being relocatable 
otherwise gives them. Deleting a locked relocatable block can create a gap, just as 
deleting a nonrelocatable block can.

An alternative partial solution is to move relocatable blocks to the top of the heap before 
locking them. The MoveHHi procedure allows you to move a relocatable block upward 
until it reaches the top of the heap, a nonrelocatable block, or a locked relocatable block. 
This has the effect of partitioning the heap into four areas, as illustrated in Figure 1-12. 
At the bottom of the heap are the nonrelocatable blocks. Above those blocks are the 
unlocked relocatable blocks. At the top of the heap are locked relocatable blocks. 
Between the locked relocatable blocks and the unlocked relocatable blocks is an area of 
free space. The principal idea behind moving relocatable blocks to the top of the heap 
and locking them there is to keep the contiguous free space as large as possible. 

Figure 1-12 An effectively partitioned heap
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Using MoveHHi is, however, not always a perfect solution to handling relocatable blocks 
that need to be locked. The MoveHHi procedure moves a block upward only until it 
reaches either a nonrelocatable block or a locked relocatable block. Unlike NewPtr and 
ReserveMem, MoveHHi does not currently move a relocatable block around one that is 
not relocatable.

Even if MoveHHi succeeds in moving a block to the top area of the heap, unlocking or 
deleting locked blocks can cause fragmentation if you don’t unlock or delete those blocks 
beginning with the lowest locked block. A relocatable block that is locked at the top area 
of the heap for a long period of time could trap other relocatable blocks that were locked 
for short periods of time but then unlocked.

This suggests that you need to treat relocatable blocks locked for a long period of time 
differently from those locked for a short period of time. If you plan to lock a relocatable 
block for a long period of time, you should reserve memory for it at the bottom of the 
heap before allocating it, then lock it for the duration of your application’s execution (or 
as long as the block remains allocated). Do not reserve memory for relocatable blocks 
you plan to allocate for only short periods of time. Instead, move them to the top of the 
heap (by calling MoveHHi) and then lock them.

Note
You should call MoveHHi only on blocks located in your application 
heap. Don’t call MoveHHi on relocatable blocks in the system heap. Desk 
accessories should not call MoveHHi. ◆

In practice, you apply the same rules to relocatable blocks that you reserve space for and 
leave permanently locked as you apply to nonrelocatable blocks: Try not to allocate such 
blocks in the middle of your application’s execution, and don’t dispose of and reallocate 
such blocks in the middle of your application’s execution.

After you lock relocatable blocks temporarily, you don’t need to move them manually 
back into the middle area when you unlock them. Whenever the Memory Manager 
compacts the heap or moves another relocatable block to the top heap area, it brings all 
unlocked relocatable blocks at the bottom of that partition back into the middle area. 
When moving a block to the top area, be sure to call MoveHHi on the block and then lock 
the block, in that order.

Allocating Nonrelocatable Blocks 1

As you have seen, there are two reasons for not allocating nonrelocatable blocks during 
the middle of your application’s execution. First, if you also dispose of nonrelocatable 
blocks in the middle of your application’s execution, then allocation of new 
nonrelocatable blocks is likely to create small gaps, as discussed earlier. Second, even if 
you never dispose of nonrelocatable blocks until your application terminates, memory 
reservation is an imperfect process, and the Memory Manager could occasionally place 
new nonrelocatable blocks above relocatable blocks.
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There is, however, an exception to the rule that you should not allocate nonrelocatable 
blocks in the middle of your application’s execution. Sometimes you need to allocate a 
nonrelocatable block only temporarily. If between the times that you allocate and dispose 
of a nonrelocatable block, you allocate no additional nonrelocatable blocks and do not 
attempt to compact the heap, then you have done no harm. The temporary block cannot 
create a new gap because the Memory Manager places no other block over the 
temporary block.

Summary of Preventing Fragmentation 1

Avoiding heap fragmentation is not difficult. It simply requires that you follow a few 
rules as closely as possible. Remember that allocation of even a small nonrelocatable 
block in the middle of your heap can ruin a scheme to prevent fragmentation of the 
heap, because the Memory Manager does not move relocatable blocks around 
nonrelocatable blocks when you call MoveHHi or when it attempts to compact the heap.

If you adhere to the following rules, you are likely to avoid significant heap 
fragmentation:

■ At the beginning of your application’s execution, call the MaxApplZone procedure 
once and the MoreMasters procedure enough times so that the Memory Manager 
never needs to call it for you.

■ Try to anticipate the maximum number of nonrelocatable blocks you will need and 
allocate them at the beginning of your application’s execution.

■ Avoid disposing of and then reallocating nonrelocatable blocks during your 
application’s execution.

■ When allocating relocatable blocks that you need to lock for long periods of time, use 
the ReserveMem procedure to reserve memory for them as close to the bottom of the 
heap as possible, and lock the blocks immediately after allocating them.

■ If you plan to lock a relocatable block for a short period of time and allocate 
nonrelocatable blocks while it is locked, use the MoveHHi procedure to move the 
block to the top of the heap and then lock it. When the block no longer needs to be 
locked, unlock it.

■ Remember that you need to lock a relocatable block only if you call a routine that 
could move or purge memory and you then use a dereferenced handle to the 
relocatable block, or if you want to use a dereferenced handle to the relocatable block 
at interrupt time.

Perhaps the most difficult restriction is to avoid disposing of and then reallocating 
nonrelocatable blocks in the middle of your application’s execution. Some Toolbox 
routines require you to use nonrelocatable blocks, and it is not always easy to anticipate 
how many such blocks you will need. If you must allocate and dispose of blocks in the 
middle of your program’s execution, you might want to place used blocks into a linked 
list of free blocks instead of disposing of them. If you know how many nonrelocatable 
blocks of a certain size your application is likely to need, you can add that many to the 
beginning of the list at the beginning of your application’s execution. If you need a 
nonrelocatable block later, you can check the linked list for a block of the exact size 
instead of simply calling the NewPtr function.
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Dangling Pointers 1
Accessing a relocatable block by double indirection, through its handle instead of 
through its master pointer, requires an extra memory reference. For efficiency, you might 
sometimes want to dereference the handle—that is, make a copy of the block’s master 
pointer—and then use that pointer to access the block by single indirection. When you 
do this, however, you need to be particularly careful. Any operation that allocates space 
from the heap might cause the relocatable block to be moved or purged. In that event, 
the block’s master pointer is correctly updated, but your copy of the master pointer is 
not. As a result, your copy of the master pointer is a dangling pointer.

Dangling pointers are likely to make your application crash or produce garbled output. 
Unfortunately, it is often easy during debugging to overlook situations that could leave 
pointers dangling, because pointers dangle only if the relocatable blocks that they 
reference actually move. Routines that can move or purge memory do not necessarily do 
so unless memory space is tight. Thus, if you improperly dereference a handle in a 
section of code, that code might still work properly most of the time. If, however, a 
dangling pointer does cause errors, they can be very difficult to trace.

This section describes a number of situations that can cause dangling pointers and 
suggests some ways to avoid them.

Compiler Dereferencing 1

Some of the most difficult dangling pointers to isolate are not caused by any explicit 
dereferencing on your part, but by implicit dereferencing on the part of the compiler. 
For example, suppose you use a handle called myHandle to access the fields of a 
record in a relocatable block. You might use Pascal’s WITH statement to do so, 
as follows:

WITH myHandle^^ DO

BEGIN

...

END;

A compiler is likely to dereference myHandle so that it can access the fields of the 
record without double indirection. However, if the code between the BEGIN and END 
statements causes the Memory Manager to move or purge memory, you are likely to end 
up with a dangling pointer.

The easiest way to prevent dangling pointers is simply to lock the relocatable block 
whose data you want to read or write. Because the block is locked and cannot move, 
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the master pointer is guaranteed always to point to the beginning of the block’s data. 
Listing 1-1 illustrates one way to avoid dangling pointers by locking a relocatable block.

Listing 1-1 Locking a block to avoid dangling pointers

VAR

origState: SignedByte; {original attributes of handle}

origState := HGetState(Handle(myData));{get handle attributes}

MoveHHi(Handle(myData)); {move the handle high}

HLock(Handle(myData)); {lock the handle}

WITH myData^^ DO {fill in window data}

BEGIN

editRec := TENew(gDestRect, gViewRect);

vScroll := GetNewControl(rVScroll, myWindow);

hScroll := GetNewControl(rHScroll, myWindow);

fileRefNum := 0;

windowDirty := FALSE;

END;

HSetState(origState); {reset handle attributes}

The handle myData needs to be locked before the WITH statement because the functions 
TENew and GetNewControl allocate memory and hence might move the block whose 
handle is myData.

You should be careful to lock blocks only when necessary, because locked relocatable 
blocks can increase heap fragmentation and slow down your application unnecessarily. 
You should lock a handle only if you dereference it, directly or indirectly, and then use a 
copy of the original master pointer after calling a routine that could move or purge 
memory. When you no longer need to reference the block with the master pointer, you 
should unlock the handle. In Listing 1-1, the handle myData is never explicitly unlocked. 
Instead, the original attributes of the handle are saved by calling HGetState and later 
are restored by calling HSetState. This strategy is preferable to just calling HLock and 
HUnlock.

A compiler can generate hidden dereferencing, and hence potential dangling pointers, in 
other ways, for instance, by assigning the result of a function that might move or purge 
blocks to a field in a record referenced by a handle. Such problems are particularly 
common in code that manipulates linked data structures. For example, you might use 
this code to allocate a new element of a linked list:

myHandle^^.nextHandle := NewHandle(sizeof(myLinkedElement));
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This can cause problems because your compiler could dereference myHandle before 
calling NewHandle. Therefore, you should either lock myHandle before performing 
the allocation, or use a temporary variable to allocate the new handle, as in the 
following code:

tempHandle := NewHandle(sizeof(myLinkedElement));

myHandle^^.nextHandle := tempHandle;

Passing fields of records as arguments to routines that might move or purge memory can 
cause similar problems, if the records are in relocatable blocks referred to with handles. 
Problems arise only when you pass a field by reference rather than by value. Pascal 
conventions call for all arguments larger than 4 bytes to be passed by reference. In 
Pascal, a variable is also passed by reference when the routine called requests a variable 
parameter. Both of the following lines of code could leave a pointer dangling:

TEUpdate(hTE^^.viewRect, hTE);

InvalRect(theControl^^.contrlRect);

These problems occur because a compiler may dereference a handle before calling the 
routine to which you pass the handle. Then, that routine may move memory before it 
uses the dereferenced handle, which might then be invalid. As before, you can solve 
these problems by locking the handles or using temporary variables.

Loading Code Segments 1

If you call an application-defined routine located in a code segment that is not currently 
in RAM, the Segment Manager might need to move memory when loading that code 
segment, thus jeopardizing any dereferenced handles you might be using. For example, 
suppose you call an application-defined procedure ManipulateData, which 
manipulates some data at an address passed to it in a variable parameter.

PROCEDURE MyRoutine;

BEGIN

...

ManipulateData(myHandle^);

...

END;

You can create a dangling pointer if ManipulateData and MyRoutine are in different 
segments, and the segment containing ManipulateData is not loaded when 
MyRoutine is executed. You can do this because you’ve passed a dereferenced copy of 
myHandle as an argument to ManipulateData. If the Segment Manager must allocate 
a new relocatable block for the segment containing ManipulateData, it might move 
myHandle to do so. If so, the dereferenced handle would dangle. A similar problem can 
occur if you assign the result of a function in a nonresident code segment to a field in a 
record referred to by a handle.
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You need to be careful even when passing a field in a record referenced by a handle to a 
routine in the same code segment as the caller, or when assigning the result of a function 
in the same code segment to such a field. If that routine could call a Toolbox routine that 
might move or purge memory, or call a routine in a different, nonresident code segment, 
then you could indirectly cause a pointer to dangle.

