

C H A P T E R 1

1

Introduction to M
em

ory M
anagem

ent

Introduction to Memory Management 1

This chapter is a general introduction to memory management on Macintosh computers.
It describes how the Operating System organizes and manages the available memory,
and it shows how you can use the services provided by the Memory Manager and other
system software components to manage the memory in your application partition
effectively.

You should read this chapter if your application or other software allocates memory
dynamically during its execution. This chapter describes how to

■ set up your application partition at launch time

■ determine the amount of free memory in your application heap

■ allocate and dispose of blocks of memory in your application heap

■ minimize fragmentation in your application heap caused by blocks of memory that
cannot move

■ implement a scheme to avoid low-memory conditions

You should be able to accomplish most of your application’s memory allocation and
management by following the instructions given in this chapter. If, however, your
application needs to allocate memory outside its own partition (for instance, in the
system heap), you need to read the chapter “Memory Manager” in this book. If your
application has timing-critical requirements or installs procedures that execute at
interrupt time, you need to read the chapter “Virtual Memory Manager” in this book. If
your application’s executable code is divided into multiple segments, you might also
want to look at the chapter “Segment Manager” in Inside Macintosh: Processes for
guidelines on how to divide your code into segments. If your application uses resources,
you need to read the chapter “Resource Manager” in Inside Macintosh: More Macintosh
Toolbox for information on managing memory allocated to resources.

This chapter begins with a description of how the Macintosh Operating System
organizes the available physical random-access memory (RAM) in a Macintosh
computer and how it allocates memory to open applications. Then this chapter describes
in detail how the Memory Manager allocates blocks of memory in your application’s
heap and how to use the routines provided by the Memory Manager to perform the
memory-management tasks listed above.

This chapter ends with descriptions of the routines used to perform these tasks. The
“Memory Management Reference” and “Summary of Memory Management” sections
in this chapter are subsets of the corresponding sections in the remaining chapters in
this book.
1-3

C H A P T E R 1

Introduction to Memory Management

About Memory 1

A Macintosh computer’s available RAM is used by the Operating System, applications,
and other software components, such as device drivers and system extensions. This
section describes both the general organization of memory by the Operating System
and the organization of the memory partition allocated to your application when
it is launched. This section also provides a preliminary description of three related
memory topics:

■ temporary memory

■ virtual memory

■ 24- and 32-bit addressing

For more complete information on these three topics, you need to read the remaining
chapters in this book.

Organization of Memory by the Operating System 1
When the Macintosh Operating System starts up, it divides the available RAM into two
broad sections. It reserves for itself a zone or partition of memory known as the system
partition. The system partition always begins at the lowest addressable byte of memory
(memory address 0) and extends upward. The system partition contains a system heap
and a set of global variables, described in the next two sections.

All memory outside the system partition is available for allocation to applications or
other software components. In system software version 7.0 and later (or when
MultiFinder is running in system software versions 5.0 and 6.0), the user can have
multiple applications open at once. When an application is launched, the Operating
System assigns it a section of memory known as its application partition. In general, an
application uses only the memory contained in its own application partition.

Figure 1-1 illustrates the organization of memory when several applications are open at
the same time. The system partition occupies the lowest position in memory. Application
partitions occupy part of the remaining space. Note that application partitions are
loaded into the top part of memory first.
1-4 About Memory

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent

Figure 1-1 Memory organization with several applications open

In Figure 1-1, three applications are open, each with its own application partition. The
application labeled Application 1 is the active application. (The labels on the right side of
the figure are system global variables, explained in “The System Global Variables” on
page 1-6.)

High memory

System

partition

BufPtr

Low memory

ApplZone

ApplLimit

CurrentA5

System heap

System global variables

Heap

A5 world

Stack

Application 3

partition

Application 2

partition

Heap

A5 world
Stack

Application 1

partition

Stack

Heap

A5 world

Used Area

Unused area
About Memory 1-5

C H A P T E R 1

Introduction to Memory Management

The System Heap 1

The main part of the system partition is an area of memory known as the system heap.
In general, the system heap is reserved for exclusive use by the Operating System and
other system software components, which load into it various items such as system
resources, system code segments, and system data structures. All system buffers and
queues, for example, are allocated in the system heap.

The system heap is also used for code and other resources that do not belong to specific
applications, such as code resources that add features to the Operating System or that
provide control of special-purpose peripheral equipment. System patches and system
extensions (stored as code resources of type 'INIT') are loaded into the system heap
during the system startup process. Hardware device drivers (stored as code resources of
type 'DRVR') are loaded into the system heap when the driver is opened.

Most applications don’t need to load anything into the system heap. In certain cases,
however, you might need to load resources or code segments into the system heap. For
example, if you want a vertical retrace task to continue to execute even when your
application is in the background, you need to load the task and any data associated with
it into the system heap. Otherwise, the Vertical Retrace Manager ignores the task when
your application is in the background.

The System Global Variables 1

The lowest part of memory is occupied by a collection of global variables called system
global variables (or low-memory system global variables). The Operating System uses
these variables to maintain different kinds of information about the operating
environment. For example, the Ticks global variable contains the number of ticks
(sixtieths of a second) that have elapsed since the system was most recently started up.
Similar variables contain, for example, the height of the menu bar (MBarHeight) and
pointers to the heads of various operating-system queues (DTQueue, FSQHdr,
VBLQueue, and so forth). Most low-memory global variables are of this variety: they
contain information that is generally useful only to the Operating System or other
system software components.

Other low-memory global variables contain information about the current application.
For example, the ApplZone global variable contains the address of the first byte
of the active application’s partition. The ApplLimit global variable contains the
address of the last byte the active application’s heap can expand to include. The
CurrentA5 global variable contains the address of the boundary between the active
application’s global variables and its application parameters. Because these global
variables contain information about the active application, the Operating System
changes the values of these variables whenever a context switch occurs.

In general, it is best to avoid reading or writing low-memory system global variables.
Most of these variables are undocumented, and the results of changing their values can
be unpredictable. Usually, when the value of a low-memory global variable is likely to be
useful to applications, the system software provides a routine that you can use to read or
write that value. For example, you can get the current value of the Ticks global variable
by calling the TickCount function.
1-6 About Memory

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent

In rare instances, there is no routine that reads or writes the value of a documented
global variable. In those cases, you might need to read or write that value directly. See
the chapter “Memory Manager” in this book for instructions on reading and writing the
values of low-memory global variables from a high-level language.

Organization of Memory in an Application Partition 1
When your application is launched, the Operating System allocates for it a partition of
memory called its application partition. That partition contains required segments of the
application’s code as well as other data associated with the application. Figure 1-2
illustrates the general organization of an application partition.

Figure 1-2 Organization of an application partition

Your application partition is divided into three major parts:

■ the application stack

■ the application heap

■ the application global variables and A5 world

A5 world

ApplZone

ApplLimit

CurStackBase
CurrentA5

Stack

High memory

Heap

Low memory

Used Area

Unused area
About Memory 1-7

C H A P T E R 1

Introduction to Memory Management

The heap is located at the low-memory end of your application partition and always
expands (when necessary) toward high memory. The A5 world is located at the
high-memory end of your application partition and is of fixed size. The stack begins
at the low-memory end of the A5 world and expands downward, toward the top of
the heap.

As you can see in Figure 1-2, there is usually an unused area of memory between the
stack and the heap. This unused area provides space for the stack to grow without
encroaching upon the space assigned to the application heap. In some cases, however,
the stack might grow into space reserved for the application heap. If this happens, it is
very likely that data in the heap will become corrupted.

The ApplLimit global variable marks the upper limit to which your heap can grow. If
you call the MaxApplZone procedure at the beginning of your program, the heap
immediately extends all the way up to this limit. If you were to use all of the heap’s free
space, the Memory Manager would not allow you to allocate additional blocks above
ApplLimit. If you do not call MaxApplZone, the heap grows toward ApplLimit
whenever the Memory Manager finds that there is not enough memory in the heap to fill
a request. However, once the heap grows up to ApplLimit, it can grow no further.
Thus, whether you maximize your application heap or not, you can use only the space
between the bottom of the heap and ApplLimit.

Unlike the heap, the stack is not bounded by ApplLimit. If your application uses
heavily nested procedures with many local variables or uses extensive recursion, the
stack could grow downward beyond ApplLimit. Because you do not use Memory
Manager routines to allocate memory on the stack, the Memory Manager cannot stop
your stack from growing beyond ApplLimit and possibly encroaching upon space
reserved for the heap. However, a vertical retrace task checks approximately 60 times
each second to see if the stack has moved into the heap. If it has, the task, known as the
“stack sniffer,” generates a system error. This system error alerts you that you have
allowed the stack to grow too far, so that you can make adjustments. See “Changing the
Size of the Stack” on page 1-39 for instructions on how to change the size of your
application stack.

Note
To ensure during debugging that your application generates this system
error if the stack extends beyond ApplLimit, you should call
MaxApplZone at the beginning of your program to expand the heap to
ApplLimit. For more information on expanding the heap, see “Setting
Up the Application Heap” beginning on page 1-38. ◆

The Application Stack 1

The stack is an area of memory in your application partition that can grow or shrink at
one end while the other end remains fixed. This means that space on the stack is always
allocated and released in LIFO (last-in, first-out) order. The last item allocated is always
the first to be released. It also means that the allocated area of the stack is always
contiguous. Space is released only at the top of the stack, never in the middle, so there
can never be any unallocated “holes” in the stack.
1-8 About Memory

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent

By convention, the stack grows from high memory toward low memory addresses. The
end of the stack that grows or shrinks is usually referred to as the “top” of the stack,
even though it’s actually at the lower end of memory occupied by the stack.

Because of its LIFO nature, the stack is especially useful for memory allocation
connected with the execution of functions or procedures. When your application calls a
routine, space is automatically allocated on the stack for a stack frame. A stack frame
contains the routine’s parameters, local variables, and return address. Figure 1-3
illustrates how the stack expands and shrinks during a function call. The leftmost
diagram shows the stack just before the function is called. The middle diagram shows
the stack expanded to hold the stack frame. Once the function is executed, the local
variables and function parameters are popped off the stack. If the function is a Pascal
function, all that remains is the previous stack with the function result on top.

Figure 1-3 The application stack

Note
Dynamic memory allocation on the stack is usually handled
automatically if you are using a high-level development language such
as Pascal. The compiler generates the code that creates and deletes stack
frames for each function or procedure call. ◆

The Application Heap 1

An application heap is the area of memory in your application partition in which space
is dynamically allocated and released on demand. The heap begins at the low-memory

High memory

Top

of stack

High memory High memory

Function result

Low memory Low memoryLow memory

Used Area

Unused area
About Memory 1-9

C H A P T E R 1

Introduction to Memory Management

end of your application partition and extends upward in memory. The heap contains
virtually all items that are not allocated on the stack. For instance, your application heap
contains the application’s code segments and resources that are currently loaded into
memory. The heap also contains other dynamically allocated items such as window
records, dialog records, document data, and so forth.

You allocate space within your application’s heap by making calls to the Memory
Manager, either directly (for instance, using the NewHandle function) or indirectly
(for instance, using a routine such as NewWindow, which calls Memory Manager
routines). Space in the heap is allocated in blocks, which can be of any size needed
for a particular object.

The Memory Manager does all the necessary housekeeping to keep track of blocks in the
heap as they are allocated and released. Because these operations can occur in any order,
the heap doesn’t usually grow and shrink in an orderly way, as the stack does. Instead,
after your application has been running for a while, the heap can tend to become
fragmented into a patchwork of allocated and free blocks, as shown in Figure 1-4. This
fragmentation is known as heap fragmentation.

Figure 1-4 A fragmented heap

High memory

Allocated blocks

Free blocks

Low memory
1-10 About Memory

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent

One result of heap fragmentation is that the Memory Manager might not be able to
satisfy your application’s request to allocate a block of a particular size. Even though
there is enough free space available, the space is broken up into blocks smaller than the
requested size. When this happens, the Memory Manager tries to create the needed
space by moving allocated blocks together, thus collecting the free space in a single
larger block. This operation is known as heap compaction. Figure 1-5 shows the results
of compacting the fragmented heap shown in Figure 1-4.

Figure 1-5 A compacted heap

Heap fragmentation is generally not a problem as long as the blocks of memory you
allocate are free to move during heap compaction. There are, however, two situations in
which a block is not free to move: when it is a nonrelocatable block, and when it is a
locked, relocatable block. To minimize heap fragmentation, you should use
nonrelocatable blocks sparingly, and you should lock relocatable blocks only when
absolutely necessary. See “Relocatable and Nonrelocatable Blocks” starting on page 1-16
for a description of relocatable and nonrelocatable blocks, and “Heap Fragmentation” on
page 1-24 for a description of how best to avoid fragmenting your heap.

High memory

Allocated blocks

Free blocks

Low memory
About Memory 1-11

C H A P T E R 1

Introduction to Memory Management

The Application Global Variables and A5 World 1

Your application’s global variables are stored in an area of memory near the top of your
application partition known as the application A5 world. The A5 world contains four
kinds of data:

■ application global variables

■ application QuickDraw global variables

■ application parameters

■ the application’s jump table

Each of these items is of fixed size, although the sizes of the global variables and of the
jump table may vary from application to application. Figure 1-6 shows the standard
organization of the A5 world.

Figure 1-6 Organization of an application’s A5 world

Note
An application’s global variables may appear either above or below the
QuickDraw global variables. The relative locations of these two items
are determined by your development system’s linker. In addition, part
of the jump table might appear below the boundary pointed to by
CurrentA5. ◆

High memory

CurrentA5

Jump table

Application parameters

pointer to QuickDraw global variables

QuickDraw global

variables

Application global

variables

Low memory
1-12 About Memory

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
The system global variable CurrentA5 points to the boundary between the
current application’s global variables and its application parameters. For this reason,
the application’s global variables are found as negative offsets from the value of
CurrentA5. This boundary is important because the Operating System uses it to access
the following information from your application: its global variables, its QuickDraw
global variables, the application parameters, and the jump table. This information is
known collectively as the A5 world because the Operating System uses the
microprocessor’s A5 register to point to that boundary.

Your application’s QuickDraw global variables contain information about its drawing
environment. For example, among these variables is a pointer to the current
graphics port.

Your application’s jump table contains an entry for each of your application’s routines
that is called by code in another segment. The Segment Manager uses the jump table to
determine the address of any externally referenced routines called by a code segment.
For more information on jump tables, see the chapter “Segment Manager” in Inside
Macintosh: Processes.

The application parameters are 32 bytes of memory located above the application global
variables; they’re reserved for use by the Operating System. The first long word of those
parameters is a pointer to your application’s QuickDraw global variables.

Temporary Memory 1
In the Macintosh multitasking environment, each application is limited to a particular
memory partition (whose size is determined by information in the 'SIZE' resource of
that application). The size of your application’s partition places certain limits on the size
of your application heap and hence on the sizes of the buffers and other data structures
that your application uses. In general, you specify an application partition size that is
large enough to hold all the buffers, resources, and other data that your application is
likely to need during its execution.

If for some reason you need more memory than is currently available in your application
heap, you can ask the Operating System to let you use any available memory that is not
yet allocated to any other application. This memory, known as temporary memory, is
allocated from the available unused RAM; usually, that memory is not contiguous with
the memory in your application’s zone. Figure 1-7 shows an application using some
temporary memory.
About Memory 1-13

C H A P T E R 1

Introduction to Memory Management
Figure 1-7 Using temporary memory allocated from unused RAM

In Figure 1-7, Application 1 has almost exhausted its application heap. As a result, it has
requested and received a large block of temporary memory, extending from the top of
Application 2’s partition to the top of the allocatable space. Application 1 can use the
temporary memory in whatever manner it desires.

Your application should use temporary memory only for occasional short-term purposes
that could be accomplished in less space, though perhaps less efficiently. For example, if
you want to copy a large file, you might try to allocate a fairly large buffer of temporary
memory. If you receive the temporary memory, you can copy data from the source file
into the destination file using the large buffer. If, however, the request for temporary
memory fails, you can instead use a smaller buffer within your application heap.

High memory

System

partition

BufPtr

Low memory

Application 1

partition

Stack

Heap

A5 world

Temporary

memory

Stack

Heap

Application 2

partition

A5 world

Handle to block

of temporary

memory

Used Area

Unused area

MyHandle

master pointer
1-14 About Memory

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
Although using the smaller buffer might prolong the copying operation, the file is
nonetheless copied.