Callback Routines 1

Code segmentation can also lead to a different type of dangling-pointer problem when 
you use callback routines. The problem rarely arises, but it is difficult to debug. Some 
Toolbox routines require that you pass a pointer to a procedure in a variable of type 
ProcPtr. Ordinarily, it does not matter whether the procedure you pass in such a 
variable is in the same code segment as the routine that calls it or in a different code 
segment. For example, suppose you call TrackControl as follows:

myPart := TrackControl(myControl, myEvent.where, @MyCallBack);

If MyCallBack were in the same code segment as this line of code, then a compiler 
would pass to TrackControl the absolute address of the MyCallBack procedure. If it 
were in a different code segment, then the compiler would take the address from the 
jump table entry for MyCallBack. Either way, TrackControl should call MyCallBack 
correctly.

Occasionally, you might use a variable of type ProcPtr to hold the address of a callback 
procedure and then pass that address to a routine. Here is an example:

myProc := @MyCallBack;

...

myPart := TrackControl(myControl, myEvent.where, myProc);

As long as these lines of code are in the same code segment and the segment is not 
unloaded between the execution of those lines, the preceding code should work 
perfectly. Suppose, however, that myProc is a global variable, and the first line of the 
code is in a different segment from the call to TrackControl. Suppose, further, that the 
MyCallBack procedure is in the same segment as the first line of the code (which is in a 
different segment from the call to TrackControl). Then, the compiler might place the 
absolute address of the MyCallBack routine into the variable myProc. The compiler 
cannot realize that you plan to use the variable in a different code segment from the one 
that holds both the routine you are referencing and the routine you are using to initialize 
the myProc variable. Because MyCallBack and the call to TrackControl are in 
different code segments, the TrackControl procedure requires that you pass an 
address in the jump table, not an absolute address. Thus, in this hypothetical situation, 
myProc would reference MyCallBack incorrectly.

To avoid this problem, make sure to place in the same segment any code in which you 
assign a value to a variable of type ProcPtr and any code in which you use that 
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variable. If you must put them in different code segments, then be sure that you place 
the callback routine in a code segment different from the one that initializes the variable.

Note
Some development systems allow you to specify compiler options 
that force jump table references to be generated for routine addresses. 
If you specify those options, the problems described in this section 
cannot arise. ◆

Invalid Handles 1
An invalid handle refers to the wrong area of memory, just as a dangling pointer does. 
There are three types of invalid handles: empty handles, disposed handles, and fake 
handles. You must avoid empty, disposed, or fake handles as carefully as dangling 
pointers. Fortunately, it is generally easier to detect, and thus to avoid, invalid handles.

Disposed Handles 1

A disposed handle is a handle whose associated relocatable block has been disposed of. 
When you dispose of a relocatable block (perhaps by calling the procedure 
DisposeHandle), the Memory Manager does not change the value of any handle 
variables that previously referenced that block. Instead, those variables still hold the 
address of what once was the relocatable block’s master pointer. Because the block has 
been disposed of, however, the contents of the master pointer are no longer defined. 
(The master pointer might belong to a subsequently allocated relocatable block, or it 
could become part of a linked list of unused master pointers maintained by the 
Memory Manager.)

If you accidentally use a handle to a block you have already disposed of, you can obtain 
unexpected results. In the best cases, your application will crash. In the worst cases, you 
will get garbled data. It might, however, be difficult to trace the cause of the garbled 
data, because your application can continue to run for quite a while before the problem 
begins to manifest itself.

You can avoid these problems quite easily by assigning the value NIL to the handle 
variable after you dispose of its associated block. By doing so, you indicate that the 
handle does not point anywhere in particular. If you subsequently attempt to operate on 
such a block, the Memory Manager will probably generate a nilHandleErr result code. 
If you want to make certain that a handle is not disposed of before operating on a 
relocatable block, you can test whether the value of the handle is NIL, as follows:

IF myHandle <> NIL THEN

...; {handle is valid, so we can operate on it here}

Note
This test is useful only if you manually assign the value NIL to 
all disposed handles. The Memory Manager does not do that 
automatically. ◆
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Empty Handles 1

An empty handle is a handle whose master pointer has the value NIL. When the 
Memory Manager purges a relocatable block, for example, it sets the block’s master 
pointer to NIL. The space occupied by the master pointer itself remains allocated, and 
handles to the purged block continue to point to the master pointer. This is useful, 
because if you later reallocate space for the block by calling ReallocateHandle, the 
master pointer will be updated and all existing handles will correctly access the 
reallocated block.

Note
Don’t confuse empty handles with 0-length handles, which are handles 
whose associated block has a size of 0 bytes. A 0-length handle has a 
non-NIL master pointer and a block header. ◆

Once again, however, inadvertently using an empty handle can give unexpected results 
or lead to a system crash. In the Macintosh Operating System, NIL technically refers to 
memory location 0. But this memory location holds a value. If you doubly dereference an 
empty handle, you reference whatever data is found at that location, and you could 
obtain unexpected results that are difficult to trace.

You can check for empty handles much as you check for disposed handles. Assuming 
you set handles to NIL when you dispose of them, you can use the following code to 
determine whether a handle both points to a valid master pointer and references a 
nonempty relocatable block:

IF myHandle <> NIL THEN

IF myHandle^ <> NIL THEN

... {we can operate on the relocatable block here}

Note that because Pascal evaluates expressions completely, you need two IF-THEN 
statements rather than one compound statement in case the value of the handle itself is 
NIL. Most compilers, however, allow you to use “short-circuit” Boolean operators to 
minimize the evaluation of expressions. For example, if your compiler uses the operator 
& as a short-circuit operator for AND, you could rewrite the preceding code like this:

IF (myHandle <> NIL) & (myHandle^ <> NIL) THEN

... {we can operate on the relocatable block here}

In this case, the second expression is evaluated only if the first expression evaluates 
to TRUE.

Note
The availability and syntax of short-circuit Boolean operators are 
compiler dependent. Check the documentation for your development 
system to see whether you can use such operators. ◆
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It is useful during debugging to set memory location 0 to an odd number, such as 
$50FFC001. This causes the Operating System to crash immediately if you attempt to 
dereference an empty handle. This is useful, because you can immediately fix problems 
that might otherwise require extensive debugging.

Fake Handles 1

A fake handle is a handle that was not created by the Memory Manager. Normally, you 
create handles by either directly or indirectly calling the Memory Manager function 
NewHandle (or one of its variants, such as NewHandleClear). You create a fake 
handle—usually inadvertently—by directly assigning a value to a variable of type 
Handle, as illustrated in Listing 1-2.

Listing 1-2 Creating a fake handle

FUNCTION MakeFakeHandle: Handle; {DON’T USE THIS FUNCTION!}

CONST

kMemoryLoc = $100; {a random memory location}

VAR

myHandle: Handle;

myPointer: Ptr;

BEGIN

myPointer := Ptr(kMemoryLoc); {the address of some memory}

myHandle := @myPointer; {the address of a pointer}

MakeFakeHandle := myHandle;

END;

▲ W A R N I N G

The technique for creating a fake handle shown in Listing 1-2 is included 
for illustrative purposes only. Your application should never create fake 
handles. ▲

Remember that a real handle contains the address of a master pointer. The fake handle 
manufactured by the function MakeFakeHandle in Listing 1-2 contains an address that 
may or may not be the address of a master pointer. If it isn’t the address of a master 
pointer, then you virtually guarantee chaotic results if you pass the fake handle to a 
system software routine that expects a real handle.

For example, suppose you pass a fake handle to the MoveHHi procedure. After allocating 
a new relocatable block high in the heap, MoveHHi is likely to copy the data from the 
original block to the new block by dereferencing the handle and using, supposedly, a 
master pointer. Because, however, the value of a fake handle probably isn’t the address 
of a master pointer, MoveHHi copies invalid data. (Actually, it’s unlikely that MoveHHi 
would ever get that far; probably it would run into problems when attempting to 
determine the size of the original block from the block header.)
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Not all fake handles are as easy to spot as those created by the MakeFakeHandle 
function defined in Listing 1-2. You might, for instance, attempt to copy the data in an 
existing record (myRecord) into a new handle, as follows:

myHandle := NewHandle(SizeOf(myRecord)); {create a new handle}

myHandle^ := @myRecord; {DON’T DO THIS!}

The second line of code does not make myHandle a handle to the beginning of the 
myRecord record. Instead, it overwrites the master pointer with the address of that 
record, making myHandle a fake handle.

▲ W A R N I N G

Never assign a value directly to a master pointer. ▲

A correct way to create a new handle to some existing data is to make a copy of the data 
using the PtrToHand function, as follows:

myErr := PtrToHand(@myRecord, myHandle, SizeOf(myRecord));

The Memory Manager provides a set of pointer- and handle-manipulation routines that 
can help you avoid creating fake handles. See the chapter “Memory Manager” in this 
book for details on those routines.

Low-Memory Conditions 1
It is particularly important to make sure that the amount of free space in your 
application heap never gets too low. For example, you should never deplete the available 
heap memory to the point that it becomes impossible to load required code segments. As 
you have seen, your application will crash if the Segment Manager is called to load a 
required code segment and there is not enough contiguous free memory to allocate a 
block of the appropriate size.

You can take several steps to help maximize the amount of free space in your heap. For 
example, you can mark as purgeable any relocatable blocks whose contents could easily 
be reconstructed. By making a block purgeable, you give the Memory Manager the 
freedom to release that space if heap memory becomes low. You can also help maximize 
the available heap memory by intelligently segmenting your application’s executable 
code and by periodically unloading any unneeded segments. The standard way to do 
this is to unload every nonessential segment at the end of your application’s main event 
loop. (See the chapter “Segment Manager” in Inside Macintosh: Processes for a complete 
discussion of code-segmentation techniques.)

Memory Cushions 1

These two measures—making blocks purgeable and unloading segments—help you 
only by releasing blocks that have already been allocated. It is even more important to 
make sure, before you attempt to allocate memory directly, that you don’t deplete the 
available heap memory. Before you call NewHandle or NewPtr, you should check that, 
if the requested amount of memory were in fact allocated, the remaining amount of 
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space free in the heap would not fall below a certain threshold. The free memory defined 
by that threshold is your memory cushion. You should not simply inspect the handle 
or pointer returned to you and make sure that its value isn’t NIL, because you might 
have succeeded in allocating the space you requested but left the amount of free space 
dangerously low.

You also need to make sure that indirect memory allocation doesn’t cut into the memory 
cushion. When, for example, you call GetNewDialog, the Dialog Manager might need 
to allocate space for a dialog record; it also needs to allocate heap space for the dialog 
item list and any other custom items in the dialog. Before calling GetNewDialog, 
therefore, you need to make sure that the amount of space left free after the call is greater 
than your memory cushion.

The execution of some system software routines requires significant amounts of memory 
in your heap. For example, some QuickDraw operations on regions can temporarily 
allocate fairly large amounts of space in your heap. Some of these system software 
routines, however, do little or no checking to see that your heap contains the required 
amount of free space. They either assume that they will get whatever memory they need 
or they simply issue a system error when they don’t get the needed memory. In either 
case, the result is usually a system crash.

You can avoid these problems by making sure that there is always enough space in your 
heap to handle these hidden memory allocations. Experience has shown that 40 KB is a 
reasonably safe size for this memory cushion. If you can consistently maintain that 
amount of space free in your heap, you can be reasonably certain that system software 
routines will get the memory they need to operate. You also generally need a larger 
cushion (about 70 KB) when printing.

Memory Reserves 1

Unfortunately, there are times when you might need to use some of the memory in the 
cushion yourself. It is better, for instance, to dip into the memory cushion, if necessary, to 
save a user’s document than to reject the request to save the document. Some actions 
your application performs should not be rejectable simply because they require it to 
reduce the amount of free space below a desired minimum.

Instead of relying on just the free memory of a memory cushion, you can allocate a 
memory reserve, some additional emergency storage that you release when free memory 
becomes low. The important difference between this memory reserve and the memory 
cushion is that the memory reserve is a block of allocated memory, which you release 
whenever you detect that essential tasks have dipped into the memory cushion.

That emergency memory reserve might provide enough memory to compensate for any 
essential tasks that you fail to anticipate. Because you allow essential tasks to dip into the 
memory cushion, the release itself of the memory reserve should not be a cause for 
alarm. Using this scheme, your application releases the memory reserve as a 
precautionary measure during ordinary operation. Ideally, however, the application 
should never actually deplete the memory cushion and use the memory reserve.
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Grow-Zone Functions 1

The Memory Manager provides a particularly easy way for you to make sure that the 
emergency memory reserve is released when necessary. You can define a grow-zone 
function that is associated with your application heap. The Memory Manager calls your 
heap’s grow-zone function only after other techniques of freeing memory to satisfy a 
memory request fail (that is, after compacting and purging the heap and extending the 
heap zone to its maximum size). The grow-zone function can then take appropriate steps 
to free additional memory.

A grow-zone function might dispose of some blocks or make some unpurgeable blocks 
purgeable. When the function returns, the Memory Manager once again purges and 
compacts the heap and tries to reallocate memory. If there is still insufficient memory, the 
Memory Manager calls the grow-zone function again (but only if the function returned a 
nonzero value the previous time it was called). This mechanism allows your grow-zone 
function to release just a little bit of memory at a time. If the amount it releases at any 
time is not enough, the Memory Manager calls it again and gives it the opportunity to 
take more drastic measures. As the most drastic step to freeing memory in your heap, 
you can release the emergency reserve.

Using Memory 1

This section describes how you can use the Memory Manager to perform the most 
typical memory management tasks. In particular, this section shows how you can

■ set up your application heap at application launch time

■ determine how much free space is available in your application heap

■ allocate and release blocks of memory in your heap

■ define and install a grow-zone function

The techniques described in this section are designed to minimize fragmentation of your 
application heap and to ensure that your application always has sufficient memory to 
complete any essential operations. Many of these techniques incorporate the heap 
memory cushion and emergency memory reserve discussed in “Low-Memory 
Conditions,” beginning on page 1-36.

Note
This section describes relatively simple memory-management 
techniques. Depending on the requirements of your application, you 
might want to manage your heap memory differently. ◆

Setting Up the Application Heap 1
When the Process Manager launches your application, it calls the Memory Manager to 
create and initialize a memory partition for your application. The Process Manager then 
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loads code segments into memory and sets up the stack, heap, and A5 world (including 
the jump table) for your application.

To help prevent heap fragmentation, you should also perform some setup of your own 
early in your application’s execution. Depending on the needs of your application, you 
might want to

■ change the size of your application’s stack

■ expand the heap to the heap limit

■ allocate additional master pointer blocks

The following sections describe in detail how and when to perform these operations.

Changing the Size of the Stack 1

Most applications allocate space on their stack in a predictable way and do not need to 
monitor stack space during their execution. For these applications, stack usage usually 
reaches a maximum in some heavily nested routine. If the stack in your application can 
never grow beyond a certain size, then to avoid collisions between your stack and heap 
you simply need to ensure that your stack is large enough to accommodate that size. 
If you never encounter system error 28 (generated by the stack sniffer when it detects a 
collision between the stack and the heap) during application testing, then you probably 
do not need to increase the size of your stack.

Some applications, however, rely heavily on recursive programming techniques, in 
which one routine repeatedly calls itself or a small group of routines repeatedly call each 
other. In these applications, even routines with just a few local variables can cause stack 
overflow, because each time a routine calls itself, a new copy of that routine’s parameters 
and variables is appended to the stack. The problem can become particularly acute if one 
or more of the local variables is a string, which can require up to 256 bytes of stack space.

You can help prevent your application from crashing because of insufficient stack space 
by expanding the size of your stack. If your application does not depend on recursion, 
you should do this only if you encounter system error 28 during testing. If your 
application does depend on recursion, you might consider expanding the stack so that 
your application can perform deeply nested recursive computations. In addition, some 
object-oriented languages (for example, C++) allocate space for objects on the stack. If 
you are using one of these languages, you might need to expand your stack.

Note
If you are programming in LISP or another language that depends 
extensively on recursion, your development system might allocate 
memory for local variables in the heap rather than on the stack. If so, 
expanding the size of the stack is not helpful. Consult your development 
system’s documentation for details on how it allocates memory. ◆

To increase the size of your stack, you simply reduce the size of your heap. Because the 
heap cannot grow above the boundary contained in the ApplLimit global variable, you 
can lower the value of ApplLimit to limit the heap’s growth. By lowering ApplLimit, 
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technically you are not making the stack bigger; you are just preventing collisions 
between it and the heap.

By default, the stack can grow to 8 KB on Macintosh computers without Color 
QuickDraw and to 32 KB on computers with Color QuickDraw. (The size of the stack for 
a faceless background process is always 8 KB, whether Color QuickDraw is present or 
not.) You should never decrease the size of the stack, because future versions of system 
software might increase the default amount of space allocated for the stack. For the same 
reason, you should not set the stack to a predetermined absolute size or calculate a new 
absolute size for the stack based on the microprocessor’s type. If you must modify the 
size of the stack, you should increase the stack size only by some relative amount that is 
sufficient to meet the increased stack requirements of your application. There is no 
maximum size to which the stack can grow.

Listing 1-3 defines a procedure that increases the stack size by a given value. It does so 
by determining the current heap limit, subtracting the value of the extraBytes 
parameter from that value, and then setting the application limit to the difference.

Listing 1-3 Increasing the amount of space allocated for the stack

PROCEDURE IncreaseStackSize (extraBytes: Size);

BEGIN

SetApplLimit(Ptr(ORD4(GetApplLimit) - extraBytes));

END;

You should call this procedure at the beginning of your application, before you 
call the MaxApplZone procedure (as described in the next section). If you call 
IncreaseStackSize after you call MaxApplZone, it has no effect, because the 
SetApplLimit procedure cannot change the ApplLimit global variable to a value 
lower than the current top of the heap.

Note
Some compilers add to the beginning of your application some default 
initialization code that automatically calls MaxApplZone. You might 
need to specify a compiler directive that turns off such default 
initialization if you want to increase the size of the stack. Consult your 
development system’s documentation for details. ◆ 

Expanding the Heap 1

Near the beginning of your application’s execution, before you allocate any memory, 
you should call the MaxApplZone procedure to expand the application heap 
immediately to the application heap limit. If you do not do this, the Memory Manager 
gradually expands your heap as memory needs require. This gradual expansion can 
result in significant heap fragmentation if you have previously moved relocatable blocks 
to the top of the heap (by calling MoveHHi) and locked them (by calling HLock). When 
the heap grows beyond those locked blocks, they are no longer at the top of the heap. 
Your heap then remains fragmented for as long as those blocks remain locked.
1-40 Using Memory



C H A P T E R  1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
Another advantage to calling MaxApplZone is that doing so is likely to reduce the 
number of relocatable blocks that are purged by the Memory Manager. The Memory 
Manager expands your heap to fulfill a memory request only after it has exhausted other 
methods of obtaining the required amount of space, including compacting the heap and 
purging blocks marked as purgeable. By expanding the heap to its limit, you can prevent 
the Memory Manager from purging blocks that it otherwise would purge. This, together 
with the fact that your heap is expanded only once, can make memory allocation 
significantly faster.

Note
As indicated in the previous section, you should call MaxApplZone 
only after you have expanded the stack, if necessary. ◆

Allocating Master Pointer Blocks 1

After calling MaxApplZone, you should call the MoreMasters procedure to allocate as 
many new nonrelocatable blocks of master pointers as your application is likely to need 
during its execution. Each block of master pointers in your application heap contains 64 
master pointers. The Operating System allocates one block of master pointers as your 
application is loaded into memory, and every relocatable block you allocate needs one 
master pointer to reference it.

If, when you allocate a relocatable block, there are no unused master pointers in your 
application heap, the Memory Manager automatically allocates a new block of master 
pointers. For several reasons, however, you should try to prevent the Memory Manager 
from calling MoreMasters for you. First, MoreMasters executes more slowly if it has 
to move relocatable blocks up in the heap to make room for the new nonrelocatable 
block of master pointers. When your application first starts running, there are no such 
blocks that might have to be moved. Second, the new nonrelocatable block of master 
pointers is likely to fragment your application heap. At any time the Memory Manager is 
forced to call MoreMasters for you, there are already at least 64 relocatable blocks 
allocated in your heap. Unless all or most of those blocks are locked high in the heap (an 
unlikely situation), the new nonrelocatable block of master pointers might be allocated 
above existing relocatable blocks. This increases heap fragmentation.

To prevent this fragmentation, you should call MoreMasters at the beginning of your 
application enough times to ensure that the Memory Manager never needs to call it for 
you. For example, if your application never allocates more than 300 relocatable blocks in 
its heap, then five calls to the MoreMasters should be enough. It’s better to call 
MoreMasters too many times than too few, so if your application usually allocates 
about 100 relocatable blocks but sometimes might allocate 1000 in a particularly busy 
session, you should call MoreMasters enough times at the beginning of the program to 
cover the larger figure.

You can determine empirically how many times to call MoreMasters by using a 
low-level debugger. First, remove all the calls to MoreMasters from your code and then 
give your application a rigorous workout, opening and closing windows, dialog boxes, 
and desk accessories as much as any user would. Then, find out from your debugger 
how many times the system called MoreMasters. To do so, count the nonrelocatable 
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blocks of size $100 bytes (decimal 256, or 64 × 4). Because of Memory Manager size 
corrections, you should also count any nonrelocatable blocks of size $108, $10C, or 
$110 bytes. (You should also check to make sure that your application doesn’t allocate 
other nonrelocatable blocks of those sizes. If it does, subtract the number it allocates from 
the total.) Finally, call MoreMasters at least that many times at the beginning of your 
application.

Listing 1-4 illustrates a typical sequence of steps to configure your application heap 
and stack. The DoSetUpHeap procedure defined there increases the size of the stack by 
32 KB, expands the application heap to its new limit, and allocates five additional blocks 
of master pointers.

Listing 1-4 Setting up your application heap and stack

PROCEDURE DoSetUpHeap;

CONST

kExtraStackSpace = $8000; {32 KB}

kMoreMasterCalls = 5; {for 320 master ptrs}

VAR

count: Integer;

BEGIN

IncreaseStackSize(kExtraStackSpace); {increase stack size}

MaxApplZone; {extend heap to limit}

FOR count := 1 TO kMoreMasterCalls DO

MoreMasters; {64 more master ptrs}

END;

To reduce heap fragmentation, you should call DoSetUpHeap in a code segment that 
you never unload (possibly the main segment) rather than in a special initialization code 
segment. This is because MoreMasters allocates a nonrelocatable block. If you call 
MoreMasters from a code segment that is later purged, the new master pointer block is 
located above the purged space, thereby increasing fragmentation.

Determining the Amount of Free Memory 1
Because space in your heap is limited, you cannot usually honor every user request that 
would require your application to allocate memory. For example, every time the user 
opens a new window, you probably need to allocate a new window record and other 
associated data structures. If you allow the user to open windows endlessly, you risk 
running out of memory. This might adversely affect your application’s ability to perform 
important operations such as saving existing data in a window.