One good reason for using temporary memory only occasionally is that you cannot
assume that you will always receive the temporary memory you request. For example, in
Figure 1-7, all the available memory is allocated to the two open applications; any
further requests by either one for some temporary memory would fail. For complete
details on using temporary memory, see the chapter “Memory Manager” in this book.

Virtual Memory 1
In system software version 7.0 and later, suitably equipped Macintosh computers can
take advantage of a feature of the Operating System known as virtual memory, by which
the machines have a logical address space that extends beyond the limits of the available
physical memory. Because of virtual memory, a user can load more programs and data
into the logical address space than would fit in the computer’s physical RAM.

The Operating System extends the address space by using part of the available
secondary storage (that is, part of a hard disk) to hold portions of applications and data
that are not currently needed in RAM. When some of those portions of memory are
needed, the Operating System swaps out unneeded parts of applications or data to the
secondary storage, thereby making room for the parts that are needed.

It is important to realize that virtual memory operates transparently to most
applications. Unless your application has time-critical needs that might be adversely
affected by the operation of virtual memory or installs routines that execute at interrupt
time, you do not need to know whether virtual memory is operating. For complete
details on virtual memory, see the chapter “Virtual Memory Manager” later in this book.

Addressing Modes 1
On suitably equipped Macintosh computers, the Operating System supports 32-bit
addressing, that is, the ability to use 32 bits to determine memory addresses. Earlier
versions of system software use 24-bit addressing, where the upper 8 bits of memory
addresses are ignored or used as flag bits. In a 24-bit addressing scheme, the logical
address space has a size of 16 MB. Because 8 MB of this total are reserved for I/O space,
ROM, and slot space, the largest contiguous program address space is 8 MB. When 32-bit
addressing is in operation, the maximum program address space is 1 GB.

The ability to operate with 32-bit addressing is available only on certain Macintosh
models, namely those with systems that contain a 32-bit Memory Manager. (For
compatibility reasons, these systems also contain a 24-bit Memory Manager.) In order for
your application to work when the machine is using 32-bit addressing, it must be 32-bit
clean, that is, able to run in an environment where all 32 bits of a memory address are
significant. Fortunately, writing applications that are 32-bit clean is relatively easy if you
follow the guidelines in Inside Macintosh. In general, applications are not 32-bit clean
because they manipulate flag bits in master pointers directly (for instance, to mark the
associated memory blocks as locked or purgeable) instead of using Memory Manager
About Memory 1-15

C H A P T E R 1

Introduction to Memory Management
routines to achieve the desired result. See “Relocatable and Nonrelocatable Blocks” on
page 1-16 for a description of master pointers.

▲ W A R N I N G

You should never make assumptions about the contents of Memory
Manager data structures, including master pointers and zone headers.
These structures have changed in the past and they are likely to change
again in the future. ▲

Occasionally, an application running when 24-bit addressing is enabled might need to
modify memory addresses to make them compatible with the 24-bit Memory Manager.
In addition, drivers or other code might need to use 32-bit addresses, even when running
in 24-bit mode. See the descriptions of the routines StripAddress and
Translate24to32 in the chapter “Memory Management Utilities” for details.

Heap Management 1

Applications allocate and manipulate memory primarily in their application heap. As
you have seen, space in the application heap is allocated and released on demand. When
the blocks in your heap are free to move, the Memory Manager can often reorganize the
heap to free space when necessary to fulfill a memory-allocation request. In some cases,
however, blocks in your heap cannot move. In these cases, you need to pay close
attention to memory allocation and management to avoid fragmenting your heap and
running out of memory.

This section provides a general description of how to manage blocks of memory in your
application heap. It describes

■ relocatable and nonrelocatable blocks

■ properties of relocatable blocks

■ heap purging and compaction

■ heap fragmentation

■ dangling pointers

■ low-memory conditions

For examples of specific techniques you can use to implement the strategies discussed in
this section, see “Using Memory” beginning on page 1-38.

Relocatable and Nonrelocatable Blocks 1
You can use the Memory Manager to allocate two different types of blocks in your heap:
nonrelocatable blocks and relocatable blocks. A nonrelocatable block is a block of
memory whose location in the heap is fixed. In contrast, a relocatable block is a block
of memory that can be moved within the heap (perhaps during heap compaction).
1-16 Heap Management

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
The Memory Manager sometimes moves relocatable blocks during memory operations
so that it can use the space in the heap optimally.

The Memory Manager provides data types that reference both relocatable and
nonrelocatable blocks. It also provides routines that allow you to allocate and release
blocks of both types.

To reference a nonrelocatable block, you can use a pointer variable, defined by the Ptr
data type.

TYPE

SignedByte = –128..127;

Ptr = ^SignedByte;

A pointer is simply the address of an arbitrary byte in memory, and a pointer to a
nonrelocatable block of memory is simply the address of the first byte in the block, as
illustrated in Figure 1-8. After you allocate a nonrelocatable block, you can make copies
of the pointer variable. Because a pointer is the address of a block of memory that cannot
be moved, all copies of the pointer correctly reference the block as long as you don’t
dispose of it.

Figure 1-8 A pointer to a nonrelocatable block

myPointer

Nonrelocatable

Free space

Heap
Heap Management 1-17

C H A P T E R 1

Introduction to Memory Management
The pointer variable itself occupies 4 bytes of space in your application partition.
Often the pointer variable is a global variable and is therefore contained in
your application’s A5 world. But the pointer can also be allocated on the stack
or in the heap itself.

To reference relocatable blocks, the Memory Manager uses a scheme known as
double indirection. The Memory Manager keeps track of a relocatable block internally
with a master pointer, which itself is part of a nonrelocatable master pointer block
in your application heap and can never move.

Note
The Memory Manager allocates one master pointer block (containing
64 master pointers) for your application at launch time, and you can
call the MoreMasters procedure to request that additional master
pointer blocks be allocated. See “Setting Up the Application Heap”
beginning on page 1-38 for instructions on allocating master pointer
blocks. ◆

When the Memory Manager moves a relocatable block, it updates the master pointer
so that it always contains the address of the relocatable block. You reference the block
with a handle, defined by the Handle data type.

TYPE

Handle = ^Ptr;

A handle contains the address of a master pointer. The left side of Figure 1-9 shows
a handle to a relocatable block of memory located in the middle of the application
heap. If necessary (perhaps to make room for another block of memory), the
Memory Manager can move that block down in the heap, as shown in the right
side of Figure 1-9.
1-18 Heap Management

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
Figure 1-9 A handle to a relocatable block

Master pointers for relocatable objects in your heap are always allocated in your
application heap. Because the blocks of masters pointers are nonrelocatable, it is best to
allocate them as low in your heap as possible. You can do this by calling the
MoreMasters procedure when your application starts up.

Whenever possible, you should allocate memory in relocatable blocks. This gives the
Memory Manager the greatest freedom when rearranging the blocks in your application
heap to create a new block of free memory. In some cases, however, you may be forced to
allocate a nonrelocatable block of memory. When you call the Window Manager function
NewWindow, for example, the Window Manager internally calls the NewPtr function to
allocate a new nonrelocatable block in your application partition. You need to exercise
care when calling Toolbox routines that allocate such blocks, lest your application heap
become overly fragmented. See “Allocating Blocks of Memory” on page 1-44 for specific
guidelines on allocating nonrelocatable blocks.

Heap

Before relocation After relocation

Heap

myHandle

Master pointer

myHandle

Master pointerBlock of

master pointers

(nonrelocatable)

Nonrelocatable block

Free space

Relocatable block
Heap Management 1-19

C H A P T E R 1

Introduction to Memory Management
Using relocatable blocks makes the Memory Manager more efficient at managing
available space, but it does carry some overhead. As you have seen, the Memory
Manager must allocate extra memory to hold master pointers for relocatable blocks. It
groups these master pointers into nonrelocatable blocks. For large relocatable blocks, this
extra space is negligible, but if you allocate many very small relocatable blocks, the cost
can be considerable. For this reason, you should avoid allocating a very large number of
handles to small blocks; instead, allocate a single large block and use it as an array to
hold the data you need.

Properties of Relocatable Blocks 1
As you have seen, a heap block can be either relocatable or nonrelocatable. The
designation of a block as relocatable or nonrelocatable is a permanent property of that
block. If relocatable, a block can be either locked or unlocked; if it’s unlocked, a block can
be either purgeable or unpurgeable. These attributes of relocatable blocks can be set and
changed as necessary. The following sections explain how to lock and unlock blocks, and
how to mark them as purgeable or unpurgeable.

Locking and Unlocking Relocatable Blocks 1

Occasionally, you might need a relocatable block of memory to stay in one place. To
prevent a block from moving, you can lock it, using the HLock procedure. Once you
have locked a block, it won’t move. Later, you can unlock it, using the HUnlock
procedure, allowing it to move again.

In general, you need to lock a relocatable block only if there is some danger that it might
be moved during the time that you read or write the data in that block. This might
happen, for instance, if you dereference a handle to obtain a pointer to the data and
(for increased speed) use the pointer within a loop that calls routines that might
cause memory to be moved. If, within the loop, the block whose data you are accessing
is in fact moved, then the pointer no longer points to that data; this pointer is said
to dangle.

Note
Locking a block is only one way to prevent a dangling pointer. See
“Dangling Pointers” on page 1-29 for a complete discussion of how to
avoid dangling pointers. ◆
1-20 Heap Management

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
Using locked relocatable blocks can, however, slow the Memory Manager down as much
as using nonrelocatable blocks. The Memory Manager can’t move locked blocks. In
addition, except when you allocate memory and resize relocatable blocks, it can’t move
relocatable blocks around locked relocatable blocks (just as it can’t move them around
nonrelocatable blocks). Thus, locking a block in the middle of the heap for long periods
of time can increase heap fragmentation.

Locking and unlocking blocks every time you want to prevent a block from moving can
become troublesome. Fortunately, the Memory Manager moves unlocked, relocatable
blocks only at well-defined, predictable times. In general, each routine description in
Inside Macintosh indicates whether the routine could move or purge memory. If you do
not call any of those routines in a section of code, you can rely on all blocks to remain
stationary while that code executes. Note that the Segment Manager might move
memory if you call a routine located in a segment that is not currently resident
in memory. See “Loading Code Segments” on page 1-31 for details.

Purging and Reallocating Relocatable Blocks 1

One advantage of relocatable blocks is that you can use them to store information that
you would like to keep in memory to make your application more efficient, but that you
don’t really need if available memory space becomes low. For example, your application
might, at the beginning of its execution, load user preferences from a preferences file into
a relocatable block. As long as the block remains in memory, your application can access
information from the preferences file without actually reopening the file. However,
reopening the file probably wouldn’t take enough time to justify keeping the block in
memory if memory space were scarce.

By making a relocatable block purgeable, you allow the Memory Manager to free
the space it occupies if necessary. If you later want to prohibit the Memory Manager
from freeing the space occupied by a relocatable block, you can make the block
unpurgeable. You can use the HPurge and HNoPurge procedures to change back
and forth between these two states. A block you create by calling NewHandle is
initially unpurgeable.

Once you make a relocatable block purgeable, you should subsequently check
handles to that block before using them if you call any of the routines that could
move or purge memory. If a handle’s master pointer is set to NIL, then the
Operating System has purged its block. To use the information formerly in the block,
you must reallocate space for it (perhaps by calling the ReallocateHandle procedure)
and then reconstruct its contents (for example, by rereading the preferences file).
Heap Management 1-21

C H A P T E R 1

Introduction to Memory Management
Figure 1-10 illustrates the purging and reallocating of a relocatable block. When the block
is purged, its master pointer is set to NIL. When it is reallocated, the handle correctly
references a new block, but that block’s contents are initially undefined.

Figure 1-10 Purging and reallocating a relocatable block

Memory Reservation 1
The Memory Manager does its best to prevent situations in which nonrelocatable blocks
in the middle of the heap trap relocatable blocks. When it allocates new nonrelocatable
blocks, it attempts to reserve memory for them as low in the heap as possible. The
Memory Manager reserves memory for a nonrelocatable block by moving unlocked
relocatable blocks upward until it has created a space large enough for the new block.
When the Memory Manager can successfully pack all nonrelocatable blocks into the
bottom of the heap, no nonrelocatable block can trap a relocatable block, and it has
successfully prevented heap fragmentation.

Figure 1-11 illustrates how the Memory Manager allocates nonrelocatable blocks.
Although it could place a block of the requested size at the top of the heap, it instead
reserves space for the block as close to the bottom of the heap as possible and then puts
the block into that reserved space. During this process, the Memory Manager might even
move a relocatable block over a nonrelocatable block to make room for another
nonrelocatable block.

Heap

Before purging After purging

Heap

MyHandle

After reallocating

Heap

Master

pointers

NIL

MyHandle MyHandle

Nonrelocatable block

Free space

Relocatable block
1-22 Heap Management

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
Figure 1-11 Allocating a nonrelocatable block

When allocating a new relocatable block, you can, if you want, manually reserve space
for the block by calling the ReserveMem procedure. If you do not, the Memory Manager
looks for space big enough for the block as low in the heap as possible, but it does not
create space near the bottom of the heap for the block if there is already enough space
higher in the heap.

Heap Purging and Compaction 1
When your application attempts to allocate memory (for example, by calling either the
NewPtr or NewHandle function), the Memory Manager might need to compact or
purge the heap to free memory and to fuse many small free blocks into fewer large free
blocks. The Memory Manager first tries to obtain the requested amount of space by
compacting the heap; if compaction fails to free the required amount of space, the
Memory Manager then purges the heap.

When compacting the heap, the Memory Manager moves unlocked, relocatable blocks
down until they reach nonrelocatable blocks or locked, relocatable blocks. You can
compact the heap manually, by calling either the CompactMem function or the MaxMem
function.

Heap

Before allocation

Heap

After allocation

New

nonrelocatable

block

Nonrelocatable

Free space

Relocatable
Heap Management 1-23

C H A P T E R 1

Introduction to Memory Management
In a purge of the heap, the Memory Manager sequentially purges unlocked, purgeable
relocatable blocks until it has freed enough memory or until it has purged all such
blocks. It purges a block by deallocating it and setting its master pointer to NIL.

If you want, you can manually purge a few blocks or an entire heap in anticipation of a
memory shortage. To purge an individual block manually, call the EmptyHandle
procedure. To purge your entire heap manually, call the PurgeMem procedure or the
MaxMem function.

Note
In general, you should let the Memory Manager purge and compact
your heap, instead of performing these operations yourself. ◆

Heap Fragmentation 1
Heap fragmentation can slow your application by forcing the Memory Manager to
compact or purge your heap to satisfy a memory-allocation request. In the worst cases,
when your heap is severely fragmented by locked or nonrelocatable blocks, it might be
impossible for the Memory Manager to find the requested amount of contiguous free
space, even though that much space is actually free in your heap. This can have
disastrous consequences for your application. For example, if the Memory Manager
cannot find enough room to load a required code segment, your application will crash.

Obviously, it is best to minimize the amount of fragmentation that occurs in your
application heap. It might be tempting to think that because the Memory Manager
controls the movement of blocks in the heap, there is little that you can do to prevent
heap fragmentation. In reality, however, fragmentation does not strike your application’s
heap by chance. Once you understand the major causes of heap fragmentation, you can
follow a few simple rules to minimize it.

The primary causes of heap fragmentation are indiscriminate use of nonrelocatable
blocks and indiscriminate locking of relocatable blocks. Each of these creates immovable
blocks in your heap, thus creating “roadblocks” for the Memory Manager when it
rearranges the heap to maximize the amount of contiguous free space. You can
significantly reduce heap fragmentation simply by exercising care when you allocate
nonrelocatable blocks and when you lock relocatable blocks.

Throughout this section, you should keep in mind the following rule: the Memory
Manager can move a relocatable block around a nonrelocatable block (or a locked
relocatable block) at these times only:

■ When the Memory Manager reserves memory for a nonrelocatable block (or when
you manually reserve memory before allocating a block), it can move unlocked,
relocatable blocks upward over nonrelocatable blocks to make room for the new block
as low in the heap as possible.

■ When you attempt to resize a relocatable block, the Memory Manager can move that
block around other blocks if necessary.

In contrast, the Memory Manager cannot move relocatable blocks over nonrelocatable
blocks during compaction of the heap.
1-24 Heap Management

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
Deallocating Nonrelocatable Blocks 1

One of the most common causes of heap fragmentation is also one of the most difficult to
avoid. The problem occurs when you dispose of a nonrelocatable block in the middle of
the pile of nonrelocatable blocks at the bottom of the heap. Unless you immediately
allocate another nonrelocatable block of the same size, you create a gap where the
nonrelocatable block used to be. If you later allocate a slightly smaller, nonrelocatable
block, that gap shrinks. However, small gaps are inefficient because of the small
likelihood that future memory allocations will create blocks small enough to occupy
the gaps.