It is important, therefore, to implement some scheme that prevents your application 
from using too much of its own heap. One way to do this is to maintain a memory 
cushion that can be used only to satisfy essential memory requests. Before allocating 
memory for any nonessential task, you need to ensure that the amount of memory that 
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remains free after the allocation exceeds the size of your memory cushion. You can do 
this by calling the function IsMemoryAvailable defined in Listing 1-5.

Listing 1-5 Determining whether allocating memory would deplete the memory cushion

FUNCTION IsMemoryAvailable (memRequest: LongInt): Boolean;

VAR

total: LongInt; {total free memory if heap purged}

contig: LongInt; {largest contiguous block if heap purged}

BEGIN

PurgeSpace(total, contig);

IsMemoryAvailable := ((memRequest + kMemCushion) < contig);

END;

The IsMemoryAvailable function calls the Memory Manager’s PurgeSpace 
procedure to determine the size of the largest contiguous block that would be available if 
the application heap were purged; that size is returned in the contig parameter. If the 
size of the potential memory request together with the size of the memory cushion is less 
than the value returned in contig, IsMemoryAvailable is set to TRUE, indicating that 
it is safe to allocate the specified amount of memory; otherwise, IsMemoryAvailable 
returns FALSE.

Notice that the IsMemoryAvailable function does not itself cause the heap to be 
purged or compacted; the Memory Manager does so automatically when you actually 
attempt to allocate the memory.

Usually, the easiest way to determine how big to make your application’s memory 
cushion is to experiment with various values. You should attempt to find the lowest 
value that allows your application to execute successfully no matter how hard you try to 
allocate memory to make the application crash. As an extra guarantee against your 
application’s crashing, you might want to add some memory to this value. As indicated 
earlier in this chapter, 40 KB is a reasonable size for most applications.

CONST

kMemCushion = 40 * 1024; {size of memory cushion}

You should call the IsMemoryAvailable function before all nonessential memory 
requests, no matter how small. For example, suppose your application allocates a new, 
small relocatable block each time a user types a new line of text. That block might be 
small, but thousands of such blocks could take up a considerable amount of space. 
Therefore, you should check to see if there is sufficient memory available before 
allocating each one. (See Listing 1-6 on page 1-44 for an example of how to call 
IsMemoryAvailable.)

You should never, however, call the IsMemoryAvailable function before an essential 
memory request. When deciding how big to make the memory cushion for your 
application, you must make sure that essential requests can never deplete all of the 
cushion. Note that when you call the IsMemoryAvailable function for a nonessential 
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request, essential requests might have already dipped into the memory cushion. In that 
case, IsMemoryAvailable returns FALSE no matter how small the nonessential 
request is.

Some actions should never be rejectable. For example, you should guarantee that there is 
always enough memory free to save open documents, and to perform typical 
maintenance tasks such as updating windows. Other user actions are likely to be always 
rejectable. For example, because you cannot allow the user to create an endless number 
of documents, you should make the New Document and Open Document menu 
commands rejectable.

Although the decisions of which actions to make rejectable are usually obvious, modal 
and modeless boxes present special problems. If you want to make such dialog boxes 
available at all costs, you must ensure that you allocate a large enough memory cushion 
to handle the maximum number of these dialog boxes that the user could open at once. 
If you consider a certain dialog box (for instance, a spelling checker) nonessential, you 
must be prepared to inform the user that there is not enough memory to open it if 
memory space become low.

Allocating Blocks of Memory 1
As you have seen, a key element of the memory-management scheme presented in this 
chapter is to disallow any nonessential memory allocation requests that would deplete 
the memory cushion. In practice, this means that, before calling NewHandle, NewPtr, or 
another function that allocates memory, you should check that the amount of space 
remaining after the allocation, if successful, exceeds the size of the memory cushion.

An easy way to do this is never to allocate memory for nonessential tasks by calling 
NewHandle or NewPtr directly. Instead call a function such as NewHandleCushion, 
defined in Listing 1-6, or NewPtrCushion, defined in Listing 1-7.

Listing 1-6 Allocating relocatable blocks

FUNCTION NewHandleCushion (logicalSize: Size): Handle;

BEGIN

IF NOT IsMemoryAvailable(logicalSize) THEN

NewHandleCushion := NIL

ELSE

BEGIN

SetGrowZone(NIL); {remove grow-zone function}

NewHandleCushion := NewHandleClear(logicalSize);

SetGrowZone(@MyGrowZone); {install grow-zone function}

END;

END;

The NewHandleCushion function first calls IsMemoryAvailable to determine 
whether allocating the requested number of bytes would deplete the memory cushion. 
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If so, NewHandleCushion returns NIL to indicate that the request has failed. Otherwise, 
if there is indeed sufficient space for the new block, NewHandleCushion calls 
NewHandleClear to allocate the relocatable block. Before calling NewHandleClear, 
however, NewHandleCushion disables the grow-zone function for the application 
heap. This prevents the grow-zone function from releasing any emergency memory 
reserve your application might be maintaining. See “Defining a Grow-Zone Function” 
on page 1-48 for details on grow-zone functions.

You can define a function NewPtrCushion to handle allocation of nonrelocatable 
blocks, as shown in Listing 1-7.

Listing 1-7 Allocating nonrelocatable blocks

FUNCTION NewPtrCushion (logicalSize: Size): Handle;

BEGIN

IF NOT IsMemoryAvailable(logicalSize) THEN

NewPtrCushion := NIL

ELSE

BEGIN

SetGrowZone(NIL); {remove grow-zone function}

NewPtrCushion := NewPtrClear(logicalSize);

SetGrowZone(@MyGrowZone); {install grow-zone function}

END;

END;

Note
The functions NewHandleCushion and NewPtrCushion allocate 
prezeroed blocks in your application heap. You can easily modify those 
functions if you do not want the blocks prezeroed. ◆

Listing 1-8 illustrates a typical way to call NewPtrCushion.

Listing 1-8 Allocating a dialog record

FUNCTION GetDialog (dialogID: Integer): DialogPtr;

VAR

myPtr: Ptr; {storage for the dialog record}

BEGIN

myPtr := NewPtrCushion(SizeOf(DialogRecord));

IF MemError = noErr THEN

GetDialog := GetNewDialog(dialogID, myPtr, WindowPtr(-1))

ELSE

GetDialog := NIL; {can’t get memory}

END;
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When you allocate memory directly, you can later release it by calling the 
DisposeHandle and DisposePtr procedures. When you allocate memory indirectly 
by calling a Toolbox routine, there is always a corresponding Toolbox routine to release 
that memory. For example, the DisposeWindow procedure releases memory allocated 
with the NewWindow function. Be sure to use these special Toolbox routines instead of 
the generic Memory Manager routines when applicable.

Maintaining a Memory Reserve 1
A simple way to help ensure that your application always has enough memory available 
for essential operations is to maintain an emergency memory reserve. This memory 
reserve is a block of memory that your application uses only for essential operations and 
only when all other heap space has been allocated. This section illustrates one way to 
implement a memory reserve in your application.

To create and maintain an emergency memory reserve, you follow three distinct steps:

■ When your application starts up, you need to allocate a block of reserve memory. 
Because you allocate the block, it is no longer free in the heap and does not enter into 
the free-space determination done by IsMemoryAvailable.

■ When your application needs to fulfill an essential memory request and there isn’t 
enough space in your heap to satisfy the request, you can release the reserve. This 
effectively ensures that you always have the memory you request, at least for essential 
operations. You can use a grow-zone function to release the reserve when necessary; 
see “Defining a Grow-Zone Function” on page 1-48 for details.

■ Each time through your main event loop, you should check whether the reserve has 
been released. If it has, you should attempt to recover the reserve. If you cannot 
recover the reserve, you should warn the user that memory is critically short.

To refer to the emergency reserve, you can declare a global variable of type Handle.

VAR

gEmergencyMemory: Handle; {handle to emergency memory reserve}

Listing 1-9 defines a function that you can call early in your application’s execution 
(before entering your main event loop) to create an emergency memory reserve. This 
function also installs the application-defined grow-zone procedure. See “Defining a 
Grow-Zone Function” on page 1-48 for a description of the grow-zone function.

Listing 1-9 Creating an emergency memory reserve

PROCEDURE InitializeEmergencyMemory;

BEGIN

gEmergencyMemory := NewHandle(kEmergencyMemorySize);

SetGrowZone(@MyGrowZone);

END;
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The InitializeEmergencyMemory procedure defined in Listing 1-9 simply allocates 
a relocatable block of a predefined size. That block is the emergency memory reserve. 
A reasonable size for the memory reserve is whatever size you use for the memory 
cushion. Once again, 40 KB is a good size for many applications.

CONST

kEmergencyMemorySize = 40 * 1024; {size of memory reserve}

When using a memory reserve, you need to change the IsMemoryAvailable function 
defined earlier in Listing 1-5. You need to make sure, when determining whether a 
nonessential memory allocation request should be honored, that the memory reserve has 
not been released. To check that the memory reserve is intact, use the function 
IsEmergencyMemory defined in Listing 1-10.

Listing 1-10 Checking the emergency memory reserve

FUNCTION IsEmergencyMemory: Boolean;

BEGIN

IsEmergencyMemory := 

(gEmergencyMemory <> NIL) & (gEmergencyMemory^ <> NIL);

END;

Then, you can replace the function IsMemoryAvailable defined in Listing 1-5 
(page 1-43) by the version defined in Listing 1-11.

Listing 1-11 Determining whether allocating memory would deplete the memory cushion

FUNCTION IsMemoryAvailable (memRequest: LongInt): Boolean;

VAR

total: LongInt; {total free memory if heap purged}

contig: LongInt; {largest contiguous block if heap purged}

BEGIN

IF NOT IsEmergencyMemory THEN {is emergency memory available?}

IsMemoryAvailable := FALSE

ELSE

BEGIN

PurgeSpace(total, contig);

IsMemoryAvailable := ((memRequest + kMemCushion) < contig);

END;

END;

As you can see, this is exactly like the earlier version except that it indicates that memory 
is not available if the memory reserve is not intact.
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Once you have allocated the memory reserve early in your application’s execution, it 
should be released only to honor essential memory requests when there is no other space 
available in your heap. You can install a simple grow-zone function that takes care of 
releasing the reserve at the proper moment. Each time through your main event loop, 
you can check whether the reserve is still intact; to do this, add these lines of code to 
your main event loop, before you make your event call:

IF NOT IsEmergencyMemory THEN

RecoverEmergencyMemory;

The RecoverEmergencyMemory function, defined in Listing 1-12, simply attempts to 
reallocate the memory reserve. 

Listing 1-12 Reallocating the emergency memory reserve

PROCEDURE RecoverEmergencyMemory;

BEGIN

ReallocateHandle(gEmergencyMemory, kEmergencyMemorySize);

END;

If you are unable to reallocate the memory reserve, you might want to notify the user 
that because memory is in short supply, steps should be taken to save any important 
data and to free some memory.

Defining a Grow-Zone Function 1
The Memory Manager calls your heap’s grow-zone function only after other attempts to 
obtain enough memory to satisfy a memory allocation request have failed. A grow-zone 
function should be of the following form:

FUNCTION MyGrowZone (cbNeeded: Size): LongInt;

The Memory Manager passes to your function (in the cbNeeded parameter) the number 
of bytes it needs. Your function can do whatever it likes to free that much space in the 
heap. For example, your grow-zone function might dispose of certain blocks or make 
some unpurgeable blocks purgeable. Your function should return the number of bytes, if 
any, it managed to free.

When the function returns, the Memory Manager once again purges and compacts the 
heap and tries again to allocate the requested amount of memory. If there is still 
insufficient memory, the Memory Manager calls your grow-zone function again, but 
only if the function returned a nonzero value when last called. This mechanism allows 
your grow-zone function to release memory gradually; if the amount it releases is not 
enough, the Memory Manager calls it again and gives it the opportunity to take more 
drastic measures.
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Typically a grow-zone function frees space by calling the EmptyHandle procedure, 
which purges a relocatable block from the heap and sets the block’s master pointer to 
NIL. This is preferable to disposing of the space (by calling the DisposeHandle 
procedure), because you are likely to want to reallocate the block.