It would not matter if the first block you allocated after deleting the nonrelocatable block
were relocatable. The Memory Manager would place the block in the gap if possible. If
you were later to allocate a nonrelocatable block as large as or smaller than the gap, the
new block would take the place of the relocatable block, which would join other
relocatable blocks in the middle of the heap, as desired. However, the new
nonrelocatable block might be smaller than the original nonrelocatable block, leaving a
small gap.

Whenever you dispose of a nonrelocatable block that you have allocated, you create
small gaps, unless the next nonrelocatable block you allocate happens to be the same size
as the disposed block. These small gaps can lead to heavy fragmentation over the course
of your application’s execution. Thus, you should try to avoid disposing of and then
reallocating nonrelocatable blocks during program execution.

Reserving Memory 1

Another cause of heap fragmentation ironically occurs because of a limitation of memory
reservation, a process designed to prevent it. Memory reservation never makes
fragmentation worse than it would be if there were no memory reservation. Ordinarily,
memory reservation ensures that allocating nonrelocatable blocks in the middle of your
application’s execution causes no problems. Occasionally, however, memory reservation
can cause fragmentation, either when it succeeds but leaves small gaps in the reserved
space, or when it fails and causes a nonrelocatable block to be allocated in the middle of
the heap.

The Memory Manager uses memory reservation to create space for nonrelocatable blocks
as low as possible in the heap. (You can also manually reserve memory for relocatable
blocks, but you rarely need to do so.) However, when the Memory Manager moves a
block up during memory reservation, that block cannot overlap its previous location.
As a result, the Memory Manager might need to move the relocatable block up more
than is necessary to contain the new nonrelocatable block, thereby creating a gap
between the top of the new block and the bottom of the relocated block. (See Figure 1-11
on page 1-23.)

Memory reservation can also fragment the heap if there is not enough space in the heap
to move the relocatable block up. In this case, the Memory Manager allocates the new
nonrelocatable block above the relocatable block. The relocatable block cannot then
move over the nonrelocatable block, except during the times described previously.
Heap Management 1-25

C H A P T E R 1

Introduction to Memory Management
Locking Relocatable Blocks 1

Locked relocatable blocks present a special problem. When relocatable blocks are locked,
they can cause as much heap fragmentation as nonrelocatable blocks. One solution is to
reserve memory for all relocatable blocks that might at some point need to be locked,
and to leave them locked for as long as they are allocated. This solution has drawbacks,
however, because then the blocks would lose any flexibility that being relocatable
otherwise gives them. Deleting a locked relocatable block can create a gap, just as
deleting a nonrelocatable block can.

An alternative partial solution is to move relocatable blocks to the top of the heap before
locking them. The MoveHHi procedure allows you to move a relocatable block upward
until it reaches the top of the heap, a nonrelocatable block, or a locked relocatable block.
This has the effect of partitioning the heap into four areas, as illustrated in Figure 1-12.
At the bottom of the heap are the nonrelocatable blocks. Above those blocks are the
unlocked relocatable blocks. At the top of the heap are locked relocatable blocks.
Between the locked relocatable blocks and the unlocked relocatable blocks is an area of
free space. The principal idea behind moving relocatable blocks to the top of the heap
and locking them there is to keep the contiguous free space as large as possible.

Figure 1-12 An effectively partitioned heap

Heap

IMM (Fi) A ff i l i i d h

Locked relocatable blocks

(using MoveHHi, HLock)

Nonrelocatable

Free space

Relocatable

Locked Relocatable
1-26 Heap Management

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
Using MoveHHi is, however, not always a perfect solution to handling relocatable blocks
that need to be locked. The MoveHHi procedure moves a block upward only until it
reaches either a nonrelocatable block or a locked relocatable block. Unlike NewPtr and
ReserveMem, MoveHHi does not currently move a relocatable block around one that is
not relocatable.

Even if MoveHHi succeeds in moving a block to the top area of the heap, unlocking or
deleting locked blocks can cause fragmentation if you don’t unlock or delete those blocks
beginning with the lowest locked block. A relocatable block that is locked at the top area
of the heap for a long period of time could trap other relocatable blocks that were locked
for short periods of time but then unlocked.

This suggests that you need to treat relocatable blocks locked for a long period of time
differently from those locked for a short period of time. If you plan to lock a relocatable
block for a long period of time, you should reserve memory for it at the bottom of the
heap before allocating it, then lock it for the duration of your application’s execution (or
as long as the block remains allocated). Do not reserve memory for relocatable blocks
you plan to allocate for only short periods of time. Instead, move them to the top of the
heap (by calling MoveHHi) and then lock them.

Note
You should call MoveHHi only on blocks located in your application
heap. Don’t call MoveHHi on relocatable blocks in the system heap. Desk
accessories should not call MoveHHi. ◆

In practice, you apply the same rules to relocatable blocks that you reserve space for and
leave permanently locked as you apply to nonrelocatable blocks: Try not to allocate such
blocks in the middle of your application’s execution, and don’t dispose of and reallocate
such blocks in the middle of your application’s execution.

After you lock relocatable blocks temporarily, you don’t need to move them manually
back into the middle area when you unlock them. Whenever the Memory Manager
compacts the heap or moves another relocatable block to the top heap area, it brings all
unlocked relocatable blocks at the bottom of that partition back into the middle area.
When moving a block to the top area, be sure to call MoveHHi on the block and then lock
the block, in that order.

Allocating Nonrelocatable Blocks 1

As you have seen, there are two reasons for not allocating nonrelocatable blocks during
the middle of your application’s execution. First, if you also dispose of nonrelocatable
blocks in the middle of your application’s execution, then allocation of new
nonrelocatable blocks is likely to create small gaps, as discussed earlier. Second, even if
you never dispose of nonrelocatable blocks until your application terminates, memory
reservation is an imperfect process, and the Memory Manager could occasionally place
new nonrelocatable blocks above relocatable blocks.
Heap Management 1-27

C H A P T E R 1

Introduction to Memory Management
There is, however, an exception to the rule that you should not allocate nonrelocatable
blocks in the middle of your application’s execution. Sometimes you need to allocate a
nonrelocatable block only temporarily. If between the times that you allocate and dispose
of a nonrelocatable block, you allocate no additional nonrelocatable blocks and do not
attempt to compact the heap, then you have done no harm. The temporary block cannot
create a new gap because the Memory Manager places no other block over the
temporary block.

Summary of Preventing Fragmentation 1

Avoiding heap fragmentation is not difficult. It simply requires that you follow a few
rules as closely as possible. Remember that allocation of even a small nonrelocatable
block in the middle of your heap can ruin a scheme to prevent fragmentation of the
heap, because the Memory Manager does not move relocatable blocks around
nonrelocatable blocks when you call MoveHHi or when it attempts to compact the heap.

If you adhere to the following rules, you are likely to avoid significant heap
fragmentation:

■ At the beginning of your application’s execution, call the MaxApplZone procedure
once and the MoreMasters procedure enough times so that the Memory Manager
never needs to call it for you.

■ Try to anticipate the maximum number of nonrelocatable blocks you will need and
allocate them at the beginning of your application’s execution.

■ Avoid disposing of and then reallocating nonrelocatable blocks during your
application’s execution.

■ When allocating relocatable blocks that you need to lock for long periods of time, use
the ReserveMem procedure to reserve memory for them as close to the bottom of the
heap as possible, and lock the blocks immediately after allocating them.

■ If you plan to lock a relocatable block for a short period of time and allocate
nonrelocatable blocks while it is locked, use the MoveHHi procedure to move the
block to the top of the heap and then lock it. When the block no longer needs to be
locked, unlock it.

■ Remember that you need to lock a relocatable block only if you call a routine that
could move or purge memory and you then use a dereferenced handle to the
relocatable block, or if you want to use a dereferenced handle to the relocatable block
at interrupt time.

Perhaps the most difficult restriction is to avoid disposing of and then reallocating
nonrelocatable blocks in the middle of your application’s execution. Some Toolbox
routines require you to use nonrelocatable blocks, and it is not always easy to anticipate
how many such blocks you will need. If you must allocate and dispose of blocks in the
middle of your program’s execution, you might want to place used blocks into a linked
list of free blocks instead of disposing of them. If you know how many nonrelocatable
blocks of a certain size your application is likely to need, you can add that many to the
beginning of the list at the beginning of your application’s execution. If you need a
nonrelocatable block later, you can check the linked list for a block of the exact size
instead of simply calling the NewPtr function.
1-28 Heap Management

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
Dangling Pointers 1
Accessing a relocatable block by double indirection, through its handle instead of
through its master pointer, requires an extra memory reference. For efficiency, you might
sometimes want to dereference the handle—that is, make a copy of the block’s master
pointer—and then use that pointer to access the block by single indirection. When you
do this, however, you need to be particularly careful. Any operation that allocates space
from the heap might cause the relocatable block to be moved or purged. In that event,
the block’s master pointer is correctly updated, but your copy of the master pointer is
not. As a result, your copy of the master pointer is a dangling pointer.

Dangling pointers are likely to make your application crash or produce garbled output.
Unfortunately, it is often easy during debugging to overlook situations that could leave
pointers dangling, because pointers dangle only if the relocatable blocks that they
reference actually move. Routines that can move or purge memory do not necessarily do
so unless memory space is tight. Thus, if you improperly dereference a handle in a
section of code, that code might still work properly most of the time. If, however, a
dangling pointer does cause errors, they can be very difficult to trace.

This section describes a number of situations that can cause dangling pointers and
suggests some ways to avoid them.

Compiler Dereferencing 1

Some of the most difficult dangling pointers to isolate are not caused by any explicit
dereferencing on your part, but by implicit dereferencing on the part of the compiler.
For example, suppose you use a handle called myHandle to access the fields of a
record in a relocatable block. You might use Pascal’s WITH statement to do so,
as follows:

WITH myHandle^^ DO

BEGIN

...

END;

A compiler is likely to dereference myHandle so that it can access the fields of the
record without double indirection. However, if the code between the BEGIN and END
statements causes the Memory Manager to move or purge memory, you are likely to end
up with a dangling pointer.

The easiest way to prevent dangling pointers is simply to lock the relocatable block
whose data you want to read or write. Because the block is locked and cannot move,
Heap Management 1-29

C H A P T E R 1

Introduction to Memory Management
the master pointer is guaranteed always to point to the beginning of the block’s data.
Listing 1-1 illustrates one way to avoid dangling pointers by locking a relocatable block.

Listing 1-1 Locking a block to avoid dangling pointers

VAR

origState: SignedByte; {original attributes of handle}

origState := HGetState(Handle(myData));{get handle attributes}

MoveHHi(Handle(myData)); {move the handle high}

HLock(Handle(myData)); {lock the handle}

WITH myData^^ DO {fill in window data}

BEGIN

editRec := TENew(gDestRect, gViewRect);

vScroll := GetNewControl(rVScroll, myWindow);

hScroll := GetNewControl(rHScroll, myWindow);

fileRefNum := 0;

windowDirty := FALSE;

END;

HSetState(origState); {reset handle attributes}

The handle myData needs to be locked before the WITH statement because the functions
TENew and GetNewControl allocate memory and hence might move the block whose
handle is myData.

You should be careful to lock blocks only when necessary, because locked relocatable
blocks can increase heap fragmentation and slow down your application unnecessarily.
You should lock a handle only if you dereference it, directly or indirectly, and then use a
copy of the original master pointer after calling a routine that could move or purge
memory. When you no longer need to reference the block with the master pointer, you
should unlock the handle. In Listing 1-1, the handle myData is never explicitly unlocked.
Instead, the original attributes of the handle are saved by calling HGetState and later
are restored by calling HSetState. This strategy is preferable to just calling HLock and
HUnlock.

A compiler can generate hidden dereferencing, and hence potential dangling pointers, in
other ways, for instance, by assigning the result of a function that might move or purge
blocks to a field in a record referenced by a handle. Such problems are particularly
common in code that manipulates linked data structures. For example, you might use
this code to allocate a new element of a linked list:

myHandle^^.nextHandle := NewHandle(sizeof(myLinkedElement));
1-30 Heap Management

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
This can cause problems because your compiler could dereference myHandle before
calling NewHandle. Therefore, you should either lock myHandle before performing
the allocation, or use a temporary variable to allocate the new handle, as in the
following code:

tempHandle := NewHandle(sizeof(myLinkedElement));

myHandle^^.nextHandle := tempHandle;

Passing fields of records as arguments to routines that might move or purge memory can
cause similar problems, if the records are in relocatable blocks referred to with handles.
Problems arise only when you pass a field by reference rather than by value. Pascal
conventions call for all arguments larger than 4 bytes to be passed by reference. In
Pascal, a variable is also passed by reference when the routine called requests a variable
parameter. Both of the following lines of code could leave a pointer dangling:

TEUpdate(hTE^^.viewRect, hTE);

InvalRect(theControl^^.contrlRect);

These problems occur because a compiler may dereference a handle before calling the
routine to which you pass the handle. Then, that routine may move memory before it
uses the dereferenced handle, which might then be invalid. As before, you can solve
these problems by locking the handles or using temporary variables.

Loading Code Segments 1

If you call an application-defined routine located in a code segment that is not currently
in RAM, the Segment Manager might need to move memory when loading that code
segment, thus jeopardizing any dereferenced handles you might be using. For example,
suppose you call an application-defined procedure ManipulateData, which
manipulates some data at an address passed to it in a variable parameter.

PROCEDURE MyRoutine;

BEGIN

...

ManipulateData(myHandle^);

...

END;

You can create a dangling pointer if ManipulateData and MyRoutine are in different
segments, and the segment containing ManipulateData is not loaded when
MyRoutine is executed. You can do this because you’ve passed a dereferenced copy of
myHandle as an argument to ManipulateData. If the Segment Manager must allocate
a new relocatable block for the segment containing ManipulateData, it might move
myHandle to do so. If so, the dereferenced handle would dangle. A similar problem can
occur if you assign the result of a function in a nonresident code segment to a field in a
record referred to by a handle.
Heap Management 1-31

C H A P T E R 1

Introduction to Memory Management
You need to be careful even when passing a field in a record referenced by a handle to a
routine in the same code segment as the caller, or when assigning the result of a function
in the same code segment to such a field. If that routine could call a Toolbox routine that
might move or purge memory, or call a routine in a different, nonresident code segment,
then you could indirectly cause a pointer to dangle.

Callback Routines 1

Code segmentation can also lead to a different type of dangling-pointer problem when
you use callback routines. The problem rarely arises, but it is difficult to debug. Some
Toolbox routines require that you pass a pointer to a procedure in a variable of type
ProcPtr. Ordinarily, it does not matter whether the procedure you pass in such a
variable is in the same code segment as the routine that calls it or in a different code
segment. For example, suppose you call TrackControl as follows:

myPart := TrackControl(myControl, myEvent.where, @MyCallBack);

If MyCallBack were in the same code segment as this line of code, then a compiler
would pass to TrackControl the absolute address of the MyCallBack procedure. If it
were in a different code segment, then the compiler would take the address from the
jump table entry for MyCallBack. Either way, TrackControl should call MyCallBack
correctly.

Occasionally, you might use a variable of type ProcPtr to hold the address of a callback
procedure and then pass that address to a routine. Here is an example:

myProc := @MyCallBack;

...

myPart := TrackControl(myControl, myEvent.where, myProc);

As long as these lines of code are in the same code segment and the segment is not
unloaded between the execution of those lines, the preceding code should work
perfectly. Suppose, however, that myProc is a global variable, and the first line of the
code is in a different segment from the call to TrackControl. Suppose, further, that the
MyCallBack procedure is in the same segment as the first line of the code (which is in a
different segment from the call to TrackControl). Then, the compiler might place the
absolute address of the MyCallBack routine into the variable myProc. The compiler
cannot realize that you plan to use the variable in a different code segment from the one
that holds both the routine you are referencing and the routine you are using to initialize
the myProc variable. Because MyCallBack and the call to TrackControl are in
different code segments, the TrackControl procedure requires that you pass an
address in the jump table, not an absolute address. Thus, in this hypothetical situation,
myProc would reference MyCallBack incorrectly.

To avoid this problem, make sure to place in the same segment any code in which you
assign a value to a variable of type ProcPtr and any code in which you use that
1-32 Heap Management

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
variable. If you must put them in different code segments, then be sure that you place
the callback routine in a code segment different from the one that initializes the variable.

Note
Some development systems allow you to specify compiler options
that force jump table references to be generated for routine addresses.
If you specify those options, the problems described in this section
cannot arise. ◆

Invalid Handles 1
An invalid handle refers to the wrong area of memory, just as a dangling pointer does.
There are three types of invalid handles: empty handles, disposed handles, and fake
handles. You must avoid empty, disposed, or fake handles as carefully as dangling
pointers. Fortunately, it is generally easier to detect, and thus to avoid, invalid handles.

Disposed Handles 1

A disposed handle is a handle whose associated relocatable block has been disposed of.
When you dispose of a relocatable block (perhaps by calling the procedure
DisposeHandle), the Memory Manager does not change the value of any handle
variables that previously referenced that block. Instead, those variables still hold the
address of what once was the relocatable block’s master pointer. Because the block has
been disposed of, however, the contents of the master pointer are no longer defined.
(The master pointer might belong to a subsequently allocated relocatable block, or it
could become part of a linked list of unused master pointers maintained by the
Memory Manager.)

If you accidentally use a handle to a block you have already disposed of, you can obtain
unexpected results. In the best cases, your application will crash. In the worst cases, you
will get garbled data. It might, however, be difficult to trace the cause of the garbled
data, because your application can continue to run for quite a while before the problem
begins to manifest itself.

You can avoid these problems quite easily by assigning the value NIL to the handle
variable after you dispose of its associated block. By doing so, you indicate that the
handle does not point anywhere in particular. If you subsequently attempt to operate on
such a block, the Memory Manager will probably generate a nilHandleErr result code.
If you want to make certain that a handle is not disposed of before operating on a
relocatable block, you can test whether the value of the handle is NIL, as follows:

IF myHandle <> NIL THEN

...; {handle is valid, so we can operate on it here}

Note
This test is useful only if you manually assign the value NIL to
all disposed handles. The Memory Manager does not do that
automatically. ◆
Heap Management 1-33

C H A P T E R 1

Introduction to Memory Management
Empty Handles 1

An empty handle is a handle whose master pointer has the value NIL. When the
Memory Manager purges a relocatable block, for example, it sets the block’s master
pointer to NIL. The space occupied by the master pointer itself remains allocated, and
handles to the purged block continue to point to the master pointer. This is useful,
because if you later reallocate space for the block by calling ReallocateHandle, the
master pointer will be updated and all existing handles will correctly access the
reallocated block.

Note
Don’t confuse empty handles with 0-length handles, which are handles
whose associated block has a size of 0 bytes. A 0-length handle has a
non-NIL master pointer and a block header. ◆

Once again, however, inadvertently using an empty handle can give unexpected results
or lead to a system crash. In the Macintosh Operating System, NIL technically refers to
memory location 0. But this memory location holds a value. If you doubly dereference an
empty handle, you reference whatever data is found at that location, and you could
obtain unexpected results that are difficult to trace.

You can check for empty handles much as you check for disposed handles. Assuming
you set handles to NIL when you dispose of them, you can use the following code to
determine whether a handle both points to a valid master pointer and references a
nonempty relocatable block:

IF myHandle <> NIL THEN

IF myHandle^ <> NIL THEN

... {we can operate on the relocatable block here}

Note that because Pascal evaluates expressions completely, you need two IF-THEN
statements rather than one compound statement in case the value of the handle itself is
NIL. Most compilers, however, allow you to use “short-circuit” Boolean operators to
minimize the evaluation of expressions. For example, if your compiler uses the operator
& as a short-circuit operator for AND, you could rewrite the preceding code like this:

IF (myHandle <> NIL) & (myHandle^ <> NIL) THEN

... {we can operate on the relocatable block here}

In this case, the second expression is evaluated only if the first expression evaluates
to TRUE.

Note
The availability and syntax of short-circuit Boolean operators are
compiler dependent. Check the documentation for your development
system to see whether you can use such operators. ◆
1-34 Heap Management

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
It is useful during debugging to set memory location 0 to an odd number, such as
$50FFC001. This causes the Operating System to crash immediately if you attempt to
dereference an empty handle. This is useful, because you can immediately fix problems
that might otherwise require extensive debugging.

Fake Handles 1

A fake handle is a handle that was not created by the Memory Manager. Normally, you
create handles by either directly or indirectly calling the Memory Manager function
NewHandle (or one of its variants, such as NewHandleClear). You create a fake
handle—usually inadvertently—by directly assigning a value to a variable of type
Handle, as illustrated in Listing 1-2.

Listing 1-2 Creating a fake handle

FUNCTION MakeFakeHandle: Handle; {DON’T USE THIS FUNCTION!}

CONST

kMemoryLoc = $100; {a random memory location}

VAR

myHandle: Handle;

myPointer: Ptr;

BEGIN

myPointer := Ptr(kMemoryLoc); {the address of some memory}

myHandle := @myPointer; {the address of a pointer}

MakeFakeHandle := myHandle;

END;

▲ W A R N I N G

The technique for creating a fake handle shown in Listing 1-2 is included
for illustrative purposes only. Your application should never create fake
handles. ▲

Remember that a real handle contains the address of a master pointer. The fake handle
manufactured by the function MakeFakeHandle in Listing 1-2 contains an address that
may or may not be the address of a master pointer. If it isn’t the address of a master
pointer, then you virtually guarantee chaotic results if you pass the fake handle to a
system software routine that expects a real handle.

For example, suppose you pass a fake handle to the MoveHHi procedure. After allocating
a new relocatable block high in the heap, MoveHHi is likely to copy the data from the
original block to the new block by dereferencing the handle and using, supposedly, a
master pointer. Because, however, the value of a fake handle probably isn’t the address
of a master pointer, MoveHHi copies invalid data. (Actually, it’s unlikely that MoveHHi
would ever get that far; probably it would run into problems when attempting to
determine the size of the original block from the block header.)
Heap Management 1-35

C H A P T E R 1

Introduction to Memory Management
Not all fake handles are as easy to spot as those created by the MakeFakeHandle
function defined in Listing 1-2. You might, for instance, attempt to copy the data in an
existing record (myRecord) into a new handle, as follows:

myHandle := NewHandle(SizeOf(myRecord)); {create a new handle}

myHandle^ := @myRecord; {DON’T DO THIS!}

The second line of code does not make myHandle a handle to the beginning of the
myRecord record. Instead, it overwrites the master pointer with the address of that
record, making myHandle a fake handle.

▲ W A R N I N G

Never assign a value directly to a master pointer. ▲

A correct way to create a new handle to some existing data is to make a copy of the data
using the PtrToHand function, as follows:

myErr := PtrToHand(@myRecord, myHandle, SizeOf(myRecord));

The Memory Manager provides a set of pointer- and handle-manipulation routines that
can help you avoid creating fake handles. See the chapter “Memory Manager” in this
book for details on those routines.

Low-Memory Conditions 1
It is particularly important to make sure that the amount of free space in your
application heap never gets too low. For example, you should never deplete the available
heap memory to the point that it becomes impossible to load required code segments. As
you have seen, your application will crash if the Segment Manager is called to load a
required code segment and there is not enough contiguous free memory to allocate a
block of the appropriate size.

You can take several steps to help maximize the amount of free space in your heap. For
example, you can mark as purgeable any relocatable blocks whose contents could easily
be reconstructed. By making a block purgeable, you give the Memory Manager the
freedom to release that space if heap memory becomes low. You can also help maximize
the available heap memory by intelligently segmenting your application’s executable
code and by periodically unloading any unneeded segments. The standard way to do
this is to unload every nonessential segment at the end of your application’s main event
loop. (See the chapter “Segment Manager” in Inside Macintosh: Processes for a complete
discussion of code-segmentation techniques.)

Memory Cushions 1

These two measures—making blocks purgeable and unloading segments—help you
only by releasing blocks that have already been allocated. It is even more important to
make sure, before you attempt to allocate memory directly, that you don’t deplete the
available heap memory. Before you call NewHandle or NewPtr, you should check that,
if the requested amount of memory were in fact allocated, the remaining amount of
1-36 Heap Management

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
space free in the heap would not fall below a certain threshold. The free memory defined
by that threshold is your memory cushion. You should not simply inspect the handle
or pointer returned to you and make sure that its value isn’t NIL, because you might
have succeeded in allocating the space you requested but left the amount of free space
dangerously low.

You also need to make sure that indirect memory allocation doesn’t cut into the memory
cushion. When, for example, you call GetNewDialog, the Dialog Manager might need
to allocate space for a dialog record; it also needs to allocate heap space for the dialog
item list and any other custom items in the dialog. Before calling GetNewDialog,
therefore, you need to make sure that the amount of space left free after the call is greater
than your memory cushion.

The execution of some system software routines requires significant amounts of memory
in your heap. For example, some QuickDraw operations on regions can temporarily
allocate fairly large amounts of space in your heap. Some of these system software
routines, however, do little or no checking to see that your heap contains the required
amount of free space. They either assume that they will get whatever memory they need
or they simply issue a system error when they don’t get the needed memory. In either
case, the result is usually a system crash.

You can avoid these problems by making sure that there is always enough space in your
heap to handle these hidden memory allocations. Experience has shown that 40 KB is a
reasonably safe size for this memory cushion. If you can consistently maintain that
amount of space free in your heap, you can be reasonably certain that system software
routines will get the memory they need to operate. You also generally need a larger
cushion (about 70 KB) when printing.

Memory Reserves 1

Unfortunately, there are times when you might need to use some of the memory in the
cushion yourself. It is better, for instance, to dip into the memory cushion, if necessary, to
save a user’s document than to reject the request to save the document. Some actions
your application performs should not be rejectable simply because they require it to
reduce the amount of free space below a desired minimum.

Instead of relying on just the free memory of a memory cushion, you can allocate a
memory reserve, some additional emergency storage that you release when free memory
becomes low. The important difference between this memory reserve and the memory
cushion is that the memory reserve is a block of allocated memory, which you release
whenever you detect that essential tasks have dipped into the memory cushion.

That emergency memory reserve might provide enough memory to compensate for any
essential tasks that you fail to anticipate. Because you allow essential tasks to dip into the
memory cushion, the release itself of the memory reserve should not be a cause for
alarm. Using this scheme, your application releases the memory reserve as a
precautionary measure during ordinary operation. Ideally, however, the application
should never actually deplete the memory cushion and use the memory reserve.
Heap Management 1-37

C H A P T E R 1

Introduction to Memory Management
Grow-Zone Functions 1

The Memory Manager provides a particularly easy way for you to make sure that the
emergency memory reserve is released when necessary. You can define a grow-zone
function that is associated with your application heap. The Memory Manager calls your
heap’s grow-zone function only after other techniques of freeing memory to satisfy a
memory request fail (that is, after compacting and purging the heap and extending the
heap zone to its maximum size). The grow-zone function can then take appropriate steps
to free additional memory.

A grow-zone function might dispose of some blocks or make some unpurgeable blocks
purgeable. When the function returns, the Memory Manager once again purges and
compacts the heap and tries to reallocate memory. If there is still insufficient memory, the
Memory Manager calls the grow-zone function again (but only if the function returned a
nonzero value the previous time it was called). This mechanism allows your grow-zone
function to release just a little bit of memory at a time. If the amount it releases at any
time is not enough, the Memory Manager calls it again and gives it the opportunity to
take more drastic measures. As the most drastic step to freeing memory in your heap,
you can release the emergency reserve.

Using Memory 1

This section describes how you can use the Memory Manager to perform the most
typical memory management tasks. In particular, this section shows how you can

■ set up your application heap at application launch time

■ determine how much free space is available in your application heap

■ allocate and release blocks of memory in your heap

■ define and install a grow-zone function

The techniques described in this section are designed to minimize fragmentation of your
application heap and to ensure that your application always has sufficient memory to
complete any essential operations. Many of these techniques incorporate the heap
memory cushion and emergency memory reserve discussed in “Low-Memory
Conditions,” beginning on page 1-36.

Note
This section describes relatively simple memory-management
techniques. Depending on the requirements of your application, you
might want to manage your heap memory differently. ◆

Setting Up the Application Heap 1
When the Process Manager launches your application, it calls the Memory Manager to
create and initialize a memory partition for your application. The Process Manager then
1-38 Using Memory

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
loads code segments into memory and sets up the stack, heap, and A5 world (including
the jump table) for your application.

To help prevent heap fragmentation, you should also perform some setup of your own
early in your application’s execution. Depending on the needs of your application, you
might want to

■ change the size of your application’s stack

■ expand the heap to the heap limit

■ allocate additional master pointer blocks

The following sections describe in detail how and when to perform these operations.

Changing the Size of the Stack 1

Most applications allocate space on their stack in a predictable way and do not need to
monitor stack space during their execution. For these applications, stack usage usually
reaches a maximum in some heavily nested routine. If the stack in your application can
never grow beyond a certain size, then to avoid collisions between your stack and heap
you simply need to ensure that your stack is large enough to accommodate that size.
If you never encounter system error 28 (generated by the stack sniffer when it detects a
collision between the stack and the heap) during application testing, then you probably
do not need to increase the size of your stack.

Some applications, however, rely heavily on recursive programming techniques, in
which one routine repeatedly calls itself or a small group of routines repeatedly call each
other. In these applications, even routines with just a few local variables can cause stack
overflow, because each time a routine calls itself, a new copy of that routine’s parameters
and variables is appended to the stack. The problem can become particularly acute if one
or more of the local variables is a string, which can require up to 256 bytes of stack space.

You can help prevent your application from crashing because of insufficient stack space
by expanding the size of your stack. If your application does not depend on recursion,
you should do this only if you encounter system error 28 during testing. If your
application does depend on recursion, you might consider expanding the stack so that
your application can perform deeply nested recursive computations. In addition, some
object-oriented languages (for example, C++) allocate space for objects on the stack. If
you are using one of these languages, you might need to expand your stack.

Note
If you are programming in LISP or another language that depends
extensively on recursion, your development system might allocate
memory for local variables in the heap rather than on the stack. If so,
expanding the size of the stack is not helpful. Consult your development
system’s documentation for details on how it allocates memory. ◆

To increase the size of your stack, you simply reduce the size of your heap. Because the
heap cannot grow above the boundary contained in the ApplLimit global variable, you
can lower the value of ApplLimit to limit the heap’s growth. By lowering ApplLimit,
Using Memory 1-39

C H A P T E R 1

Introduction to Memory Management
technically you are not making the stack bigger; you are just preventing collisions
between it and the heap.

By default, the stack can grow to 8 KB on Macintosh computers without Color
QuickDraw and to 32 KB on computers with Color QuickDraw. (The size of the stack for
a faceless background process is always 8 KB, whether Color QuickDraw is present or
not.) You should never decrease the size of the stack, because future versions of system
software might increase the default amount of space allocated for the stack. For the same
reason, you should not set the stack to a predetermined absolute size or calculate a new
absolute size for the stack based on the microprocessor’s type. If you must modify the
size of the stack, you should increase the stack size only by some relative amount that is
sufficient to meet the increased stack requirements of your application. There is no
maximum size to which the stack can grow.

Listing 1-3 defines a procedure that increases the stack size by a given value. It does so
by determining the current heap limit, subtracting the value of the extraBytes
parameter from that value, and then setting the application limit to the difference.

Listing 1-3 Increasing the amount of space allocated for the stack

PROCEDURE IncreaseStackSize (extraBytes: Size);

BEGIN

SetApplLimit(Ptr(ORD4(GetApplLimit) - extraBytes));

END;

You should call this procedure at the beginning of your application, before you
call the MaxApplZone procedure (as described in the next section). If you call
IncreaseStackSize after you call MaxApplZone, it has no effect, because the
SetApplLimit procedure cannot change the ApplLimit global variable to a value
lower than the current top of the heap.

Note
Some compilers add to the beginning of your application some default
initialization code that automatically calls MaxApplZone. You might
need to specify a compiler directive that turns off such default
initialization if you want to increase the size of the stack. Consult your
development system’s documentation for details. ◆

Expanding the Heap 1

Near the beginning of your application’s execution, before you allocate any memory,
you should call the MaxApplZone procedure to expand the application heap
immediately to the application heap limit. If you do not do this, the Memory Manager
gradually expands your heap as memory needs require. This gradual expansion can
result in significant heap fragmentation if you have previously moved relocatable blocks
to the top of the heap (by calling MoveHHi) and locked them (by calling HLock). When
the heap grows beyond those locked blocks, they are no longer at the top of the heap.
Your heap then remains fragmented for as long as those blocks remain locked.
1-40 Using Memory

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
Another advantage to calling MaxApplZone is that doing so is likely to reduce the
number of relocatable blocks that are purged by the Memory Manager. The Memory
Manager expands your heap to fulfill a memory request only after it has exhausted other
methods of obtaining the required amount of space, including compacting the heap and
purging blocks marked as purgeable. By expanding the heap to its limit, you can prevent
the Memory Manager from purging blocks that it otherwise would purge. This, together
with the fact that your heap is expanded only once, can make memory allocation
significantly faster.