The Memory Manager might designate a particular relocatable block in the heap as 
protected; your grow-zone function should not move or purge that block. You can 
determine which block, if any, the Memory Manager has protected by calling the 
GZSaveHnd function in your grow-zone function.

Listing 1-13 defines a very basic grow-zone function. The MyGrowZone function 
attempts to create space in the application heap simply by releasing the block of 
emergency memory. First, however, it checks that (1) the emergency memory hasn’t 
already been released and (2) the emergency memory is not a protected block of memory 
(as it would be, for example, during an attempt to reallocate the emergency memory 
block). If either of these conditions isn’t true, then MyGrowZone returns 0 to indicate that 
no memory was released.

Listing 1-13 A grow-zone function that releases emergency storage

FUNCTION MyGrowZone (cbNeeded: Size): LongInt;

VAR

theA5: LongInt; {value of A5 when function is called}

BEGIN

theA5 := SetCurrentA5; {remember current value of A5; install ours}

IF (gEmergencyMemory^ <> NIL) & (gEmergencyMemory <> GZSaveHnd) THEN

BEGIN

EmptyHandle(gEmergencyMemory);

MyGrowZone := kEmergencyMemorySize;

END

ELSE

MyGrowZone := 0; {no more memory to release}

theA5 := SetA5(theA5); {restore previous value of A5}

END;

The function MyGrowZone defined in Listing 1-13 saves the current value of the A5 
register when it begins and then restores the previous value before it exits. This is 
necessary because your grow-zone function might be called at a time when the system is 
attempting to allocate memory and value in the A5 register is not correct. See the chapter 
“Memory Management Utilities” in this book for more information about saving and 
restoring the A5 register.

Note
You need to save and restore the A5 register only if your grow-zone 
function accesses your A5 world. (In Listing 1-13, the grow-zone 
function uses the global variable gEmergencyMemory.) ◆
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Memory Management Reference 1

This section describes the routines used to illustrate the memory-management 
techniques presented earlier in this chapter. In particular, it describes the routines that 
allow you to manipulate blocks of memory in your application heap.

Note
For a complete description of all Memory Manager data types and 
routines, see the chapter “Memory Manager” in this book. ◆

Memory Management Routines 1
This section describes the routines you can use to set up your application’s heap, allocate 
and dispose of relocatable and nonrelocatable blocks, manipulate those blocks, assess the 
availability of memory in your application’s heap, free memory from the heap, and 
install a grow-zone function for your heap.

Note
The result codes listed for Memory Manager routines are usually not 
directly returned to your application. You need to call the MemError 
function (or, from assembly language, inspect the MemErr global 
variable) to get a routine’s result code. ◆

You cannot call most Memory Manager routines at interrupt time for several reasons. 
You cannot allocate memory at interrupt time because the Memory Manager might 
already be handling a memory-allocation request and the heap might be in an 
inconsistent state. More generally, you cannot call at interrupt time any Memory 
Manager routine that returns its result code via the MemError function, even if that 
routine doesn’t allocate or move memory. Resetting the MemErr global variable at 
interrupt time can lead to unexpected results if the interrupted code depends on the 
value of MemErr. Note that Memory Manager routines like HLock return their results 
via MemError and therefore should not be called in interrupt code.

Setting Up the Application Heap 1

The Operating System automatically initializes your application’s heap when your 
application is launched. To help prevent heap fragmentation, you should call the 
procedures in this section before you allocate any blocks of memory in your heap.

Use the MaxApplZone procedure to extend the application heap zone to the application 
heap limit so that the Memory Manager does not do so gradually as memory requests 
require. Use the MoreMasters procedure to preallocate enough blocks of master 
pointers so that the Memory Manager never needs to allocate new master pointer blocks 
for you.
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MaxApplZone 1

To help ensure that you can use as much of the application heap zone as possible, call the 
MaxApplZone procedure. Call this once near the beginning of your program, after you 
have expanded your stack.

PROCEDURE MaxApplZone;

DESCRIPTION

The MaxApplZone procedure expands the application heap zone to the application heap 
limit. If you do not call MaxApplZone, the application heap zone grows as necessary to 
fulfill memory requests. The MaxApplZone procedure does not purge any blocks 
currently in the zone. If the zone already extends to the limit, MaxApplZone does 
nothing.

It is a good idea to call MaxApplZone once at the beginning of your program if you 
intend to maintain an effectively partitioned heap. If you do not call MaxApplZone and 
then call MoveHHi to move relocatable blocks to the top of the heap zone before locking 
them, the heap zone could later grow beyond these locked blocks to fulfill a memory 
request. If the Memory Manager were to allocate a nonrelocatable block in this new 
space, your heap would be fragmented.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for MaxApplZone are

RESULT CODES

MoreMasters 1

Call the MoreMasters procedure several times at the beginning of your program to 
prevent the Memory Manager from running out of master pointers in the middle of 
application execution. If it does run out, it allocates more, possibly causing heap 
fragmentation.

PROCEDURE MoreMasters;

Registers on exit

D0 Result code

noErr 0 No error
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DESCRIPTION

The MoreMasters procedure allocates another block of master pointers in the current 
heap zone. In the application heap, a block of master pointers consists of 64 master 
pointers, and in the system heap, a block consists of 32 master pointers. (These values, 
however, might change in future versions of system software.) When you initialize 
additional heap zones, you can specify the number of master pointers you want to have 
in a block of master pointers.

The Memory Manager automatically calls MoreMasters once for every new heap zone, 
including the application heap zone.

You should call MoreMasters at the beginning of your program enough times to ensure 
that the Memory Manager never needs to call it for you. For example, if your application 
never allocates more than 300 relocatable blocks in its heap zone, then five calls to the 
MoreMasters should be enough. It’s better to call MoreMasters too many times than 
too few. For instance, if your application usually allocates about 100 relocatable blocks 
but might allocate 1000 in a particularly busy session, call MoreMasters enough times 
at the beginning of the program to accommodate times of greater memory use.

If you are forced to call MoreMasters so many times that it causes a significant 
slowdown, you could change the moreMast field of the zone header to the total number 
of master pointers you need and then call MoreMasters just once. Afterward, be sure to 
restore the moreMast field to its original value.

SPECIAL CONSIDERATIONS

Because MoreMasters allocates memory, you should not call it at interrupt time.

The calls to MoreMasters at the beginning of your application should be in the main 
code segment of your application or in a segment that the main segment never unloads.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for MoreMasters are

RESULT CODES

Registers on exit

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory
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GetApplLimit 1

Use the GetApplLimit function to get the application heap limit, beyond which the 
application heap cannot expand.

FUNCTION GetApplLimit: Ptr;

DESCRIPTION

The GetApplLimit function returns the current application heap limit. The Memory 
Manager expands the application heap only up to the byte preceding this limit.

Nothing prevents the stack from growing below the application limit. If the Operating 
System detects that the stack has crashed into the heap, it generates a system error. To 
avoid this, use GetApplLimit and the SetApplLimit procedure to set the application 
limit low enough so that a growing stack does not encounter the heap.

Note
The GetApplLimit function does not indicate the amount of memory 
available to your application. ◆

ASSEMBLY-LANGUAGE INFORMATION

The global variable ApplLimit contains the current application heap limit.

SetApplLimit 1

Use the SetApplLimit procedure to set the application heap limit, beyond which the 
application heap cannot expand.

PROCEDURE SetApplLimit (zoneLimit: Ptr);

zoneLimit A pointer to a byte in memory demarcating the upper boundary of the 
application heap zone. The zone can grow to include the byte preceding 
zoneLimit in memory, but no further.

DESCRIPTION

The SetApplLimit procedure sets the current application heap limit to zoneLimit. 
The Memory Manager then can expand the application heap only up to the byte 
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preceding the application limit. If the zone already extends beyond the specified limit, 
the Memory Manager does not cut it back but does prevent it from growing further.

Note
The zoneLimit parameter is not a byte count, but an absolute byte in 
memory. Thus, you should use the SetApplLimit procedure only with 
a value obtained from the Memory Manager functions GetApplLimit 
or ApplicationZone. ◆

You cannot change the limit of zones other than the application heap zone.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for SetApplLimit are

RESULT CODES

SEE ALSO

To use SetApplLimit to expand the default size of the stack, see the discussion in 
“Changing the Size of the Stack” on page 1-39.

Allocating and Releasing Relocatable Blocks of Memory 1

You can use the NewHandle function to allocate a relocatable block of memory. If you 
want to allocate new blocks of memory with their bits precleared to 0, you can use the 
NewHandleClear function.

▲ W A R N I N G

You should not call any of these memory-allocation routines at 
interrupt time. ▲

You can use the DisposeHandle procedure to free relocatable blocks of memory you 
have allocated.

Registers on entry

A0 Pointer to desired new zone limit

Registers on exit

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory
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NewHandle 1

You can use the NewHandle function to allocate a relocatable memory block of a 
specified size.

FUNCTION NewHandle (logicalSize: Size): Handle;

logicalSize
The requested size (in bytes) of the relocatable block.

DESCRIPTION

The NewHandle function attempts to allocate a new relocatable block in the current heap 
zone with a logical size of logicalSize bytes and then return a handle to the block. 
The new block is unlocked and unpurgeable. If NewHandle cannot allocate a block of 
the requested size, it returns NIL.

▲ W A R N I N G

Do not try to manufacture your own handles without this function by 
simply assigning the address of a variable of type Ptr to a variable of 
type Handle. The resulting “fake handle” would not reference a 
relocatable block and could cause a system crash. ▲

The NewHandle function pursues all available avenues to create a block of the requested 
size, including compacting the heap zone, increasing its size, and purging blocks from it. 
If all of these techniques fail and the heap zone has a grow-zone function installed, 
NewHandle calls the function. Then NewHandle tries again to free the necessary amount 
of memory, once more compacting and purging the heap zone if necessary. If memory 
still cannot be allocated, NewHandle calls the grow-zone function again, unless that 
function had returned 0, in which case NewHandle gives up and returns NIL.

SPECIAL CONSIDERATIONS

Because NewHandle allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for NewHandle are

Registers on entry

A0 Number of logical bytes requested

Registers on exit

A0 Address of the new block’s master pointer or NIL

D0 Result code
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If you want to clear the bytes of a block of memory to 0 when you allocate it with the 
NewHandle function, set bit 9 of the routine trap word. You can usually do this by 
supplying the word CLEAR as the second argument to the routine macro, as follows:

_NewHandle ,CLEAR

RESULT CODES

SEE ALSO

If you allocate a relocatable block that you plan to lock for long periods of time, you can 
prevent heap fragmentation by allocating the block as low as possible in the heap zone. 
To do this, see the description of the ReserveMem procedure on page 1-70.

If you plan to lock a relocatable block for short periods of time, you might want to move 
it to the top of the heap zone to prevent heap fragmentation. For more information, see 
the description of the MoveHHi procedure on page 1-71.

NewHandleClear 1

You can use the NewHandleClear function to allocate prezeroed memory in a 
relocatable block of a specified size.

FUNCTION NewHandleClear (logicalSize: Size): Handle;

logicalSize
The requested size (in bytes) of the relocatable block. The 
NewHandleClear function sets each of these bytes to 0.

DESCRIPTION

The NewHandleClear function works much as the NewHandle function does but sets 
all bytes in the new block to 0 instead of leaving the contents of the block undefined.

Currently, NewHandleClear clears the block one byte at a time. For a large block, it 
might be faster to clear the block manually a long word at a time.

RESULT CODES

noErr 0 No error
memFullErr –108 Not enough memory in heap zone

noErr 0 No error
memFullErr –108 Not enough memory in heap zone
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DisposeHandle 1

When you are completely done with a relocatable block, call the DisposeHandle 
procedure to free it and its master pointer for other uses.

PROCEDURE DisposeHandle (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The DisposeHandle procedure releases the memory occupied by the relocatable block 
whose handle is h. It also frees the handle’s master pointer for other uses.

▲ W A R N I N G

After a call to DisposeHandle, all handles to the released block 
become invalid and should not be used again. Any subsequent calls to 
DisposeHandle using an invalid handle might damage the master 
pointer list. ▲

Do not use DisposeHandle to dispose of a handle obtained from the Resource 
Manager (for example, by a previous call to GetResource); use ReleaseResource 
instead. If, however, you have called DetachResource on a resource handle, you 
should dispose of the storage by calling DisposeHandle.

SPECIAL CONSIDERATIONS

Because DisposeHandle purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for DisposeHandle are

RESULT CODES

Registers on entry

A0 Handle to the relocatable block to be disposed of

Registers on exit

D0 Result code

noErr 0 No error
memWZErr –111 Attempt to operate on a free block
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Allocating and Releasing Nonrelocatable Blocks of Memory 1

You can use the NewPtr function to allocate a nonrelocatable block of memory. If you 
want to allocate new blocks of memory with their bits precleared to 0, you can use the 
NewPtrClear function.

▲ W A R N I N G

You should not call any of these memory-allocation routines at 
interrupt time. ▲

You can use the DisposePtr procedure to free nonrelocatable blocks of memory you 
have allocated.

NewPtr 1

You can use the NewPtr function to allocate a nonrelocatable block of memory of a 
specified size.

FUNCTION NewPtr (logicalSize: Size): Ptr;

logicalSize
The requested size (in bytes) of the nonrelocatable block.

DESCRIPTION

The NewPtr function attempts to allocate, in the current heap zone, a nonrelocatable 
block with a logical size of logicalSize bytes and then return a pointer to the block. If 
the requested number of bytes cannot be allocated, NewPtr returns NIL.

The NewPtr function attempts to reserve space as low in the heap zone as possible for 
the new block. If it is able to reserve the requested amount of space, NewPtr allocates the 
nonrelocatable block in the gap ReserveMem creates. Otherwise, NewPtr returns NIL 
and generates a memFullErr error.

SPECIAL CONSIDERATIONS

Because NewPtr allocates memory, you should not call it at interrupt time.
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ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for NewPtr are

If you want to clear the bytes of a block of memory to 0 when you allocate it with the 
NewPtr function, set bit 9 of the routine trap word. You can usually do this by supplying 
the word CLEAR as the second argument to the routine macro, as follows:

_NewPtr ,CLEAR

RESULT CODES

NewPtrClear 1

You can use the NewPtrClear function to allocate prezeroed memory in a 
nonrelocatable block of a specified size.

FUNCTION NewPtrClear (logicalSize: Size): Ptr;

logicalSize
The requested size (in bytes) of the nonrelocatable block.

DESCRIPTION

The NewPtrClear function works much as the NewPtr function does, but sets all bytes 
in the new block to 0 instead of leaving the contents of the block undefined.

Currently, NewPtrClear clears the block one byte at a time. For a large block, it might 
be faster to clear the block manually a long word at a time.

RESULT CODES

Registers on entry

A0 Number of logical bytes requested

Registers on exit

A0 Address of the new block or NIL

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory

noErr 0 No error
memFullErr –108 Not enough memory
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DisposePtr 1

When you are completely done with a nonrelocatable block, call the DisposePtr 
procedure to free it for other uses.

PROCEDURE DisposePtr (p: Ptr);

p A pointer to the nonrelocatable block you want to dispose of.

DESCRIPTION

The DisposePtr procedure releases the memory occupied by the nonrelocatable block 
specified by p.

▲ W A R N I N G

After a call to DisposePtr, all pointers to the released block become 
invalid and should not be used again. Any subsequent use of a pointer 
to the released block might cause a system error. ▲

SPECIAL CONSIDERATIONS

Because DisposePtr purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for DisposePtr are

RESULT CODES

Setting the Properties of Relocatable Blocks 1

A relocatable block can be either locked or unlocked and either purgeable or 
unpurgeable. In addition, it can have its resource bit either set or cleared. To determine 
the state of any of these properties, use the HGetState function. To change these 

Registers on entry

A0 Pointer to the nonrelocatable block to be disposed of

Registers on exit

D0 Result code

noErr 0 No error
memWZErr –111 Attempt to operate on a free block
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properties, use the HLock, HUnlock, HPurge, HNoPurge, HSetRBit, and HClrRBit 
procedures. To restore these properties, use the HSetState procedure.

▲ W A R N I N G

Be sure to use these procedures to get and set the properties of 
relocatable blocks. In particular, do not rely on the structure of master 
pointers, because their structure in 24-bit mode is different from their 
structure in 32-bit mode. ▲

HGetState 1

You can use the HGetState function to get the current properties of a relocatable block 
(perhaps so that you can change and then later restore those properties).

FUNCTION HGetState (h: Handle): SignedByte;

h A handle to a relocatable block.

DESCRIPTION

The HGetState function returns a signed byte containing the flags of the master pointer 
for the given handle. You can save this byte, change the state of any of the flags, and 
then restore their original states by passing the byte to the HSetState procedure, 
described next.

You can use bit-manipulation functions on the returned signed byte to determine the 
value of a given attribute. Currently the following bits are used:

If an error occurs during an attempt to get the state flags of the specified relocatable 
block, HGetState returns the low-order byte of the result code as its function result. For 
example, if the handle h points to a master pointer whose value is NIL, then the signed 
byte returned by HGetState will contain the value –109.

Bit Meaning

0–4 Reserved

5 Set if relocatable block is a resource

6 Set if relocatable block is purgeable

7 Set if relocatable block is locked
Memory Management Reference 1-61



C H A P T E R  1

Introduction to Memory Management
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HGetState are 

RESULT CODES

HSetState 1

You can use the HSetState procedure to restore properties of a block after a call to 
HGetState.

PROCEDURE HSetState (h: Handle; flags: SignedByte);

h A handle to a relocatable block.

flags A signed byte specifying the properties to which you want to set the 
relocatable block.

DESCRIPTION

The HSetState procedure restores to the handle h the properties specified in the flags 
signed byte. See the description of the HGetState function for a list of the currently 
used bits in that byte. Because additional bits of the flags byte could become significant 
in future versions of system software, use HSetState only with a byte returned by 
HGetState. If you need to set two or three properties of a relocatable block at once, it is 
better to use the procedures that set individual properties than to manipulate the bits 
returned by HGetState and then call HSetState.

Registers on entry

A0 Handle whose properties you want to get

Registers on exit

D0 Byte containing flags

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
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ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HSetState are

RESULT CODES

HLock 1

You can use the HLock procedure to lock a relocatable block so that it does not move in 
the heap. If you plan to dereference a handle and then allocate, move, or purge memory 
(or call a routine that does so), then you should lock the handle before using the 
dereferenced handle.

PROCEDURE HLock (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HLock procedure locks the relocatable block to which h is a handle, preventing it 
from being moved within its heap zone. If the block is already locked, HLock does 
nothing.

Registers on entry

A0 Handle whose properties you want to set

D0 Byte containing flags indicating the handle’s new properties

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
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ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HLock are

RESULT CODES

SEE ALSO

If you plan to lock a relocatable block for long periods of time, you can prevent 
fragmentation by ensuring that the block is as low as possible in the heap zone. To do 
this, see the description of the ReserveMem procedure on page 1-70.

If you plan to lock a relocatable block for short periods of time, you can prevent heap 
fragmentation by moving the block to the top of the heap zone before locking. For more 
information, see the description of the MoveHHi procedure on page 1-71.

HUnlock 1

You can use the HUnlock procedure to unlock a relocatable block so that it is free to 
move in its heap zone.

PROCEDURE HUnlock (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HUnlock procedure unlocks the relocatable block to which h is a handle, allowing it 
to be moved within its heap zone. If the block is already unlocked, HUnlock does 
nothing.

Registers on entry

A0 Handle to lock

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
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ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HUnlock are

RESULT CODES

HPurge 1

You can use the HPurge procedure to mark a relocatable block so that it can be purged if 
a memory request cannot be fulfilled after compaction.

PROCEDURE HPurge (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HPurge procedure makes the relocatable block to which h is a handle purgeable. If 
the block is already purgeable, HPurge does nothing.

The Memory Manager might purge the block when it needs to purge the heap zone 
containing the block to satisfy a memory request. A direct call to the PurgeMem 
procedure or the MaxMem function would also purge blocks marked as purgeable.

Once you mark a relocatable block as purgeable, you should make sure that handles to 
the block are not empty before you access the block. If they are empty, you must 
reallocate space for the block and recopy the block’s data from another source, such as a 
resource file, before using the information in the block.

If the block to which h is a handle is locked, HPurge does not unlock the block but does 
mark it as purgeable. If you later call HUnlock on h, the block is subject to purging.

Registers on entry

A0 Handle to unlock

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
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ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HPurge are

RESULT CODES

SEE ALSO

If the Memory Manager has purged a block, you can reallocate space for it by using the 
ReallocateHandle procedure, described on page 1-68.

You can immediately free the space taken by a handle without disposing of it by calling 
EmptyHandle. This procedure, described on page 1-67, does not require that the block 
be purgeable.

HNoPurge 1

You can use the HNoPurge procedure to mark a relocatable block so that it cannot be 
purged.

PROCEDURE HNoPurge (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HNoPurge procedure makes the relocatable block to which h is a handle 
unpurgeable. If the block is already unpurgeable, HNoPurge does nothing.

The HNoPurge procedure does not reallocate memory for a handle if it has already 
been purged.

Registers on entry

A0 Handle to make purgeable

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
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ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HNoPurge are

RESULT CODES

SEE ALSO

If you want to reallocate memory for a relocatable block that has already been purged, 
you can use the ReallocateHandle procedure, described in the next section, 
“Managing Relocatable Blocks.”

Managing Relocatable Blocks 1

The Memory Manager provides routines that allow you to purge and later reallocate 
space for relocatable blocks and control where in their heap zone relocatable blocks are 
located.

To free the memory taken up by a relocatable block without releasing the master pointer 
to the block for other uses, use the EmptyHandle procedure. To reallocate space for a 
handle that you have emptied or the Memory Manager has purged, use the 
ReallocateHandle procedure.

To ensure that a relocatable block that you plan to lock for short or long periods of time 
does not cause heap fragmentation, use the MoveHHi and the ReserveMem procedures, 
respectively. 

EmptyHandle 1

The EmptyHandle procedure allows you to free memory taken by a relocatable block 
without freeing the relocatable block’s master pointer for other uses.

PROCEDURE EmptyHandle (h: Handle);

h A handle to a relocatable block.

Registers on entry

A0 Handle to make unpurgeable

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
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DESCRIPTION

The EmptyHandle procedure purges the relocatable block whose handle is h and sets 
the handle’s master pointer to NIL. The block whose handle is h must be unlocked but 
need not be purgeable.

Note
If there are multiple handles to the relocatable block, then calling 
the EmptyHandle procedure empties them all, because all of the 
handles share a common master pointer. When you later use 
ReallocateHandle to reallocate space for the block, the master 
pointer is updated, and all of the handles reference the new block 
correctly. ◆

SPECIAL CONSIDERATIONS

Because EmptyHandle purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for EmptyHandle are

RESULT CODES

SEE ALSO

To free the memory taken up by a relocatable block and release the block’s master 
pointer for other uses, use the DisposeHandle procedure, described on page 1-57.