Note
As indicated in the previous section, you should call MaxApplZone
only after you have expanded the stack, if necessary. ◆

Allocating Master Pointer Blocks 1

After calling MaxApplZone, you should call the MoreMasters procedure to allocate as
many new nonrelocatable blocks of master pointers as your application is likely to need
during its execution. Each block of master pointers in your application heap contains 64
master pointers. The Operating System allocates one block of master pointers as your
application is loaded into memory, and every relocatable block you allocate needs one
master pointer to reference it.

If, when you allocate a relocatable block, there are no unused master pointers in your
application heap, the Memory Manager automatically allocates a new block of master
pointers. For several reasons, however, you should try to prevent the Memory Manager
from calling MoreMasters for you. First, MoreMasters executes more slowly if it has
to move relocatable blocks up in the heap to make room for the new nonrelocatable
block of master pointers. When your application first starts running, there are no such
blocks that might have to be moved. Second, the new nonrelocatable block of master
pointers is likely to fragment your application heap. At any time the Memory Manager is
forced to call MoreMasters for you, there are already at least 64 relocatable blocks
allocated in your heap. Unless all or most of those blocks are locked high in the heap (an
unlikely situation), the new nonrelocatable block of master pointers might be allocated
above existing relocatable blocks. This increases heap fragmentation.

To prevent this fragmentation, you should call MoreMasters at the beginning of your
application enough times to ensure that the Memory Manager never needs to call it for
you. For example, if your application never allocates more than 300 relocatable blocks in
its heap, then five calls to the MoreMasters should be enough. It’s better to call
MoreMasters too many times than too few, so if your application usually allocates
about 100 relocatable blocks but sometimes might allocate 1000 in a particularly busy
session, you should call MoreMasters enough times at the beginning of the program to
cover the larger figure.

You can determine empirically how many times to call MoreMasters by using a
low-level debugger. First, remove all the calls to MoreMasters from your code and then
give your application a rigorous workout, opening and closing windows, dialog boxes,
and desk accessories as much as any user would. Then, find out from your debugger
how many times the system called MoreMasters. To do so, count the nonrelocatable
Using Memory 1-41

C H A P T E R 1

Introduction to Memory Management
blocks of size $100 bytes (decimal 256, or 64 × 4). Because of Memory Manager size
corrections, you should also count any nonrelocatable blocks of size $108, $10C, or
$110 bytes. (You should also check to make sure that your application doesn’t allocate
other nonrelocatable blocks of those sizes. If it does, subtract the number it allocates from
the total.) Finally, call MoreMasters at least that many times at the beginning of your
application.

Listing 1-4 illustrates a typical sequence of steps to configure your application heap
and stack. The DoSetUpHeap procedure defined there increases the size of the stack by
32 KB, expands the application heap to its new limit, and allocates five additional blocks
of master pointers.

Listing 1-4 Setting up your application heap and stack

PROCEDURE DoSetUpHeap;

CONST

kExtraStackSpace = $8000; {32 KB}

kMoreMasterCalls = 5; {for 320 master ptrs}

VAR

count: Integer;

BEGIN

IncreaseStackSize(kExtraStackSpace); {increase stack size}

MaxApplZone; {extend heap to limit}

FOR count := 1 TO kMoreMasterCalls DO

MoreMasters; {64 more master ptrs}

END;

To reduce heap fragmentation, you should call DoSetUpHeap in a code segment that
you never unload (possibly the main segment) rather than in a special initialization code
segment. This is because MoreMasters allocates a nonrelocatable block. If you call
MoreMasters from a code segment that is later purged, the new master pointer block is
located above the purged space, thereby increasing fragmentation.

Determining the Amount of Free Memory 1
Because space in your heap is limited, you cannot usually honor every user request that
would require your application to allocate memory. For example, every time the user
opens a new window, you probably need to allocate a new window record and other
associated data structures. If you allow the user to open windows endlessly, you risk
running out of memory. This might adversely affect your application’s ability to perform
important operations such as saving existing data in a window.

It is important, therefore, to implement some scheme that prevents your application
from using too much of its own heap. One way to do this is to maintain a memory
cushion that can be used only to satisfy essential memory requests. Before allocating
memory for any nonessential task, you need to ensure that the amount of memory that
1-42 Using Memory

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
remains free after the allocation exceeds the size of your memory cushion. You can do
this by calling the function IsMemoryAvailable defined in Listing 1-5.

Listing 1-5 Determining whether allocating memory would deplete the memory cushion

FUNCTION IsMemoryAvailable (memRequest: LongInt): Boolean;

VAR

total: LongInt; {total free memory if heap purged}

contig: LongInt; {largest contiguous block if heap purged}

BEGIN

PurgeSpace(total, contig);

IsMemoryAvailable := ((memRequest + kMemCushion) < contig);

END;

The IsMemoryAvailable function calls the Memory Manager’s PurgeSpace
procedure to determine the size of the largest contiguous block that would be available if
the application heap were purged; that size is returned in the contig parameter. If the
size of the potential memory request together with the size of the memory cushion is less
than the value returned in contig, IsMemoryAvailable is set to TRUE, indicating that
it is safe to allocate the specified amount of memory; otherwise, IsMemoryAvailable
returns FALSE.

Notice that the IsMemoryAvailable function does not itself cause the heap to be
purged or compacted; the Memory Manager does so automatically when you actually
attempt to allocate the memory.

Usually, the easiest way to determine how big to make your application’s memory
cushion is to experiment with various values. You should attempt to find the lowest
value that allows your application to execute successfully no matter how hard you try to
allocate memory to make the application crash. As an extra guarantee against your
application’s crashing, you might want to add some memory to this value. As indicated
earlier in this chapter, 40 KB is a reasonable size for most applications.

CONST

kMemCushion = 40 * 1024; {size of memory cushion}

You should call the IsMemoryAvailable function before all nonessential memory
requests, no matter how small. For example, suppose your application allocates a new,
small relocatable block each time a user types a new line of text. That block might be
small, but thousands of such blocks could take up a considerable amount of space.
Therefore, you should check to see if there is sufficient memory available before
allocating each one. (See Listing 1-6 on page 1-44 for an example of how to call
IsMemoryAvailable.)

You should never, however, call the IsMemoryAvailable function before an essential
memory request. When deciding how big to make the memory cushion for your
application, you must make sure that essential requests can never deplete all of the
cushion. Note that when you call the IsMemoryAvailable function for a nonessential
Using Memory 1-43

C H A P T E R 1

Introduction to Memory Management
request, essential requests might have already dipped into the memory cushion. In that
case, IsMemoryAvailable returns FALSE no matter how small the nonessential
request is.

Some actions should never be rejectable. For example, you should guarantee that there is
always enough memory free to save open documents, and to perform typical
maintenance tasks such as updating windows. Other user actions are likely to be always
rejectable. For example, because you cannot allow the user to create an endless number
of documents, you should make the New Document and Open Document menu
commands rejectable.

Although the decisions of which actions to make rejectable are usually obvious, modal
and modeless boxes present special problems. If you want to make such dialog boxes
available at all costs, you must ensure that you allocate a large enough memory cushion
to handle the maximum number of these dialog boxes that the user could open at once.
If you consider a certain dialog box (for instance, a spelling checker) nonessential, you
must be prepared to inform the user that there is not enough memory to open it if
memory space become low.

Allocating Blocks of Memory 1
As you have seen, a key element of the memory-management scheme presented in this
chapter is to disallow any nonessential memory allocation requests that would deplete
the memory cushion. In practice, this means that, before calling NewHandle, NewPtr, or
another function that allocates memory, you should check that the amount of space
remaining after the allocation, if successful, exceeds the size of the memory cushion.

An easy way to do this is never to allocate memory for nonessential tasks by calling
NewHandle or NewPtr directly. Instead call a function such as NewHandleCushion,
defined in Listing 1-6, or NewPtrCushion, defined in Listing 1-7.

Listing 1-6 Allocating relocatable blocks

FUNCTION NewHandleCushion (logicalSize: Size): Handle;

BEGIN

IF NOT IsMemoryAvailable(logicalSize) THEN

NewHandleCushion := NIL

ELSE

BEGIN

SetGrowZone(NIL); {remove grow-zone function}

NewHandleCushion := NewHandleClear(logicalSize);

SetGrowZone(@MyGrowZone); {install grow-zone function}

END;

END;

The NewHandleCushion function first calls IsMemoryAvailable to determine
whether allocating the requested number of bytes would deplete the memory cushion.
1-44 Using Memory

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
If so, NewHandleCushion returns NIL to indicate that the request has failed. Otherwise,
if there is indeed sufficient space for the new block, NewHandleCushion calls
NewHandleClear to allocate the relocatable block. Before calling NewHandleClear,
however, NewHandleCushion disables the grow-zone function for the application
heap. This prevents the grow-zone function from releasing any emergency memory
reserve your application might be maintaining. See “Defining a Grow-Zone Function”
on page 1-48 for details on grow-zone functions.

You can define a function NewPtrCushion to handle allocation of nonrelocatable
blocks, as shown in Listing 1-7.

Listing 1-7 Allocating nonrelocatable blocks

FUNCTION NewPtrCushion (logicalSize: Size): Handle;

BEGIN

IF NOT IsMemoryAvailable(logicalSize) THEN

NewPtrCushion := NIL

ELSE

BEGIN

SetGrowZone(NIL); {remove grow-zone function}

NewPtrCushion := NewPtrClear(logicalSize);

SetGrowZone(@MyGrowZone); {install grow-zone function}

END;

END;

Note
The functions NewHandleCushion and NewPtrCushion allocate
prezeroed blocks in your application heap. You can easily modify those
functions if you do not want the blocks prezeroed. ◆

Listing 1-8 illustrates a typical way to call NewPtrCushion.

Listing 1-8 Allocating a dialog record

FUNCTION GetDialog (dialogID: Integer): DialogPtr;

VAR

myPtr: Ptr; {storage for the dialog record}

BEGIN

myPtr := NewPtrCushion(SizeOf(DialogRecord));

IF MemError = noErr THEN

GetDialog := GetNewDialog(dialogID, myPtr, WindowPtr(-1))

ELSE

GetDialog := NIL; {can’t get memory}

END;
Using Memory 1-45

C H A P T E R 1

Introduction to Memory Management
When you allocate memory directly, you can later release it by calling the
DisposeHandle and DisposePtr procedures. When you allocate memory indirectly
by calling a Toolbox routine, there is always a corresponding Toolbox routine to release
that memory. For example, the DisposeWindow procedure releases memory allocated
with the NewWindow function. Be sure to use these special Toolbox routines instead of
the generic Memory Manager routines when applicable.

Maintaining a Memory Reserve 1
A simple way to help ensure that your application always has enough memory available
for essential operations is to maintain an emergency memory reserve. This memory
reserve is a block of memory that your application uses only for essential operations and
only when all other heap space has been allocated. This section illustrates one way to
implement a memory reserve in your application.

To create and maintain an emergency memory reserve, you follow three distinct steps:

■ When your application starts up, you need to allocate a block of reserve memory.
Because you allocate the block, it is no longer free in the heap and does not enter into
the free-space determination done by IsMemoryAvailable.

■ When your application needs to fulfill an essential memory request and there isn’t
enough space in your heap to satisfy the request, you can release the reserve. This
effectively ensures that you always have the memory you request, at least for essential
operations. You can use a grow-zone function to release the reserve when necessary;
see “Defining a Grow-Zone Function” on page 1-48 for details.

■ Each time through your main event loop, you should check whether the reserve has
been released. If it has, you should attempt to recover the reserve. If you cannot
recover the reserve, you should warn the user that memory is critically short.

To refer to the emergency reserve, you can declare a global variable of type Handle.

VAR

gEmergencyMemory: Handle; {handle to emergency memory reserve}

Listing 1-9 defines a function that you can call early in your application’s execution
(before entering your main event loop) to create an emergency memory reserve. This
function also installs the application-defined grow-zone procedure. See “Defining a
Grow-Zone Function” on page 1-48 for a description of the grow-zone function.

Listing 1-9 Creating an emergency memory reserve

PROCEDURE InitializeEmergencyMemory;

BEGIN

gEmergencyMemory := NewHandle(kEmergencyMemorySize);

SetGrowZone(@MyGrowZone);

END;
1-46 Using Memory

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
The InitializeEmergencyMemory procedure defined in Listing 1-9 simply allocates
a relocatable block of a predefined size. That block is the emergency memory reserve.
A reasonable size for the memory reserve is whatever size you use for the memory
cushion. Once again, 40 KB is a good size for many applications.

CONST

kEmergencyMemorySize = 40 * 1024; {size of memory reserve}

When using a memory reserve, you need to change the IsMemoryAvailable function
defined earlier in Listing 1-5. You need to make sure, when determining whether a
nonessential memory allocation request should be honored, that the memory reserve has
not been released. To check that the memory reserve is intact, use the function
IsEmergencyMemory defined in Listing 1-10.

Listing 1-10 Checking the emergency memory reserve

FUNCTION IsEmergencyMemory: Boolean;

BEGIN

IsEmergencyMemory :=

(gEmergencyMemory <> NIL) & (gEmergencyMemory^ <> NIL);

END;

Then, you can replace the function IsMemoryAvailable defined in Listing 1-5
(page 1-43) by the version defined in Listing 1-11.

Listing 1-11 Determining whether allocating memory would deplete the memory cushion

FUNCTION IsMemoryAvailable (memRequest: LongInt): Boolean;

VAR

total: LongInt; {total free memory if heap purged}

contig: LongInt; {largest contiguous block if heap purged}

BEGIN

IF NOT IsEmergencyMemory THEN {is emergency memory available?}

IsMemoryAvailable := FALSE

ELSE

BEGIN

PurgeSpace(total, contig);

IsMemoryAvailable := ((memRequest + kMemCushion) < contig);

END;

END;

As you can see, this is exactly like the earlier version except that it indicates that memory
is not available if the memory reserve is not intact.
Using Memory 1-47

C H A P T E R 1

Introduction to Memory Management
Once you have allocated the memory reserve early in your application’s execution, it
should be released only to honor essential memory requests when there is no other space
available in your heap. You can install a simple grow-zone function that takes care of
releasing the reserve at the proper moment. Each time through your main event loop,
you can check whether the reserve is still intact; to do this, add these lines of code to
your main event loop, before you make your event call:

IF NOT IsEmergencyMemory THEN

RecoverEmergencyMemory;

The RecoverEmergencyMemory function, defined in Listing 1-12, simply attempts to
reallocate the memory reserve.

Listing 1-12 Reallocating the emergency memory reserve

PROCEDURE RecoverEmergencyMemory;

BEGIN

ReallocateHandle(gEmergencyMemory, kEmergencyMemorySize);

END;

If you are unable to reallocate the memory reserve, you might want to notify the user
that because memory is in short supply, steps should be taken to save any important
data and to free some memory.

Defining a Grow-Zone Function 1
The Memory Manager calls your heap’s grow-zone function only after other attempts to
obtain enough memory to satisfy a memory allocation request have failed. A grow-zone
function should be of the following form:

FUNCTION MyGrowZone (cbNeeded: Size): LongInt;

The Memory Manager passes to your function (in the cbNeeded parameter) the number
of bytes it needs. Your function can do whatever it likes to free that much space in the
heap. For example, your grow-zone function might dispose of certain blocks or make
some unpurgeable blocks purgeable. Your function should return the number of bytes, if
any, it managed to free.

When the function returns, the Memory Manager once again purges and compacts the
heap and tries again to allocate the requested amount of memory. If there is still
insufficient memory, the Memory Manager calls your grow-zone function again, but
only if the function returned a nonzero value when last called. This mechanism allows
your grow-zone function to release memory gradually; if the amount it releases is not
enough, the Memory Manager calls it again and gives it the opportunity to take more
drastic measures.
1-48 Using Memory

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
Typically a grow-zone function frees space by calling the EmptyHandle procedure,
which purges a relocatable block from the heap and sets the block’s master pointer to
NIL. This is preferable to disposing of the space (by calling the DisposeHandle
procedure), because you are likely to want to reallocate the block.

The Memory Manager might designate a particular relocatable block in the heap as
protected; your grow-zone function should not move or purge that block. You can
determine which block, if any, the Memory Manager has protected by calling the
GZSaveHnd function in your grow-zone function.