ReallocateHandle 1

To recover space for a relocatable block that you have emptied or the Memory Manager 
has purged, use the ReallocateHandle procedure.

PROCEDURE ReallocateHandle (h: Handle; logicalSize: Size);

Registers on entry

A0 Handle to relocatable block

Registers on exit

A0 Handle to relocatable block

D0 Result code

noErr 0 No error
memWZErr –111 Attempt to operate on a free block
memPurErr –112 Attempt to purge a locked block
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h A handle to a relocatable block.

logicalSize
The desired new logical size (in bytes) of the relocatable block.

DESCRIPTION

The ReallocateHandle procedure allocates a new relocatable block with a logical size 
of logicalSize bytes. It updates the handle h by setting its master pointer to point to 
the new block. The new block is unlocked and unpurgeable.

Usually you use ReallocateHandle to reallocate space for a block that you have 
emptied or the Memory Manager has purged. If the handle references an existing block, 
ReallocateHandle releases that block before creating a new one.

Note
To reallocate space for a resource that has been purged, you should call 
LoadResource, not ReallocateHandle. ◆

If many handles reference a single purged, relocatable block, you need to call 
ReallocateHandle on just one of them.

In case of an error, ReallocateHandle neither allocates a new block nor changes the 
master pointer to which handle h points.

SPECIAL CONSIDERATIONS

Because ReallocateHandle might purge and allocate memory, you should not call it 
at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for ReallocateHandle are

RESULT CODES

Registers on entry

A0 Handle for new relocatable block

D0 Desired logical size, in bytes, of new block

Registers on exit

D0 Result code

noErr 0 No error
memROZErr –99 Heap zone is read-only
memFullErr –108 Not enough memory
memWZErr –111 Attempt to operate on a free block
memPurErr –112 Attempt to purge a locked block
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ReserveMem 1

Use the ReserveMem procedure when you allocate a relocatable block that you intend to 
lock for long periods of time. This helps prevent heap fragmentation because it reserves 
space for the block as close to the bottom of the heap as possible. Consistent use of 
ReserveMem for this purpose ensures that all locked, relocatable blocks and 
nonrelocatable blocks are together at the bottom of the heap zone and thus do not 
prevent unlocked relocatable blocks from moving about the zone.

PROCEDURE ReserveMem (cbNeeded: Size);

cbNeeded The number of bytes to reserve near the bottom of the heap.

DESCRIPTION

The ReserveMem procedure attempts to create free space for a block of cbNeeded 
contiguous logical bytes at the lowest possible position in the current heap zone. It 
pursues every available means of placing the block as close as possible to the bottom of 
the zone, including moving other relocatable blocks upward, expanding the zone (if 
possible), and purging blocks from it.

Because ReserveMem does not actually allocate the block, you must combine calls to 
ReserveMem with calls to the NewHandle function.

Do not use the ReserveMem procedure for a relocatable block you intend to lock for 
only a short period of time. If you do so and then allocate a nonrelocatable block above 
it, the relocatable block becomes trapped under the nonrelocatable block when you 
unlock that relocatable block.

Note
It isn’t necessary to call ReserveMem to reserve space for a 
nonrelocatable block, because the NewPtr function calls it automatically. 
Also, you do not need to call ReserveMem to reserve memory before 
you load a locked resource into memory, because the Resource Manager 
calls ReserveMem automatically. ◆

SPECIAL CONSIDERATIONS

Because the ReserveMem procedure could move and purge memory, you should not call 
it at interrupt time.
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ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for ReserveMem are

RESULT CODES

MoveHHi 1

If you plan to lock a relocatable block for a short period of time, use the MoveHHi 
procedure, which moves the block to the top of the heap and thus helps prevent heap 
fragmentation.

PROCEDURE MoveHHi (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The MoveHHi procedure attempts to move the relocatable block referenced by the handle 
h upward until it reaches a nonrelocatable block, a locked relocatable block, or the top of 
the heap.

▲ W A R N I N G

If you call MoveHHi to move a handle to a resource that has its 
resChanged bit set, the Resource Manager updates the resource by 
using the WriteResource procedure to write the contents of the block 
to disk. If you want to avoid this behavior, call the Resource Manager 
procedure SetResPurge(FALSE) before you call MoveHHi, and then 
call SetResPurge(TRUE) to restore the default setting. ▲

By using the MoveHHi procedure on relocatable blocks you plan to allocate for short 
periods of time, you help prevent islands of immovable memory from accumulating in 
(and thus fragmenting) the heap.

Registers on entry

D0 Number of bytes to reserve

Registers on exit

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory
Memory Management Reference 1-71



C H A P T E R  1

Introduction to Memory Management
Do not use the MoveHHi procedure to move blocks you plan to lock for long periods of 
time. The MoveHHi procedure moves such blocks to the top of the heap, perhaps 
preventing other blocks already at the top of the heap from moving down once they are 
unlocked. Instead, use the ReserveMem procedure before allocating such blocks, thus 
keeping them in the bottom partition of the heap, where they do not prevent relocatable 
blocks from moving.

If you frequently lock a block for short periods of time and find that calling MoveHHi 
each time slows down your application, you might consider leaving the block always 
locked and calling the ReserveMem procedure before allocating it.

Once you move a block to the top of the heap, be sure to lock it if you do not want the 
Memory Manager to move it back to the middle partition as soon as it can. (The 
MoveHHi procedure cannot move locked blocks; be sure to lock blocks after, not before, 
calling MoveHHi.)

Note
Using the MoveHHi procedure without taking other precautionary 
measures to prevent heap fragmentation is useless, because even one 
small nonrelocatable or locked relocatable block in the middle of the 
heap might prevent MoveHHi from moving blocks to the top of 
the heap. ◆

SPECIAL CONSIDERATIONS

Because the MoveHHi procedure moves memory, you should not call it at interrupt time.

Don’t call MoveHHi on blocks in the system heap. Don’t call MoveHHi from a desk 
accessory.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for MoveHHi are 

RESULT CODES

Registers on entry

A0 Handle to move

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memLockedErr –117 Block is locked
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HLockHi 1

You can use the HLockHi procedure to move a relocatable block to the top of the heap 
and lock it.

PROCEDURE HLockHi (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HLockHi procedure attempts to move the relocatable block referenced by the handle 
h upward until it reaches a nonrelocatable block, a locked relocatable block, or the top of 
the heap. Then HLockHi locks the block.

The HLockHi procedure is simply a convenient replacement for the pair of procedures 
MoveHHi and HLock.

SPECIAL CONSIDERATIONS

Because the HLockHi procedure moves memory, you should not call it at interrupt time.

Don’t call HLockHi on blocks in the system heap. Don’t call HLockHi from a desk 
accessory.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HLockHi are

RESULT CODES

Manipulating Blocks of Memory 1

The Memory Manager provides a routine for copying blocks of memory referenced by 
pointers. To copy a block of memory to a nonrelocatable block, you can use the 
BlockMove procedure.

Registers on entry

A0 Handle to move and lock

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
memLockedErr –117 Block is locked
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BlockMove 1

To copy a sequence of bytes from one location in memory to another, you can use the 
BlockMove procedure.

PROCEDURE BlockMove (sourcePtr, destPtr: Ptr; byteCount: Size);

sourcePtr The address of the first byte to copy.

destPtr The address of the first byte to copy to.

byteCount The number of bytes to copy. If the value of byteCount is 0, BlockMove 
does nothing.

DESCRIPTION

The BlockMove procedure moves a block of byteCount consecutive bytes from the 
address designated by sourcePtr to that designated by destPtr. It updates no 
pointers.

The BlockMove procedure works correctly even if the source and destination blocks 
overlap.

SPECIAL CONSIDERATIONS

You can safely call BlockMove at interrupt time. Even though it moves memory, 
BlockMove does not move relocatable blocks, but simply copies bytes.

The BlockMove procedure currently flushes the processor caches whenever the number 
of bytes to be moved is greater than 12. This behavior can adversely affect your 
application’s performance. You might want to avoid calling BlockMove to move small 
amounts of data in memory if there is no possibility of moving stale data or instructions. 
For more information about stale data and instructions, see the discussion of the 
processor caches in the chapter “Memory Management Utilities” in this book.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for BlockMove are

Registers on entry

A0 Pointer to source

A1 Pointer to destination

D0 Number of bytes to copy

Registers on exit

D0 Result code
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RESULT CODE

Assessing Memory Conditions 1

The Memory Manager provides routines to test how much memory is available. To 
determine the total amount of free space in the current heap zone or the size of the 
maximum block that could be obtained after a purge of the heap, call the PurgeSpace 
function.

To find out whether a Memory Manager operation finished successfully, use the 
MemError function.

PurgeSpace 1

Use the PurgeSpace procedure to determine the total amount of free memory and the 
size of the largest allocatable block after a purge of the heap.

PROCEDURE PurgeSpace (VAR total: LongInt; VAR contig: LongInt);

total On exit, the total amount of free memory in the current heap zone if it 
were purged.

contig On exit, the size of the largest contiguous block of free memory in the 
current heap zone if it were purged.

DESCRIPTION

The PurgeSpace procedure returns, in the total parameter, the total amount of space 
(in bytes) that could be obtained after a general purge of the current heap zone; this 
amount includes space that is already free. In the contig parameter, PurgeSpace 
returns the size of the largest allocatable block in the current heap zone that could be 
obtained after a purge of the zone.

The PurgeSpace procedure does not actually purge the current heap zone.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for PurgeSpace are

RESULT CODES

noErr 0 No error

Registers on exit

A0 Maximum number of contiguous bytes after purge

D0 Total free memory after purge

noErr  0 No error
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MemError 1

To find out whether your application’s last direct call to a Memory Manager routine 
executed successfully, use the MemError function.

FUNCTION MemError: OSErr;

DESCRIPTION

The MemError function returns the result code produced by the last Memory Manager 
routine your application called directly.

This function is useful during application debugging. You might also use the function as 
one part of a memory-management scheme to identify instances in which the Memory 
Manager rejects overly large memory requests by returning the error code memFullErr.

▲ W A R N I N G

Do not rely on the MemError function as the only component of a 
memory-management scheme. For example, suppose you call 
NewHandle or NewPtr and receive the result code noErr, indicating 
that the Memory Manager was able to allocate sufficient memory. In this 
case, you have no guarantee that the allocation did not deplete your 
application’s memory reserves to levels so low that simple operations 
might cause your application to crash. Instead of relying on MemError, 
check before making a memory request that there is enough memory 
both to fulfill the request and to support essential operations. ▲

ASSEMBLY-LANGUAGE INFORMATION

Because most Memory Manager routines return a result code in register D0, you do not 
ordinarily need to call the MemError function if you program in assembly language. See 
the description of an individual routine to find out whether it returns a result code in 
register D0. If not, you can examine the global variable MemErr. When MemError 
returns, register D0 contains the result code.

RESULT CODES

Registers on exit

D0 Result code

noErr 0 No error
paramErr –50 Error in parameter list
memROZErr –99 Operation on a read-only zone
memFullErr –108 Not enough memory
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
memPurErr –112 Attempt to purge a locked block
memBCErr –115 Block check failed
memLockedErr –117 Block is locked
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Grow-Zone Operations 1

You can implement a grow-zone function that the Memory Manager calls when it cannot 
fulfill a memory request. You should use the grow-zone function only as a last resort to 
free memory when all else fails.

The SetGrowZone procedure specifies which function the Memory Manager should use 
for the current zone. The grow-zone function should call the GZSaveHnd function to 
receive a handle to a relocatable block that the grow-zone function must not move 
or purge.

SetGrowZone 1

To specify a grow-zone function for the current heap zone, pass a pointer to that function 
to the SetGrowZone procedure. Ordinarily, you call this procedure early in the 
execution of your application.