Listing 1-13 defines a very basic grow-zone function. The MyGrowZone function
attempts to create space in the application heap simply by releasing the block of
emergency memory. First, however, it checks that (1) the emergency memory hasn’t
already been released and (2) the emergency memory is not a protected block of memory
(as it would be, for example, during an attempt to reallocate the emergency memory
block). If either of these conditions isn’t true, then MyGrowZone returns 0 to indicate that
no memory was released.

Listing 1-13 A grow-zone function that releases emergency storage

FUNCTION MyGrowZone (cbNeeded: Size): LongInt;

VAR

theA5: LongInt; {value of A5 when function is called}

BEGIN

theA5 := SetCurrentA5; {remember current value of A5; install ours}

IF (gEmergencyMemory^ <> NIL) & (gEmergencyMemory <> GZSaveHnd) THEN

BEGIN

EmptyHandle(gEmergencyMemory);

MyGrowZone := kEmergencyMemorySize;

END

ELSE

MyGrowZone := 0; {no more memory to release}

theA5 := SetA5(theA5); {restore previous value of A5}

END;

The function MyGrowZone defined in Listing 1-13 saves the current value of the A5
register when it begins and then restores the previous value before it exits. This is
necessary because your grow-zone function might be called at a time when the system is
attempting to allocate memory and value in the A5 register is not correct. See the chapter
“Memory Management Utilities” in this book for more information about saving and
restoring the A5 register.

Note
You need to save and restore the A5 register only if your grow-zone
function accesses your A5 world. (In Listing 1-13, the grow-zone
function uses the global variable gEmergencyMemory.) ◆
Using Memory 1-49

C H A P T E R 1

Introduction to Memory Management
Memory Management Reference 1

This section describes the routines used to illustrate the memory-management
techniques presented earlier in this chapter. In particular, it describes the routines that
allow you to manipulate blocks of memory in your application heap.

Note
For a complete description of all Memory Manager data types and
routines, see the chapter “Memory Manager” in this book. ◆

Memory Management Routines 1
This section describes the routines you can use to set up your application’s heap, allocate
and dispose of relocatable and nonrelocatable blocks, manipulate those blocks, assess the
availability of memory in your application’s heap, free memory from the heap, and
install a grow-zone function for your heap.

Note
The result codes listed for Memory Manager routines are usually not
directly returned to your application. You need to call the MemError
function (or, from assembly language, inspect the MemErr global
variable) to get a routine’s result code. ◆

You cannot call most Memory Manager routines at interrupt time for several reasons.
You cannot allocate memory at interrupt time because the Memory Manager might
already be handling a memory-allocation request and the heap might be in an
inconsistent state. More generally, you cannot call at interrupt time any Memory
Manager routine that returns its result code via the MemError function, even if that
routine doesn’t allocate or move memory. Resetting the MemErr global variable at
interrupt time can lead to unexpected results if the interrupted code depends on the
value of MemErr. Note that Memory Manager routines like HLock return their results
via MemError and therefore should not be called in interrupt code.

Setting Up the Application Heap 1

The Operating System automatically initializes your application’s heap when your
application is launched. To help prevent heap fragmentation, you should call the
procedures in this section before you allocate any blocks of memory in your heap.

Use the MaxApplZone procedure to extend the application heap zone to the application
heap limit so that the Memory Manager does not do so gradually as memory requests
require. Use the MoreMasters procedure to preallocate enough blocks of master
pointers so that the Memory Manager never needs to allocate new master pointer blocks
for you.
1-50 Memory Management Reference

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
MaxApplZone 1

To help ensure that you can use as much of the application heap zone as possible, call the
MaxApplZone procedure. Call this once near the beginning of your program, after you
have expanded your stack.

PROCEDURE MaxApplZone;

DESCRIPTION

The MaxApplZone procedure expands the application heap zone to the application heap
limit. If you do not call MaxApplZone, the application heap zone grows as necessary to
fulfill memory requests. The MaxApplZone procedure does not purge any blocks
currently in the zone. If the zone already extends to the limit, MaxApplZone does
nothing.

It is a good idea to call MaxApplZone once at the beginning of your program if you
intend to maintain an effectively partitioned heap. If you do not call MaxApplZone and
then call MoveHHi to move relocatable blocks to the top of the heap zone before locking
them, the heap zone could later grow beyond these locked blocks to fulfill a memory
request. If the Memory Manager were to allocate a nonrelocatable block in this new
space, your heap would be fragmented.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for MaxApplZone are

RESULT CODES

MoreMasters 1

Call the MoreMasters procedure several times at the beginning of your program to
prevent the Memory Manager from running out of master pointers in the middle of
application execution. If it does run out, it allocates more, possibly causing heap
fragmentation.

PROCEDURE MoreMasters;

Registers on exit

D0 Result code

noErr 0 No error
Memory Management Reference 1-51

C H A P T E R 1

Introduction to Memory Management
DESCRIPTION

The MoreMasters procedure allocates another block of master pointers in the current
heap zone. In the application heap, a block of master pointers consists of 64 master
pointers, and in the system heap, a block consists of 32 master pointers. (These values,
however, might change in future versions of system software.) When you initialize
additional heap zones, you can specify the number of master pointers you want to have
in a block of master pointers.

The Memory Manager automatically calls MoreMasters once for every new heap zone,
including the application heap zone.

You should call MoreMasters at the beginning of your program enough times to ensure
that the Memory Manager never needs to call it for you. For example, if your application
never allocates more than 300 relocatable blocks in its heap zone, then five calls to the
MoreMasters should be enough. It’s better to call MoreMasters too many times than
too few. For instance, if your application usually allocates about 100 relocatable blocks
but might allocate 1000 in a particularly busy session, call MoreMasters enough times
at the beginning of the program to accommodate times of greater memory use.

If you are forced to call MoreMasters so many times that it causes a significant
slowdown, you could change the moreMast field of the zone header to the total number
of master pointers you need and then call MoreMasters just once. Afterward, be sure to
restore the moreMast field to its original value.

SPECIAL CONSIDERATIONS

Because MoreMasters allocates memory, you should not call it at interrupt time.

The calls to MoreMasters at the beginning of your application should be in the main
code segment of your application or in a segment that the main segment never unloads.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for MoreMasters are

RESULT CODES

Registers on exit

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory
1-52 Memory Management Reference

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
GetApplLimit 1

Use the GetApplLimit function to get the application heap limit, beyond which the
application heap cannot expand.

FUNCTION GetApplLimit: Ptr;

DESCRIPTION

The GetApplLimit function returns the current application heap limit. The Memory
Manager expands the application heap only up to the byte preceding this limit.

Nothing prevents the stack from growing below the application limit. If the Operating
System detects that the stack has crashed into the heap, it generates a system error. To
avoid this, use GetApplLimit and the SetApplLimit procedure to set the application
limit low enough so that a growing stack does not encounter the heap.

Note
The GetApplLimit function does not indicate the amount of memory
available to your application. ◆

ASSEMBLY-LANGUAGE INFORMATION

The global variable ApplLimit contains the current application heap limit.

SetApplLimit 1

Use the SetApplLimit procedure to set the application heap limit, beyond which the
application heap cannot expand.

PROCEDURE SetApplLimit (zoneLimit: Ptr);

zoneLimit A pointer to a byte in memory demarcating the upper boundary of the
application heap zone. The zone can grow to include the byte preceding
zoneLimit in memory, but no further.

DESCRIPTION

The SetApplLimit procedure sets the current application heap limit to zoneLimit.
The Memory Manager then can expand the application heap only up to the byte
Memory Management Reference 1-53

C H A P T E R 1

Introduction to Memory Management
preceding the application limit. If the zone already extends beyond the specified limit,
the Memory Manager does not cut it back but does prevent it from growing further.

Note
The zoneLimit parameter is not a byte count, but an absolute byte in
memory. Thus, you should use the SetApplLimit procedure only with
a value obtained from the Memory Manager functions GetApplLimit
or ApplicationZone. ◆

You cannot change the limit of zones other than the application heap zone.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for SetApplLimit are

RESULT CODES

SEE ALSO

To use SetApplLimit to expand the default size of the stack, see the discussion in
“Changing the Size of the Stack” on page 1-39.

Allocating and Releasing Relocatable Blocks of Memory 1

You can use the NewHandle function to allocate a relocatable block of memory. If you
want to allocate new blocks of memory with their bits precleared to 0, you can use the
NewHandleClear function.

▲ W A R N I N G

You should not call any of these memory-allocation routines at
interrupt time. ▲

You can use the DisposeHandle procedure to free relocatable blocks of memory you
have allocated.

Registers on entry

A0 Pointer to desired new zone limit

Registers on exit

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory
1-54 Memory Management Reference

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
NewHandle 1

You can use the NewHandle function to allocate a relocatable memory block of a
specified size.

FUNCTION NewHandle (logicalSize: Size): Handle;

logicalSize
The requested size (in bytes) of the relocatable block.

DESCRIPTION

The NewHandle function attempts to allocate a new relocatable block in the current heap
zone with a logical size of logicalSize bytes and then return a handle to the block.
The new block is unlocked and unpurgeable. If NewHandle cannot allocate a block of
the requested size, it returns NIL.

▲ W A R N I N G

Do not try to manufacture your own handles without this function by
simply assigning the address of a variable of type Ptr to a variable of
type Handle. The resulting “fake handle” would not reference a
relocatable block and could cause a system crash. ▲

The NewHandle function pursues all available avenues to create a block of the requested
size, including compacting the heap zone, increasing its size, and purging blocks from it.
If all of these techniques fail and the heap zone has a grow-zone function installed,
NewHandle calls the function. Then NewHandle tries again to free the necessary amount
of memory, once more compacting and purging the heap zone if necessary. If memory
still cannot be allocated, NewHandle calls the grow-zone function again, unless that
function had returned 0, in which case NewHandle gives up and returns NIL.

SPECIAL CONSIDERATIONS

Because NewHandle allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for NewHandle are

Registers on entry

A0 Number of logical bytes requested

Registers on exit

A0 Address of the new block’s master pointer or NIL

D0 Result code
Memory Management Reference 1-55

C H A P T E R 1

Introduction to Memory Management
If you want to clear the bytes of a block of memory to 0 when you allocate it with the
NewHandle function, set bit 9 of the routine trap word. You can usually do this by
supplying the word CLEAR as the second argument to the routine macro, as follows:

_NewHandle ,CLEAR

RESULT CODES

SEE ALSO

If you allocate a relocatable block that you plan to lock for long periods of time, you can
prevent heap fragmentation by allocating the block as low as possible in the heap zone.
To do this, see the description of the ReserveMem procedure on page 1-70.

If you plan to lock a relocatable block for short periods of time, you might want to move
it to the top of the heap zone to prevent heap fragmentation. For more information, see
the description of the MoveHHi procedure on page 1-71.

NewHandleClear 1

You can use the NewHandleClear function to allocate prezeroed memory in a
relocatable block of a specified size.

FUNCTION NewHandleClear (logicalSize: Size): Handle;

logicalSize
The requested size (in bytes) of the relocatable block. The
NewHandleClear function sets each of these bytes to 0.

DESCRIPTION

The NewHandleClear function works much as the NewHandle function does but sets
all bytes in the new block to 0 instead of leaving the contents of the block undefined.

Currently, NewHandleClear clears the block one byte at a time. For a large block, it
might be faster to clear the block manually a long word at a time.

RESULT CODES

noErr 0 No error
memFullErr –108 Not enough memory in heap zone

noErr 0 No error
memFullErr –108 Not enough memory in heap zone
1-56 Memory Management Reference

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
DisposeHandle 1

When you are completely done with a relocatable block, call the DisposeHandle
procedure to free it and its master pointer for other uses.

PROCEDURE DisposeHandle (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The DisposeHandle procedure releases the memory occupied by the relocatable block
whose handle is h. It also frees the handle’s master pointer for other uses.

▲ W A R N I N G

After a call to DisposeHandle, all handles to the released block
become invalid and should not be used again. Any subsequent calls to
DisposeHandle using an invalid handle might damage the master
pointer list. ▲

Do not use DisposeHandle to dispose of a handle obtained from the Resource
Manager (for example, by a previous call to GetResource); use ReleaseResource
instead. If, however, you have called DetachResource on a resource handle, you
should dispose of the storage by calling DisposeHandle.

SPECIAL CONSIDERATIONS

Because DisposeHandle purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for DisposeHandle are

RESULT CODES

Registers on entry

A0 Handle to the relocatable block to be disposed of

Registers on exit

D0 Result code

noErr 0 No error
memWZErr –111 Attempt to operate on a free block
Memory Management Reference 1-57

C H A P T E R 1

Introduction to Memory Management
Allocating and Releasing Nonrelocatable Blocks of Memory 1

You can use the NewPtr function to allocate a nonrelocatable block of memory. If you
want to allocate new blocks of memory with their bits precleared to 0, you can use the
NewPtrClear function.

▲ W A R N I N G

You should not call any of these memory-allocation routines at
interrupt time. ▲

You can use the DisposePtr procedure to free nonrelocatable blocks of memory you
have allocated.

NewPtr 1

You can use the NewPtr function to allocate a nonrelocatable block of memory of a
specified size.

FUNCTION NewPtr (logicalSize: Size): Ptr;

logicalSize
The requested size (in bytes) of the nonrelocatable block.

DESCRIPTION

The NewPtr function attempts to allocate, in the current heap zone, a nonrelocatable
block with a logical size of logicalSize bytes and then return a pointer to the block. If
the requested number of bytes cannot be allocated, NewPtr returns NIL.

The NewPtr function attempts to reserve space as low in the heap zone as possible for
the new block. If it is able to reserve the requested amount of space, NewPtr allocates the
nonrelocatable block in the gap ReserveMem creates. Otherwise, NewPtr returns NIL
and generates a memFullErr error.

SPECIAL CONSIDERATIONS

Because NewPtr allocates memory, you should not call it at interrupt time.
1-58 Memory Management Reference

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for NewPtr are

If you want to clear the bytes of a block of memory to 0 when you allocate it with the
NewPtr function, set bit 9 of the routine trap word. You can usually do this by supplying
the word CLEAR as the second argument to the routine macro, as follows:

_NewPtr ,CLEAR

RESULT CODES

NewPtrClear 1

You can use the NewPtrClear function to allocate prezeroed memory in a
nonrelocatable block of a specified size.

FUNCTION NewPtrClear (logicalSize: Size): Ptr;

logicalSize
The requested size (in bytes) of the nonrelocatable block.

DESCRIPTION

The NewPtrClear function works much as the NewPtr function does, but sets all bytes
in the new block to 0 instead of leaving the contents of the block undefined.

Currently, NewPtrClear clears the block one byte at a time. For a large block, it might
be faster to clear the block manually a long word at a time.

RESULT CODES

Registers on entry

A0 Number of logical bytes requested

Registers on exit

A0 Address of the new block or NIL

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory

noErr 0 No error
memFullErr –108 Not enough memory
Memory Management Reference 1-59

C H A P T E R 1

Introduction to Memory Management
DisposePtr 1

When you are completely done with a nonrelocatable block, call the DisposePtr
procedure to free it for other uses.

PROCEDURE DisposePtr (p: Ptr);

p A pointer to the nonrelocatable block you want to dispose of.

DESCRIPTION

The DisposePtr procedure releases the memory occupied by the nonrelocatable block
specified by p.

▲ W A R N I N G

After a call to DisposePtr, all pointers to the released block become
invalid and should not be used again. Any subsequent use of a pointer
to the released block might cause a system error. ▲

SPECIAL CONSIDERATIONS

Because DisposePtr purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for DisposePtr are

RESULT CODES

Setting the Properties of Relocatable Blocks 1

A relocatable block can be either locked or unlocked and either purgeable or
unpurgeable. In addition, it can have its resource bit either set or cleared. To determine
the state of any of these properties, use the HGetState function. To change these

Registers on entry

A0 Pointer to the nonrelocatable block to be disposed of

Registers on exit

D0 Result code

noErr 0 No error
memWZErr –111 Attempt to operate on a free block
1-60 Memory Management Reference

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
properties, use the HLock, HUnlock, HPurge, HNoPurge, HSetRBit, and HClrRBit
procedures. To restore these properties, use the HSetState procedure.

▲ W A R N I N G

Be sure to use these procedures to get and set the properties of
relocatable blocks. In particular, do not rely on the structure of master
pointers, because their structure in 24-bit mode is different from their
structure in 32-bit mode. ▲

HGetState 1

You can use the HGetState function to get the current properties of a relocatable block
(perhaps so that you can change and then later restore those properties).

FUNCTION HGetState (h: Handle): SignedByte;

h A handle to a relocatable block.

DESCRIPTION

The HGetState function returns a signed byte containing the flags of the master pointer
for the given handle. You can save this byte, change the state of any of the flags, and
then restore their original states by passing the byte to the HSetState procedure,
described next.

You can use bit-manipulation functions on the returned signed byte to determine the
value of a given attribute. Currently the following bits are used:

If an error occurs during an attempt to get the state flags of the specified relocatable
block, HGetState returns the low-order byte of the result code as its function result. For
example, if the handle h points to a master pointer whose value is NIL, then the signed
byte returned by HGetState will contain the value –109.

Bit Meaning

0–4 Reserved

5 Set if relocatable block is a resource

6 Set if relocatable block is purgeable

7 Set if relocatable block is locked
Memory Management Reference 1-61

C H A P T E R 1

Introduction to Memory Management
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HGetState are

RESULT CODES

HSetState 1

You can use the HSetState procedure to restore properties of a block after a call to
HGetState.

PROCEDURE HSetState (h: Handle; flags: SignedByte);

h A handle to a relocatable block.

flags A signed byte specifying the properties to which you want to set the
relocatable block.

DESCRIPTION

The HSetState procedure restores to the handle h the properties specified in the flags
signed byte. See the description of the HGetState function for a list of the currently
used bits in that byte. Because additional bits of the flags byte could become significant
in future versions of system software, use HSetState only with a byte returned by
HGetState. If you need to set two or three properties of a relocatable block at once, it is
better to use the procedures that set individual properties than to manipulate the bits
returned by HGetState and then call HSetState.

Registers on entry

A0 Handle whose properties you want to get

Registers on exit

D0 Byte containing flags

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
1-62 Memory Management Reference

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HSetState are

RESULT CODES

HLock 1

You can use the HLock procedure to lock a relocatable block so that it does not move in
the heap. If you plan to dereference a handle and then allocate, move, or purge memory
(or call a routine that does so), then you should lock the handle before using the
dereferenced handle.

PROCEDURE HLock (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HLock procedure locks the relocatable block to which h is a handle, preventing it
from being moved within its heap zone. If the block is already locked, HLock does
nothing.

Registers on entry

A0 Handle whose properties you want to set

D0 Byte containing flags indicating the handle’s new properties

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
Memory Management Reference 1-63

C H A P T E R 1

Introduction to Memory Management
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HLock are

RESULT CODES

SEE ALSO

If you plan to lock a relocatable block for long periods of time, you can prevent
fragmentation by ensuring that the block is as low as possible in the heap zone. To do
this, see the description of the ReserveMem procedure on page 1-70.

If you plan to lock a relocatable block for short periods of time, you can prevent heap
fragmentation by moving the block to the top of the heap zone before locking. For more
information, see the description of the MoveHHi procedure on page 1-71.

HUnlock 1

You can use the HUnlock procedure to unlock a relocatable block so that it is free to
move in its heap zone.

PROCEDURE HUnlock (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HUnlock procedure unlocks the relocatable block to which h is a handle, allowing it
to be moved within its heap zone. If the block is already unlocked, HUnlock does
nothing.

Registers on entry

A0 Handle to lock

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
1-64 Memory Management Reference

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HUnlock are

RESULT CODES

HPurge 1

You can use the HPurge procedure to mark a relocatable block so that it can be purged if
a memory request cannot be fulfilled after compaction.

PROCEDURE HPurge (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HPurge procedure makes the relocatable block to which h is a handle purgeable. If
the block is already purgeable, HPurge does nothing.

The Memory Manager might purge the block when it needs to purge the heap zone
containing the block to satisfy a memory request. A direct call to the PurgeMem
procedure or the MaxMem function would also purge blocks marked as purgeable.

Once you mark a relocatable block as purgeable, you should make sure that handles to
the block are not empty before you access the block. If they are empty, you must
reallocate space for the block and recopy the block’s data from another source, such as a
resource file, before using the information in the block.

If the block to which h is a handle is locked, HPurge does not unlock the block but does
mark it as purgeable. If you later call HUnlock on h, the block is subject to purging.

Registers on entry

A0 Handle to unlock

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
Memory Management Reference 1-65

C H A P T E R 1

Introduction to Memory Management
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HPurge are

RESULT CODES

SEE ALSO

If the Memory Manager has purged a block, you can reallocate space for it by using the
ReallocateHandle procedure, described on page 1-68.

You can immediately free the space taken by a handle without disposing of it by calling
EmptyHandle. This procedure, described on page 1-67, does not require that the block
be purgeable.

HNoPurge 1

You can use the HNoPurge procedure to mark a relocatable block so that it cannot be
purged.

PROCEDURE HNoPurge (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HNoPurge procedure makes the relocatable block to which h is a handle
unpurgeable. If the block is already unpurgeable, HNoPurge does nothing.

The HNoPurge procedure does not reallocate memory for a handle if it has already
been purged.

Registers on entry

A0 Handle to make purgeable

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
1-66 Memory Management Reference

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HNoPurge are

RESULT CODES

SEE ALSO

If you want to reallocate memory for a relocatable block that has already been purged,
you can use the ReallocateHandle procedure, described in the next section,
“Managing Relocatable Blocks.”

Managing Relocatable Blocks 1

The Memory Manager provides routines that allow you to purge and later reallocate
space for relocatable blocks and control where in their heap zone relocatable blocks are
located.

To free the memory taken up by a relocatable block without releasing the master pointer
to the block for other uses, use the EmptyHandle procedure. To reallocate space for a
handle that you have emptied or the Memory Manager has purged, use the
ReallocateHandle procedure.

To ensure that a relocatable block that you plan to lock for short or long periods of time
does not cause heap fragmentation, use the MoveHHi and the ReserveMem procedures,
respectively.

EmptyHandle 1

The EmptyHandle procedure allows you to free memory taken by a relocatable block
without freeing the relocatable block’s master pointer for other uses.

PROCEDURE EmptyHandle (h: Handle);

h A handle to a relocatable block.

Registers on entry

A0 Handle to make unpurgeable

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
Memory Management Reference 1-67

C H A P T E R 1

Introduction to Memory Management
DESCRIPTION

The EmptyHandle procedure purges the relocatable block whose handle is h and sets
the handle’s master pointer to NIL. The block whose handle is h must be unlocked but
need not be purgeable.

Note
If there are multiple handles to the relocatable block, then calling
the EmptyHandle procedure empties them all, because all of the
handles share a common master pointer. When you later use
ReallocateHandle to reallocate space for the block, the master
pointer is updated, and all of the handles reference the new block
correctly. ◆

SPECIAL CONSIDERATIONS

Because EmptyHandle purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for EmptyHandle are

RESULT CODES

SEE ALSO

To free the memory taken up by a relocatable block and release the block’s master
pointer for other uses, use the DisposeHandle procedure, described on page 1-57.

ReallocateHandle 1

To recover space for a relocatable block that you have emptied or the Memory Manager
has purged, use the ReallocateHandle procedure.

PROCEDURE ReallocateHandle (h: Handle; logicalSize: Size);

Registers on entry

A0 Handle to relocatable block

Registers on exit

A0 Handle to relocatable block

D0 Result code

noErr 0 No error
memWZErr –111 Attempt to operate on a free block
memPurErr –112 Attempt to purge a locked block
1-68 Memory Management Reference

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
h A handle to a relocatable block.

logicalSize
The desired new logical size (in bytes) of the relocatable block.

DESCRIPTION

The ReallocateHandle procedure allocates a new relocatable block with a logical size
of logicalSize bytes. It updates the handle h by setting its master pointer to point to
the new block. The new block is unlocked and unpurgeable.

Usually you use ReallocateHandle to reallocate space for a block that you have
emptied or the Memory Manager has purged. If the handle references an existing block,
ReallocateHandle releases that block before creating a new one.

Note
To reallocate space for a resource that has been purged, you should call
LoadResource, not ReallocateHandle. ◆

If many handles reference a single purged, relocatable block, you need to call
ReallocateHandle on just one of them.

In case of an error, ReallocateHandle neither allocates a new block nor changes the
master pointer to which handle h points.

SPECIAL CONSIDERATIONS

Because ReallocateHandle might purge and allocate memory, you should not call it
at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for ReallocateHandle are

RESULT CODES

Registers on entry

A0 Handle for new relocatable block

D0 Desired logical size, in bytes, of new block

Registers on exit

D0 Result code

noErr 0 No error
memROZErr –99 Heap zone is read-only
memFullErr –108 Not enough memory
memWZErr –111 Attempt to operate on a free block
memPurErr –112 Attempt to purge a locked block
Memory Management Reference 1-69

C H A P T E R 1

Introduction to Memory Management
ReserveMem 1

Use the ReserveMem procedure when you allocate a relocatable block that you intend to
lock for long periods of time. This helps prevent heap fragmentation because it reserves
space for the block as close to the bottom of the heap as possible. Consistent use of
ReserveMem for this purpose ensures that all locked, relocatable blocks and
nonrelocatable blocks are together at the bottom of the heap zone and thus do not
prevent unlocked relocatable blocks from moving about the zone.

PROCEDURE ReserveMem (cbNeeded: Size);

cbNeeded The number of bytes to reserve near the bottom of the heap.

DESCRIPTION

The ReserveMem procedure attempts to create free space for a block of cbNeeded
contiguous logical bytes at the lowest possible position in the current heap zone. It
pursues every available means of placing the block as close as possible to the bottom of
the zone, including moving other relocatable blocks upward, expanding the zone (if
possible), and purging blocks from it.

Because ReserveMem does not actually allocate the block, you must combine calls to
ReserveMem with calls to the NewHandle function.

Do not use the ReserveMem procedure for a relocatable block you intend to lock for
only a short period of time. If you do so and then allocate a nonrelocatable block above
it, the relocatable block becomes trapped under the nonrelocatable block when you
unlock that relocatable block.

Note
It isn’t necessary to call ReserveMem to reserve space for a
nonrelocatable block, because the NewPtr function calls it automatically.
Also, you do not need to call ReserveMem to reserve memory before
you load a locked resource into memory, because the Resource Manager
calls ReserveMem automatically. ◆

SPECIAL CONSIDERATIONS

Because the ReserveMem procedure could move and purge memory, you should not call
it at interrupt time.
1-70 Memory Management Reference

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for ReserveMem are

RESULT CODES

MoveHHi 1

If you plan to lock a relocatable block for a short period of time, use the MoveHHi
procedure, which moves the block to the top of the heap and thus helps prevent heap
fragmentation.

PROCEDURE MoveHHi (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The MoveHHi procedure attempts to move the relocatable block referenced by the handle
h upward until it reaches a nonrelocatable block, a locked relocatable block, or the top of
the heap.

▲ W A R N I N G

If you call MoveHHi to move a handle to a resource that has its
resChanged bit set, the Resource Manager updates the resource by
using the WriteResource procedure to write the contents of the block
to disk. If you want to avoid this behavior, call the Resource Manager
procedure SetResPurge(FALSE) before you call MoveHHi, and then
call SetResPurge(TRUE) to restore the default setting. ▲

By using the MoveHHi procedure on relocatable blocks you plan to allocate for short
periods of time, you help prevent islands of immovable memory from accumulating in
(and thus fragmenting) the heap.

Registers on entry

D0 Number of bytes to reserve

Registers on exit

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory
Memory Management Reference 1-71

C H A P T E R 1

Introduction to Memory Management
Do not use the MoveHHi procedure to move blocks you plan to lock for long periods of
time. The MoveHHi procedure moves such blocks to the top of the heap, perhaps
preventing other blocks already at the top of the heap from moving down once they are
unlocked. Instead, use the ReserveMem procedure before allocating such blocks, thus
keeping them in the bottom partition of the heap, where they do not prevent relocatable
blocks from moving.

If you frequently lock a block for short periods of time and find that calling MoveHHi
each time slows down your application, you might consider leaving the block always
locked and calling the ReserveMem procedure before allocating it.

Once you move a block to the top of the heap, be sure to lock it if you do not want the
Memory Manager to move it back to the middle partition as soon as it can. (The
MoveHHi procedure cannot move locked blocks; be sure to lock blocks after, not before,
calling MoveHHi.)

Note
Using the MoveHHi procedure without taking other precautionary
measures to prevent heap fragmentation is useless, because even one
small nonrelocatable or locked relocatable block in the middle of the
heap might prevent MoveHHi from moving blocks to the top of
the heap. ◆

SPECIAL CONSIDERATIONS

Because the MoveHHi procedure moves memory, you should not call it at interrupt time.

Don’t call MoveHHi on blocks in the system heap. Don’t call MoveHHi from a desk
accessory.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for MoveHHi are

RESULT CODES

Registers on entry

A0 Handle to move

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memLockedErr –117 Block is locked
1-72 Memory Management Reference

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
HLockHi 1

You can use the HLockHi procedure to move a relocatable block to the top of the heap
and lock it.

PROCEDURE HLockHi (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HLockHi procedure attempts to move the relocatable block referenced by the handle
h upward until it reaches a nonrelocatable block, a locked relocatable block, or the top of
the heap. Then HLockHi locks the block.

The HLockHi procedure is simply a convenient replacement for the pair of procedures
MoveHHi and HLock.

SPECIAL CONSIDERATIONS

Because the HLockHi procedure moves memory, you should not call it at interrupt time.

Don’t call HLockHi on blocks in the system heap. Don’t call HLockHi from a desk
accessory.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HLockHi are

RESULT CODES

Manipulating Blocks of Memory 1

The Memory Manager provides a routine for copying blocks of memory referenced by
pointers. To copy a block of memory to a nonrelocatable block, you can use the
BlockMove procedure.

Registers on entry

A0 Handle to move and lock

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
memLockedErr –117 Block is locked
Memory Management Reference 1-73

C H A P T E R 1

Introduction to Memory Management
BlockMove 1

To copy a sequence of bytes from one location in memory to another, you can use the
BlockMove procedure.

PROCEDURE BlockMove (sourcePtr, destPtr: Ptr; byteCount: Size);

sourcePtr The address of the first byte to copy.

destPtr The address of the first byte to copy to.

byteCount The number of bytes to copy. If the value of byteCount is 0, BlockMove
does nothing.

DESCRIPTION

The BlockMove procedure moves a block of byteCount consecutive bytes from the
address designated by sourcePtr to that designated by destPtr. It updates no
pointers.

The BlockMove procedure works correctly even if the source and destination blocks
overlap.

SPECIAL CONSIDERATIONS

You can safely call BlockMove at interrupt time. Even though it moves memory,
BlockMove does not move relocatable blocks, but simply copies bytes.

The BlockMove procedure currently flushes the processor caches whenever the number
of bytes to be moved is greater than 12. This behavior can adversely affect your
application’s performance. You might want to avoid calling BlockMove to move small
amounts of data in memory if there is no possibility of moving stale data or instructions.
For more information about stale data and instructions, see the discussion of the
processor caches in the chapter “Memory Management Utilities” in this book.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for BlockMove are

Registers on entry

A0 Pointer to source

A1 Pointer to destination

D0 Number of bytes to copy

Registers on exit

D0 Result code
1-74 Memory Management Reference

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
RESULT CODE

Assessing Memory Conditions 1

The Memory Manager provides routines to test how much memory is available. To
determine the total amount of free space in the current heap zone or the size of the
maximum block that could be obtained after a purge of the heap, call the PurgeSpace
function.

To find out whether a Memory Manager operation finished successfully, use the
MemError function.

PurgeSpace 1

Use the PurgeSpace procedure to determine the total amount of free memory and the
size of the largest allocatable block after a purge of the heap.

PROCEDURE PurgeSpace (VAR total: LongInt; VAR contig: LongInt);

total On exit, the total amount of free memory in the current heap zone if it
were purged.

contig On exit, the size of the largest contiguous block of free memory in the
current heap zone if it were purged.

DESCRIPTION

The PurgeSpace procedure returns, in the total parameter, the total amount of space
(in bytes) that could be obtained after a general purge of the current heap zone; this
amount includes space that is already free. In the contig parameter, PurgeSpace
returns the size of the largest allocatable block in the current heap zone that could be
obtained after a purge of the zone.

The PurgeSpace procedure does not actually purge the current heap zone.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for PurgeSpace are

RESULT CODES

noErr 0 No error

Registers on exit

A0 Maximum number of contiguous bytes after purge

D0 Total free memory after purge

noErr 0 No error
Memory Management Reference 1-75

C H A P T E R 1

Introduction to Memory Management
MemError 1

To find out whether your application’s last direct call to a Memory Manager routine
executed successfully, use the MemError function.