If you initialize your own heap zones besides the application and system zones, you can 
alternatively specify a grow-zone function as a parameter to the InitZone procedure.

PROCEDURE SetGrowZone (growZone: ProcPtr);

growZone A pointer to the grow-zone function.

DESCRIPTION

The SetGrowZone procedure sets the current heap zone’s grow-zone function as 
designated by the growZone parameter. A NIL parameter value removes any grow-zone 
function the zone might previously have had.

The Memory Manager calls the grow-zone function only after exhausting all other 
avenues of satisfying a memory request, including compacting the zone, increasing its 
size (if it is the original application zone and is not yet at its maximum size), and purging 
blocks from it.

See “Grow-Zone Functions” on page 1-80 for a complete description of a grow-zone 
function.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for SetGrowZone are

Registers on entry

A0 Pointer to new grow-zone function

Registers on exit

D0 Result code
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RESULT CODES

SEE ALSO

See “Defining a Grow-Zone Function” on page 1-48 for a description of a grow-zone 
function.

GZSaveHnd 1

Your grow-zone function must call the GZSaveHnd function to obtain a handle to a 
protected relocatable block that the grow-zone function must not move, purge, or delete.

FUNCTION GZSaveHnd: Handle;

DESCRIPTION

The GZSaveHnd function returns a handle to a relocatable block that the grow-zone 
function must not move, purge, or delete. It returns NIL if there is no such block. The 
returned handle is a handle to the block of memory being manipulated by the Memory 
Manager at the time that the grow-zone function is called.

ASSEMBLY-LANGUAGE INFORMATION

You can find the same handle in the global variable GZRootHnd.

Setting and Restoring the A5 Register 1

Any code that runs asynchronously or as a callback routine and that accesses the calling 
application’s A5 world must ensure that the A5 register correctly points to the boundary 
between the application parameters and the application global variables. To accomplish 
this, you can call the SetCurrentA5 function at the beginning of any asynchronous or 
callback code that isn’t executed at interrupt time. If the code is executed at interrupt 
time, you must use the SetA5 function to set the value of the A5 register. (You determine 
this value at noninterrupt time by calling SetCurrentA5.) Then you must restore the 
A5 register to its previous value before the interrupt code returns.

noErr 0 No error
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SetCurrentA5 1

You can use the SetCurrentA5 function to get the current value of the system global 
variable CurrentA5.

FUNCTION SetCurrentA5: LongInt;

DESCRIPTION

The SetCurrentA5 function does two things: First, it gets the current value in the 
A5 register and returns it to your application. Second, SetCurrentA5 sets register A5 to 
the value of the low-memory global variable CurrentA5. This variable points to the 
boundary between the parameters and global variables of the current application.

SPECIAL CONSIDERATIONS

You cannot reliably call SetCurrentA5 in code that is executed at interrupt time unless 
you first guarantee that your application is the current process (for example, by calling 
the Process Manager function GetCurrentProcess). In general, you should call 
SetCurrentA5 at noninterrupt time and then pass the returned value to the 
interrupt code.

ASSEMBLY-LANGUAGE INFORMATION

You can access the value of the current application’s A5 register with the low-memory 
global variable CurrentA5.

SetA5 1

In interrupt code that accesses application global variables, use the SetA5 function first 
to restore a value previously saved using SetCurrentA5, and then, at the end of the 
code, to restore the A5 register to the value it had before the first call to SetA5.

FUNCTION SetA5 (newA5: LongInt): LongInt;

newA5 The value to which the A5 register is to be changed.

DESCRIPTION

The SetA5 function performs two tasks: it returns the address in the A5 register when 
the function is called, and it sets the A5 register to the address specified in newA5.
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Application-Defined Routines 1
The techniques illustrated in this chapter use only one application-defined routine, a 
grow-zone function.

Grow-Zone Functions 1

The Memory Manager calls your application’s grow-zone function whenever it cannot 
find enough contiguous memory to satisfy a memory allocation request and has 
exhausted other means of obtaining the space.

MyGrowZone 1

A grow-zone function should have the following form:

FUNCTION MyGrowZone (cbNeeded: Size): LongInt;

cbNeeded The physical size, in bytes, of the needed block, including the block 
header. The grow-zone function should attempt to create a free block of at 
least this size.

DESCRIPTION

Whenever the Memory Manager has exhausted all available means of creating space 
within your application heap—including purging, compacting, and (if possible) 
expanding the heap—it calls your application-defined grow-zone function. The 
grow-zone function can do whatever is necessary to create free space in the heap. 
Typically, a grow-zone function marks some unneeded blocks as purgeable or releases an 
emergency memory reserve maintained by your application.

The grow-zone function should return a nonzero value equal to the number of bytes of 
memory it has freed, or zero if it is unable to free any. When the function returns a 
nonzero value, the Memory Manager once again purges and compacts the heap zone 
and tries to reallocate memory. If there is still insufficient memory, the Memory Manager 
calls the grow-zone function again (but only if the function returned a nonzero value the 
previous time it was called). This mechanism allows your grow-zone function to release 
just a little bit of memory at a time. If the amount it releases at any time is not enough, 
the Memory Manager calls it again and gives it the opportunity to take more drastic 
measures.
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The Memory Manager might designate a particular relocatable block in the heap as 
protected; your grow-zone function should not move or purge that block. You can 
determine which block, if any, the Memory Manager has protected by calling the 
GZSaveHnd function in your grow-zone function.

Remember that a grow-zone function is called while the Memory Manager is attempting 
to allocate memory. As a result, your grow-zone function should not allocate memory 
itself or perform any other actions that might indirectly cause memory to be allocated 
(such as calling routines in unloaded code segments or displaying dialog boxes).

You install a grow-zone function by passing its address to the InitZone procedure 
when you create a new heap zone or by calling the SetGrowZone procedure at any 
other time.

SPECIAL CONSIDERATIONS

Your grow-zone function might be called at a time when the system is attempting to 
allocate memory and the value in the A5 register is not correct. If your function accesses 
your application’s A5 world or makes any trap calls, you need to set up and later restore 
the A5 register by calling SetCurrentA5 and SetA5.

Because of the optimizations performed by some compilers, the actual work of the 
grow-zone function and the setting and restoring of the A5 register might have to be 
placed in separate procedures.

SEE ALSO

See “Defining a Grow-Zone Function” on page 1-48 for a definition of a sample 
grow-zone function.
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Summary of Memory Management 1

Pascal Summary 1

Data Types 1

TYPE

SignedByte = -128..127; {arbitrary byte of memory}

Byte = 0..255; {unsigned, arbitrary byte}

Ptr = ^SignedByte; {pointer to nonrelocatable block}

Handle = ^Ptr; {handle to relocatable block}

ProcPtr = Ptr; {procedure pointer}

Size = LongInt; {size, in bytes, of block}

Memory Management Routines 1

Setting Up the Application Heap

PROCEDURE MaxApplZone;

PROCEDURE MoreMasters;

FUNCTION GetApplLimit : Ptr;

PROCEDURE SetApplLimit (zoneLimit: Ptr);

Allocating and Releasing Relocatable Blocks of Memory

FUNCTION NewHandle (logicalSize: Size): Handle;

FUNCTION NewHandleClear (logicalSize: Size): Handle;

PROCEDURE DisposeHandle (h: Handle);

Allocating and Releasing Nonrelocatable Blocks of Memory

FUNCTION NewPtr (logicalSize: Size): Ptr;

FUNCTION NewPtrClear (logicalSize: Size): Ptr;

PROCEDURE DisposePtr (p: Ptr);
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Setting the Properties of Relocatable Blocks

FUNCTION HGetState (h: Handle): SignedByte;

PROCEDURE HSetState (h: Handle; flags: SignedByte);

PROCEDURE HLock (h: Handle);

PROCEDURE HUnlock (h: Handle);

PROCEDURE HPurge (h: Handle);

PROCEDURE HNoPurge (h: Handle);

Managing Relocatable Blocks

PROCEDURE EmptyHandle (h: Handle);

PROCEDURE ReallocateHandle (h: Handle; logicalSize: Size);

PROCEDURE ReserveMem (cbNeeded: Size);

PROCEDURE MoveHHi (h: Handle);

PROCEDURE HLockHi (h: Handle);

Manipulating Blocks of Memory

PROCEDURE BlockMove (sourcePtr, destPtr: Ptr; byteCount: Size);

Assessing Memory Conditions

PROCEDURE PurgeSpace (VAR total: LongInt; VAR contig: LongInt);

FUNCTION MemError : OSErr;

Grow-Zone Operations

PROCEDURE SetGrowZone (growZone: ProcPtr);

FUNCTION GZSaveHnd : Handle;

Setting and Restoring the A5 Register

FUNCTION SetCurrentA5 : LongInt;

FUNCTION SetA5 (newA5: LongInt) : LongInt;

Application-Defined Routines 1

Grow-Zone Functions

FUNCTION MyGrowZone (cbNeeded: Size): LongInt;
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Data Types 1

typedef char SignedByte; /*arbitrary byte of memory*/

typedef unsigned char Byte; /*unsigned, arbitrary byte*/

typedef char *Ptr; /*pointer to nonrelocatable block*/

typedef Ptr *Handle; /*handle to relocatable block*/

typedef long (*ProcPtr)(); /*procedure pointer*/

typedef long Size; /*size in bytes of block*/

Memory Management Routines 1

Setting Up the Application Heap

pascal void MaxApplZone (void);

pascal void MoreMasters (void);

#define GetApplLimit() (* (Ptr*) 0x0130)

pascal void SetApplLimit (void *zoneLimit);

Allocating and Releasing Relocatable Blocks of Memory

pascal Handle NewHandle (Size byteCount);

pascal Handle NewHandleClear (Size byteCount);

pascal void DisposeHandle (Handle h);

Allocating and Releasing Nonrelocatable Blocks of Memory

pascal Ptr NewPtr (Size byteCount);

pascal Ptr NewPtrClear (Size byteCount);

pascal void DisposePtr (Ptr p);

Setting the Properties of Relocatable Blocks

pascal char HGetState (Handle h);

pascal void HSetState (Handle h, char flags);

pascal void HLock (Handle h);

pascal void HUnlock (Handle h);

pascal void HPurge (Handle h);

pascal void HNoPurge (Handle h);
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Managing Relocatable Blocks

pascal void EmptyHandle (Handle h);

pascal void ReallocateHandle (Handle h, Size byteCount);

pascal void ReserveMem (Size cbNeeded);

pascal void MoveHHi (Handle h);

pascal void HLockHi (Handle h);

Manipulating Blocks of Memory

pascal void BlockMove (const void *srcPtr, void *destPtr, 
Size byteCount);

Assessing Memory Conditions

pascal void PurgeSpace (long *total, long *contig);

#define MemError() (* (OSErr*) 0x0220)

Grow-Zone Operations

pascal void SetGrowZone (GrowZoneProcPtr growZone);

#define GZSaveHnd() (* (Handle*) 0x0328)

Setting and Restoring the A5 Register

long SetCurrentA5 (void);

long SetA5 (long newA5);

Application-Defined Routines 1

Grow-Zone Functions

pascal long MyGrowZone (Size cbNeeded);
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Global Variables 1

Result Codes 1

ApplLimit long The application heap limit, beyond which the heap cannot expand.
ApplZone long A pointer to the original application heap zone.
BufPtr long Address of highest byte of allocatable memory.
CurrentA5 long Address of the boundary between the application global variables and the 

application parameters of the current application.
GZRootHnd long A handle to a block that the grow-zone function must not move.

noErr 0 No error
paramErr –50 Error in parameter list
memROZErr –99 Heap zone is read-only
memFullErr –108 Not enough memory
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
memPurErr –112 Attempt to purge a locked block
memBCErr –115 Block check failed
memLockedErr –117 Block is locked
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