FUNCTION MemError: OSErr;

DESCRIPTION

The MemError function returns the result code produced by the last Memory Manager
routine your application called directly.

This function is useful during application debugging. You might also use the function as
one part of a memory-management scheme to identify instances in which the Memory
Manager rejects overly large memory requests by returning the error code memFullErr.

▲ W A R N I N G

Do not rely on the MemError function as the only component of a
memory-management scheme. For example, suppose you call
NewHandle or NewPtr and receive the result code noErr, indicating
that the Memory Manager was able to allocate sufficient memory. In this
case, you have no guarantee that the allocation did not deplete your
application’s memory reserves to levels so low that simple operations
might cause your application to crash. Instead of relying on MemError,
check before making a memory request that there is enough memory
both to fulfill the request and to support essential operations. ▲

ASSEMBLY-LANGUAGE INFORMATION

Because most Memory Manager routines return a result code in register D0, you do not
ordinarily need to call the MemError function if you program in assembly language. See
the description of an individual routine to find out whether it returns a result code in
register D0. If not, you can examine the global variable MemErr. When MemError
returns, register D0 contains the result code.

RESULT CODES

Registers on exit

D0 Result code

noErr 0 No error
paramErr –50 Error in parameter list
memROZErr –99 Operation on a read-only zone
memFullErr –108 Not enough memory
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
memPurErr –112 Attempt to purge a locked block
memBCErr –115 Block check failed
memLockedErr –117 Block is locked
1-76 Memory Management Reference

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
Grow-Zone Operations 1

You can implement a grow-zone function that the Memory Manager calls when it cannot
fulfill a memory request. You should use the grow-zone function only as a last resort to
free memory when all else fails.

The SetGrowZone procedure specifies which function the Memory Manager should use
for the current zone. The grow-zone function should call the GZSaveHnd function to
receive a handle to a relocatable block that the grow-zone function must not move
or purge.

SetGrowZone 1

To specify a grow-zone function for the current heap zone, pass a pointer to that function
to the SetGrowZone procedure. Ordinarily, you call this procedure early in the
execution of your application.

If you initialize your own heap zones besides the application and system zones, you can
alternatively specify a grow-zone function as a parameter to the InitZone procedure.

PROCEDURE SetGrowZone (growZone: ProcPtr);

growZone A pointer to the grow-zone function.

DESCRIPTION

The SetGrowZone procedure sets the current heap zone’s grow-zone function as
designated by the growZone parameter. A NIL parameter value removes any grow-zone
function the zone might previously have had.

The Memory Manager calls the grow-zone function only after exhausting all other
avenues of satisfying a memory request, including compacting the zone, increasing its
size (if it is the original application zone and is not yet at its maximum size), and purging
blocks from it.

See “Grow-Zone Functions” on page 1-80 for a complete description of a grow-zone
function.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for SetGrowZone are

Registers on entry

A0 Pointer to new grow-zone function

Registers on exit

D0 Result code
Memory Management Reference 1-77

C H A P T E R 1

Introduction to Memory Management
RESULT CODES

SEE ALSO

See “Defining a Grow-Zone Function” on page 1-48 for a description of a grow-zone
function.

GZSaveHnd 1

Your grow-zone function must call the GZSaveHnd function to obtain a handle to a
protected relocatable block that the grow-zone function must not move, purge, or delete.

FUNCTION GZSaveHnd: Handle;

DESCRIPTION

The GZSaveHnd function returns a handle to a relocatable block that the grow-zone
function must not move, purge, or delete. It returns NIL if there is no such block. The
returned handle is a handle to the block of memory being manipulated by the Memory
Manager at the time that the grow-zone function is called.

ASSEMBLY-LANGUAGE INFORMATION

You can find the same handle in the global variable GZRootHnd.

Setting and Restoring the A5 Register 1

Any code that runs asynchronously or as a callback routine and that accesses the calling
application’s A5 world must ensure that the A5 register correctly points to the boundary
between the application parameters and the application global variables. To accomplish
this, you can call the SetCurrentA5 function at the beginning of any asynchronous or
callback code that isn’t executed at interrupt time. If the code is executed at interrupt
time, you must use the SetA5 function to set the value of the A5 register. (You determine
this value at noninterrupt time by calling SetCurrentA5.) Then you must restore the
A5 register to its previous value before the interrupt code returns.

noErr 0 No error
1-78 Memory Management Reference

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
SetCurrentA5 1

You can use the SetCurrentA5 function to get the current value of the system global
variable CurrentA5.

FUNCTION SetCurrentA5: LongInt;

DESCRIPTION

The SetCurrentA5 function does two things: First, it gets the current value in the
A5 register and returns it to your application. Second, SetCurrentA5 sets register A5 to
the value of the low-memory global variable CurrentA5. This variable points to the
boundary between the parameters and global variables of the current application.

SPECIAL CONSIDERATIONS

You cannot reliably call SetCurrentA5 in code that is executed at interrupt time unless
you first guarantee that your application is the current process (for example, by calling
the Process Manager function GetCurrentProcess). In general, you should call
SetCurrentA5 at noninterrupt time and then pass the returned value to the
interrupt code.

ASSEMBLY-LANGUAGE INFORMATION

You can access the value of the current application’s A5 register with the low-memory
global variable CurrentA5.

SetA5 1

In interrupt code that accesses application global variables, use the SetA5 function first
to restore a value previously saved using SetCurrentA5, and then, at the end of the
code, to restore the A5 register to the value it had before the first call to SetA5.

FUNCTION SetA5 (newA5: LongInt): LongInt;

newA5 The value to which the A5 register is to be changed.

DESCRIPTION

The SetA5 function performs two tasks: it returns the address in the A5 register when
the function is called, and it sets the A5 register to the address specified in newA5.
Memory Management Reference 1-79

C H A P T E R 1

Introduction to Memory Management
Application-Defined Routines 1
The techniques illustrated in this chapter use only one application-defined routine, a
grow-zone function.

Grow-Zone Functions 1

The Memory Manager calls your application’s grow-zone function whenever it cannot
find enough contiguous memory to satisfy a memory allocation request and has
exhausted other means of obtaining the space.

MyGrowZone 1

A grow-zone function should have the following form:

FUNCTION MyGrowZone (cbNeeded: Size): LongInt;

cbNeeded The physical size, in bytes, of the needed block, including the block
header. The grow-zone function should attempt to create a free block of at
least this size.

DESCRIPTION

Whenever the Memory Manager has exhausted all available means of creating space
within your application heap—including purging, compacting, and (if possible)
expanding the heap—it calls your application-defined grow-zone function. The
grow-zone function can do whatever is necessary to create free space in the heap.
Typically, a grow-zone function marks some unneeded blocks as purgeable or releases an
emergency memory reserve maintained by your application.

The grow-zone function should return a nonzero value equal to the number of bytes of
memory it has freed, or zero if it is unable to free any. When the function returns a
nonzero value, the Memory Manager once again purges and compacts the heap zone
and tries to reallocate memory. If there is still insufficient memory, the Memory Manager
calls the grow-zone function again (but only if the function returned a nonzero value the
previous time it was called). This mechanism allows your grow-zone function to release
just a little bit of memory at a time. If the amount it releases at any time is not enough,
the Memory Manager calls it again and gives it the opportunity to take more drastic
measures.
1-80 Memory Management Reference

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
The Memory Manager might designate a particular relocatable block in the heap as
protected; your grow-zone function should not move or purge that block. You can
determine which block, if any, the Memory Manager has protected by calling the
GZSaveHnd function in your grow-zone function.

Remember that a grow-zone function is called while the Memory Manager is attempting
to allocate memory. As a result, your grow-zone function should not allocate memory
itself or perform any other actions that might indirectly cause memory to be allocated
(such as calling routines in unloaded code segments or displaying dialog boxes).

You install a grow-zone function by passing its address to the InitZone procedure
when you create a new heap zone or by calling the SetGrowZone procedure at any
other time.

SPECIAL CONSIDERATIONS

Your grow-zone function might be called at a time when the system is attempting to
allocate memory and the value in the A5 register is not correct. If your function accesses
your application’s A5 world or makes any trap calls, you need to set up and later restore
the A5 register by calling SetCurrentA5 and SetA5.

Because of the optimizations performed by some compilers, the actual work of the
grow-zone function and the setting and restoring of the A5 register might have to be
placed in separate procedures.

SEE ALSO

See “Defining a Grow-Zone Function” on page 1-48 for a definition of a sample
grow-zone function.
Memory Management Reference 1-81

C H A P T E R 1

Introduction to Memory Management
Summary of Memory Management 1

Pascal Summary 1

Data Types 1

TYPE

SignedByte = -128..127; {arbitrary byte of memory}

Byte = 0..255; {unsigned, arbitrary byte}

Ptr = ^SignedByte; {pointer to nonrelocatable block}

Handle = ^Ptr; {handle to relocatable block}

ProcPtr = Ptr; {procedure pointer}

Size = LongInt; {size, in bytes, of block}

Memory Management Routines 1

Setting Up the Application Heap

PROCEDURE MaxApplZone;

PROCEDURE MoreMasters;

FUNCTION GetApplLimit : Ptr;

PROCEDURE SetApplLimit (zoneLimit: Ptr);

Allocating and Releasing Relocatable Blocks of Memory

FUNCTION NewHandle (logicalSize: Size): Handle;

FUNCTION NewHandleClear (logicalSize: Size): Handle;

PROCEDURE DisposeHandle (h: Handle);

Allocating and Releasing Nonrelocatable Blocks of Memory

FUNCTION NewPtr (logicalSize: Size): Ptr;

FUNCTION NewPtrClear (logicalSize: Size): Ptr;

PROCEDURE DisposePtr (p: Ptr);
1-82 Summary of Memory Management

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
Setting the Properties of Relocatable Blocks

FUNCTION HGetState (h: Handle): SignedByte;

PROCEDURE HSetState (h: Handle; flags: SignedByte);

PROCEDURE HLock (h: Handle);

PROCEDURE HUnlock (h: Handle);

PROCEDURE HPurge (h: Handle);

PROCEDURE HNoPurge (h: Handle);

Managing Relocatable Blocks

PROCEDURE EmptyHandle (h: Handle);

PROCEDURE ReallocateHandle (h: Handle; logicalSize: Size);

PROCEDURE ReserveMem (cbNeeded: Size);

PROCEDURE MoveHHi (h: Handle);

PROCEDURE HLockHi (h: Handle);

Manipulating Blocks of Memory

PROCEDURE BlockMove (sourcePtr, destPtr: Ptr; byteCount: Size);

Assessing Memory Conditions

PROCEDURE PurgeSpace (VAR total: LongInt; VAR contig: LongInt);

FUNCTION MemError : OSErr;

Grow-Zone Operations

PROCEDURE SetGrowZone (growZone: ProcPtr);

FUNCTION GZSaveHnd : Handle;

Setting and Restoring the A5 Register

FUNCTION SetCurrentA5 : LongInt;

FUNCTION SetA5 (newA5: LongInt) : LongInt;

Application-Defined Routines 1

Grow-Zone Functions

FUNCTION MyGrowZone (cbNeeded: Size): LongInt;
Summary of Memory Management 1-83

C H A P T E R 1

Introduction to Memory Management
C Summary 1

Data Types 1

typedef char SignedByte; /*arbitrary byte of memory*/

typedef unsigned char Byte; /*unsigned, arbitrary byte*/

typedef char *Ptr; /*pointer to nonrelocatable block*/

typedef Ptr *Handle; /*handle to relocatable block*/

typedef long (*ProcPtr)(); /*procedure pointer*/

typedef long Size; /*size in bytes of block*/

Memory Management Routines 1

Setting Up the Application Heap

pascal void MaxApplZone (void);

pascal void MoreMasters (void);

#define GetApplLimit() (* (Ptr*) 0x0130)

pascal void SetApplLimit (void *zoneLimit);

Allocating and Releasing Relocatable Blocks of Memory

pascal Handle NewHandle (Size byteCount);

pascal Handle NewHandleClear (Size byteCount);

pascal void DisposeHandle (Handle h);

Allocating and Releasing Nonrelocatable Blocks of Memory

pascal Ptr NewPtr (Size byteCount);

pascal Ptr NewPtrClear (Size byteCount);

pascal void DisposePtr (Ptr p);

Setting the Properties of Relocatable Blocks

pascal char HGetState (Handle h);

pascal void HSetState (Handle h, char flags);

pascal void HLock (Handle h);

pascal void HUnlock (Handle h);

pascal void HPurge (Handle h);

pascal void HNoPurge (Handle h);
1-84 Summary of Memory Management

C H A P T E R 1

Introduction to Memory Management

1

Introduction to M
em

ory M
anagem

ent
Managing Relocatable Blocks

pascal void EmptyHandle (Handle h);

pascal void ReallocateHandle (Handle h, Size byteCount);

pascal void ReserveMem (Size cbNeeded);

pascal void MoveHHi (Handle h);

pascal void HLockHi (Handle h);

Manipulating Blocks of Memory

pascal void BlockMove (const void *srcPtr, void *destPtr,
Size byteCount);

Assessing Memory Conditions

pascal void PurgeSpace (long *total, long *contig);

#define MemError() (* (OSErr*) 0x0220)

Grow-Zone Operations

pascal void SetGrowZone (GrowZoneProcPtr growZone);

#define GZSaveHnd() (* (Handle*) 0x0328)

Setting and Restoring the A5 Register

long SetCurrentA5 (void);

long SetA5 (long newA5);

Application-Defined Routines 1

Grow-Zone Functions

pascal long MyGrowZone (Size cbNeeded);
Summary of Memory Management 1-85

C H A P T E R 1

Introduction to Memory Management
Assembly-Language Summary 1

Global Variables 1

Result Codes 1

ApplLimit long The application heap limit, beyond which the heap cannot expand.
ApplZone long A pointer to the original application heap zone.
BufPtr long Address of highest byte of allocatable memory.
CurrentA5 long Address of the boundary between the application global variables and the

application parameters of the current application.
GZRootHnd long A handle to a block that the grow-zone function must not move.

noErr 0 No error
paramErr –50 Error in parameter list
memROZErr –99 Heap zone is read-only
memFullErr –108 Not enough memory
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
memPurErr –112 Attempt to purge a locked block
memBCErr –115 Block check failed
memLockedErr –117 Block is locked
1-86 Summary of Memory Management

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Memory Management TOC
	Introduction to Memory Management
	About Memory
	Organization of Memory by the Operating System
	The System Heap
	The System Global Variables

	Organization of Memory in an Application Partition...
	The Application Stack
	The Application Heap
	The Application Global Variables and A5 World

	Temporary Memory
	Virtual Memory
	Addressing Modes

	Heap Management
	Relocatable and Nonrelocatable Blocks
	Properties of Relocatable Blocks
	Locking and Unlocking Relocatable Blocks
	Purging and Reallocating Relocatable Blocks

	Memory Reservation
	Heap Purging and Compaction
	Heap Fragmentation
	Deallocating Nonrelocatable Blocks
	Reserving Memory
	Locking Relocatable Blocks
	Allocating Nonrelocatable Blocks
	Summary of Preventing Fragmentation

	Dangling Pointers
	Compiler Dereferencing
	Loading Code Segments
	Callback Routines

	Invalid Handles
	Disposed Handles
	Empty Handles
	Fake Handles

	Low-Memory Conditions
	Memory Cushions
	Memory Reserves
	Grow-Zone Functions

	Using Memory
	Setting Up the Application Heap
	Changing the Size of the Stack
	Expanding the Heap
	Allocating Master Pointer Blocks

	Determining the Amount of Free Memory
	Allocating Blocks of Memory
	Maintaining a Memory Reserve
	Defining a Grow-Zone Function

	Memory Management Reference
	Memory Management Routines
	Setting Up the Application Heap
	Allocating and Releasing Relocatable Blocks of Mem...
	Allocating and Releasing Nonrelocatable Blocks of ...
	Setting the Properties of Relocatable Blocks
	Managing Relocatable Blocks
	Manipulating Blocks of Memory
	Assessing Memory Conditions
	Grow-Zone Operations
	Setting and Restoring the A5 Register

	Application-Defined Routines
	Grow-Zone Functions

	Summary of Memory Management
	Pascal Summary
	Data Types
	Memory Management Routines
	Application-Defined Routines

	C Summary
	Data Types
	Memory Management Routines
	Application-Defined Routines

	Assembly-Language Summary
	Global Variables

	Result Codes

	 Memory Manager TOC
	 Memory Manager
	 Virtual Memory Manager TOC
	 Virtual Memory Manager
	 Memory Management Utilities TOC
	 Memory Management Utilities
	 Glossary
	 Index
	 Colophon

